Reliability-Aware Hyperparameter Optimization for ANN-to-SNN Conversion

Authors

  • Saeed Sharifian University of Zanjan
  • Mahdi Taheri BTU Cottbus, TalTech
  • Vahid Rashtchi University of Zanjan
  • Ali Azarpeyvand University of Zanjan, TalTech
  • Christian Herglotz BTU Cottbus
  • Maksim Jenihhin TalTech

DOI:

https://doi.org/10.64552/wipiec.v11i1.85

Keywords:

deep neural networks, spiking neural networks, reliability, edge applications, safety-critical applications

Abstract

Spiking Neural Networks (SNNs) have emerged as an energy-efficient alternative to Artificial Neural Networks (ANNs), particularly for edge-computing and safety-critical applications. Unlike conventional ANNs, SNNs leverage sparse event-driven processing to reduce energy consumption while significantly maintaining high computational efficiency. This paper presents a framework designed to optimize the conversion of ANNs into equivalent SNNs while balancing accuracy, reliability, and energy efficiency. The proposed framework systematically explores SNN hyperparameters to identify configurations that achieve superior performance compared to their ANN counterparts. Experimental evaluations on MNIST and Fashion-MNIST datasets with different network topologies demonstrate that the optimized SNNs achieve comparable accuracy while offering in some cases 27.81× and 15.17× lower energy consumption and 1.92× and 1.84× less accuracy drop in the presence of faults, respectively, over the ANN baseline. The results highlight the applicability of SNNs in reliability-critical power-constrained environments.

References

W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997. DOI: https://doi.org/10.1016/S0893-6080(97)00011-7

K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019. DOI: https://doi.org/10.1038/s41586-019-1677-2

J. Ding, Z. Pan, Y. Liu, Z. Yu, and T. Huang, “Robust stable spiking neural networks,” arXiv preprint arXiv:2405.20694, 2024.

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and challenges,” Frontiers in neuroscience, vol. 12, p. 409662, 2018. DOI: https://doi.org/10.3389/fnins.2018.00774

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.508, 2016. DOI: https://doi.org/10.3389/fnins.2016.00508

Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-efficient object recognition,” International Journal of Computer Vision, vol. 113, pp. 54–66, 2015. DOI: https://doi.org/10.1007/s11263-014-0788-3

C. Stöckl and W. Maass, “Optimized spiking neurons can classify images with high accuracy through temporal coding and synaptic weights trained with backpropagation,” Neural Networks, vol. 143, pp. 100–111, 2021.

T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-Barranco, and H.-G. Stratigopoulos, “Reliability analysis of a spiking neural network hardware accelerator,” in 2022 Design, Automation &Test in Europe Conference & Exhibition (DATE), 2022, pp. 370–375. DOI: https://doi.org/10.23919/DATE54114.2022.9774711

R. V. W. Putra, M. A. Hanif, and M. Shafique, “Respawn: Energy- efficient fault-tolerance for spiking neural networks considering unreliable memories,” in 2021 IEEE/ACM International Conference OnComputer Aided Design (ICCAD). IEEE, 2021, pp. 1–9. DOI: https://doi.org/10.1109/ICCAD51958.2021.9643524

R. V. Putra, M. A. Hanif, and M. Shafique, “Rescuesnn: enabling reliable executions on spiking neural network accelerators under permanent faults,” Frontiers in Neuroscience, vol. 17, p. 1159440, 2023. DOI: https://doi.org/10.3389/fnins.2023.1159440

A. B. Göğebakan, E. Magliano, A. Carpegna, A. Ruospo, A. Savino, and S. Di Carlo, “Spikingjet: Enhancing fault injection for fully and convolutional spiking neural networks,” in 2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE, 2024, pp. 1–7. DOI: https://doi.org/10.1109/IOLTS60994.2024.10616060

T. Spyrou, S. Hamdioui, and H.-G. Stratigopoulos, “Spikefi: A fault injection framework for spiking neural networks,” arXiv preprint arXiv:2412.06795, 2024.

B. Na, J. Mok, S. Park, D. Lee, H. Choe, and S. Yoon, “Autosnn:Towards energy-efficient spiking neural networks,” in International Conference on Machine Learning. PMLR, 2022, pp. 16 253–16 269.

J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural networks using lessons from deep learning,” Proceedings of the IEEE, vol. 111, no. 9, pp. 1016–1054, 2023. DOI: https://doi.org/10.1109/JPROC.2023.3308088

S. Venkatesh, R. Marinescu, and J. K. Eshraghian, “Squat: Stateful quantization-aware training in recurrent spiking neural networks,” in 2024 Neuro Inspired Computational Elements Conference (NICE). IEEE, 2024, pp. 1–10. DOI: https://doi.org/10.1109/NICE61972.2024.10549198

S. Barchid, J. Mennesson, J. Eshraghian, C. Djéraba, and M. Bennamoun, “Spiking neural networks for frame-based and event-based single object localization,” Neurocomputing, vol. 559, p. 126805, 2023. DOI: https://doi.org/10.1016/j.neucom.2023.126805

T. Zhang, S. Xiang, W. Liu, Y. Han, X. Guo, and Y. Hao, “Hybrid spiking fully convolutional neural network for semantic segmentation,” Electronics, vol. 12, no. 17, p. 3565, 2023. DOI: https://doi.org/10.3390/electronics12173565

M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC). IEEE, 2014, pp. 10–14. DOI: https://doi.org/10.1109/ISSCC.2014.6757323

M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin, “A systematic literature review on hardware reliability assessment methods for deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp. 1–39, 2024. DOI: https://doi.org/10.1145/3638242

L. Pang, J. Liu, J. Harkin, G. Martin, M. McElholm, A. Javed, and L. McDaid, “Case study—spiking neural network hardware system for structural health monitoring,” Sensors, vol. 20, no. 18, p. 5126, 2020. DOI: https://doi.org/10.3390/s20185126

Downloads

Published

2025-09-02

How to Cite

Sharifian, S., Taheri, M., Rashtchi, V., Azarpeyvand, A., Herglotz, C., & Jenihhin, M. (2025). Reliability-Aware Hyperparameter Optimization for ANN-to-SNN Conversion. WiPiEC Journal - Works in Progress in Embedded Computing Journal, 11(1), 7. https://doi.org/10.64552/wipiec.v11i1.85