Efficient Neural Network Reduction for AI-on-the-edge Applications through Structural Compression

Authors

  • Adriano Puglisi Sapienza Università di Roma
  • Flavia Monti Sapienza Università di Roma
  • Christian Napoli Sapienza Università di Roma
  • Massimo Mecella Sapienza Università di Roma

DOI:

https://doi.org/10.64552/wipiec.v11i1.89

Keywords:

IoT, Edge AI, Deep Model Optimization, Neural Network Compression

Abstract

Modern neural networks often rely on overparameterized architectures to ensure stability and accuracy, but in many real-world scenarios, large models are unnecessarily expensive to train and deploy. This is especially true in Internet of Things (IoT) and edge computing scenarios, where computational resources and available memory are severely limited. Reducing the size of neural networks without compromising their ability to solve the target task remains a practical challenge, especially when the goal is to simplify the architecture itself, not just the weight space. To address this problem, we introduce ImproveNet, a simple and general method that reduces the size of a neural network, without compromising its ability to solve the original task. The approach does not require any pre-trained model, specific architecture knowledge, or manual tuning. Starting with a standard-sized network and the standard training configuration, ImproveNet verifies the model's performance during training. Once the performance requirements are met, it reduces the network by resizing feature maps or removing internal layers, thus making it ready for AI-on-the-edge deployment and execution.

References

H. N. W. R. C. W. W. H. Z. Z. &. V. A. V. Dai, "Big data analytics for large-scale wireless networks: Challenges and opportunities," ACM Computing Surveys (CSUR), pp. 1-36, 2019. DOI: https://doi.org/10.1145/3337065

B. K. S. C. B. Z. M. T. M. H. A. .. &. K. D. Jacob, "Quantization and training of neural networks for efficient integer-arithmetic-only inference," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2704-2713, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00286

H. K. A. D. I. S. H. &. G. H. P. Li, "Pruning filters for efficient convnets," arXiv preprint arXiv:1608.08710, 2016.

T. G. I. &. S. J. Chen, "Net2net: Accelerating learning via knowledge transfer," arXiv preprint arXiv:1511.05641, 2015.

R. C. a. A. N.-M. C. Buciluˇa, "Model compression," Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, p. 535–541, 2006. DOI: https://doi.org/10.1145/1150402.1150464

K. H. C. A. J. R. B. N. J. L. D. .. &. D. C. G. Kotowski, "European space agency benchmark for anomaly detection in satellite telemetry," arXiv preprint arXiv:2406.17826, 2024.

J. H. Z. H. Z. H. Y. X. C. W. W. J. &. L. W. Luo, "ThiNet: Pruning CNN filters for a thinner net," IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 10, pp. 2525-2538, 2018. DOI: https://doi.org/10.1109/TPAMI.2018.2858232

Y. K. G. D. X. F. Y. &. Y. Y. He, "Soft filter pruning for accelerating deep convolutional neural networks," arXiv preprint arXiv:1808.06866, 2018.

S. &. B. R. V. Srinivas, "Data-free parameter pruning for deep neural networks," arXiv preprint arXiv:1507.06149, 2015. DOI: https://doi.org/10.5244/C.29.31

S. P. J. T. J. &. D. W. Han, "Learning both weights and connections for efficient neural network," Advances in neural information processing systems, vol. 28, 2015.

G. V. O. &. D. J. Hinton, "Distilling the knowledge in a neural network," arXiv preprint arXiv:1503.02531, 2015.

Downloads

Published

2025-09-02

How to Cite

Puglisi, A., Monti, F., Napoli, C., & Mecella, M. (2025). Efficient Neural Network Reduction for AI-on-the-edge Applications through Structural Compression. WiPiEC Journal - Works in Progress in Embedded Computing Journal, 11(1), 4. https://doi.org/10.64552/wipiec.v11i1.89