An Approach for Automotive ECU Diagnosis via Ethernet Snooping & Microcontroller Tracing

Authors

  • Zafer Attal Technische Universitat Munchen (TUM)
  • Matthias Ernst Infineon Technologies AG
  • Gasper Skvarc Bozic Infineon Technologies AG
  • Ibai Irigoyen Ceberio Infineon Technologies AG
  • Albrecht Mayer Infineon Technologies AG
  • Thomas Wild Technische Universitat Munchen (TUM)
  • Andreas Herkersdorf Technische Universitat Munchen (TUM)

DOI:

https://doi.org/10.64552/wipiec.v11i1.96

Keywords:

Automotive, Diagnostics, Health Monitoring, Anomaly Detection, Trace Analysis

Abstract

The increasing software complexity in modern vehicles necessitates diagnostic capabilities beyond traditional systems. This paper presents a Diagnosis Unit (DU) that supports runtime detection and analysis of anomalies by correlating irregularities in Ethernet communication with ECU-internal processing behavior. The DU captures execution traces upon detecting anomalous communication and performs localized analysis to assist in uncovering potential root causes. Implemented on a ZCU102 platform and interfaced with Aurix ECUs, the prototype effectively detects both communication and processing anomalies with minimal impact on in-vehicle network bandwidth, supporting scalable, adaptive, and non-intrusive in-vehicle diagnostics.

References

SAE J3016 automated-driving graphic. Last Modified: 2020-05- 15T14:03:15-04:00.

Deepa Saibannavar, Mallikarjun M. Math, and Umakant P. Kulkarni. A survey on on-board diagnostic in vehicles. 2020. DOI: https://doi.org/10.1007/978-3-030-49795-8_5

Malintha Amarasinghe, Sasikala Kottegoda, Asiri Liyana Arachchi, Shashika Ranga Muramudalige, Herath Mudiyanselage Nelanga Dilum Bandara, and Afkham Azeez. Cloud-based driver monitoring and vehicle diagnostic with obd2 telematics. 2015 Fifteenth International Conference on Advances in ICT for Emerging Regions (ICTer), pages 243–249, 2015. DOI: https://doi.org/10.1109/ICTER.2015.7377695

Artur Mrowca, Thomas Pramsohler, Sebastian Steinhorst, and Uwe Baumgarten. Automated interpretation and reduction of in-vehicle network traces at a large scale. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, 2018. DOI: https://doi.org/10.1109/DAC.2018.8465937

Md. Arafatur Rahman, Md. Abdur Rahim, Md. Mustafizur Rahman, Nour Moustafa, Imran Razzak, Tanvir Ahmad, and Mohammad N. Patwary. A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics. IEEE Transactions on Intelligent Transportation Systems, 23:19727–19742, 2022. DOI: https://doi.org/10.1109/TITS.2021.3138255

Uferah Shafi, Asad Ali Safi, Ahmad Raza Shahid, Sheikh Ziauddin, and Muhammad Qaiser Saleem. Vehicle remote health monitoring and prognostic maintenance system. Journal of Advanced Transportation, 2018:1–10, 2018. DOI: https://doi.org/10.1155/2018/8061514

¨Ovg¨u ¨Ozdemir, M. Tu˘gberk ˙Is¸yapar, Pınar Karag¨oz, Klaus Werner Schmidt, Demet Demir, and N. Alpay Karag¨oz. A survey of anomaly detection in in-vehicle networks. arXiv preprint arXiv:2409.07505, 2024.

Paolo Dini, Sergio Saponara, Carlo Rosadini, Walter Nesci, and Stefano Chiarelli. Anomaly and intrusion detection algorithms for can-bus networking security in automotive applications. Automotive SPIN Italia Workshop, 2023.

AMD. Zcu102 evaluation kit board user guide, 2024. Accessed: 2024-08-08.

A new generation automotive tool access architecture for remote in-field diagnosis. SAE Technical Paper Series, 2023.

Lauterbach GmbH. Multi-core debug solution user’s guide, 2024. Accessed: 2024-08-08. G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955. DOI: https://doi.org/10.1098/rsta.1955.0005

Downloads

Published

2025-09-02

How to Cite

Attal, Z., Ernst, M., Bozic, G. S., Ceberio, I. I., Mayer, A., Wild, T., & Herkersdorf, A. (2025). An Approach for Automotive ECU Diagnosis via Ethernet Snooping & Microcontroller Tracing. WiPiEC Journal - Works in Progress in Embedded Computing Journal, 11(1), 5. https://doi.org/10.64552/wipiec.v11i1.96