COSOI: True Random Number Generator Based on Coherent Sampling using the FD-SOI technology

Authors

  • Licinius Benea Univ. Grenoble Alpes, CEA, Leti
  • Florian Pebay-Peyroula Univ. Grenoble Alpes, CEA, Leti
  • Mikael Carmona Univ. Grenoble Alpes, CEA, Leti
  • Romain Wacquez CEA-Leti, Mines Saint-Etienne

Keywords:

True random number generator, coherent sampling, phase noise, jitter, ring oscillator, Allan variance, noise models, Fully Depleted Silicon On Insulator

Abstract

This work presents a proof of concept of the implementation of a Coherent Sampling Ring Oscillator TRNG (COSO-TRNG) using the Fully Depleted Silicon On Insulator (FD-SOI) technology. COSO-TRNG appears as one of the best structures optimizing the throughput per area trade-off and having a model for its entropy source. The back-biasing capability of the FD-SOI technology is proved here to be a very simple and efficient technique for the ring oscillator frequency calibration needed for the coherent sampling method. This is the first demonstration of feasibility of COSO-TRNG validated on ASIC FD22nm. A throughput of 3.36 Mbits/s was obtained, equivalent to results in the literature.True random number generator

References

M. Peter and W. Schindler, ‘A Proposal for Functionality Classes for Random Number Generators’, 02.06.2023, [Online]. Available: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Certification/Interpretations/AIS_31_Functionality_classes_for_random_number_generators_e_2023.html?nn=910324

M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle, ‘Recommendation for the entropy sources used for random bit generation’, National Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-90b, Jan. 2018. doi: 10.6028/NIST.SP.800-90B.

‘ISO/IEC JTC 1/SC 27. Test and analysis methods for random bit generators 541 within ISO/IEC 19790 and ISO/IEC 15408’, ISO. [Online]. Available: https://www.iso.org/standard/68296.html

M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, ‘On the Security of Oscillator-Based Random Number Generators’, J Cryptol, vol. 24, no. 2, pp. 398–425, Apr. 2011, doi: 10.1007/s00145-010-9089-3.

P. Kohlbrenner and K. Gaj, ‘An embedded true random number generator for FPGAs’, in Proceeding of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays - FPGA ’04, Monterey, California, USA: ACM Press, 2004, p. 71. doi: 10.1145/968280.968292.

F. Bernard, V. Fischer, and B. Valtchanov, ‘Mathematical model of physical RNGs based on coherent sampling’, Tatra Mountains Mathematical Publications, vol. 45, no. 1, pp. 1–14, Dec. 2010, doi: 10.2478/v10127-010-0001-1.

M. Varchola and M. Drutarovsky, ‘New High Entropy Element for FPGA Based True Random Number Generators’, in Cryptographic Hardware and Embedded Systems, CHES 2010, vol. 6225, S. Mangard and F.-X. Standaert, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 351–365. doi: 10.1007/978-3-642-15031-9_24.

P. Haddad, V. Fischer, F. Bernard, and J. Nicolai, ‘A Physical Approach for Stochastic Modeling of TERO-Based TRNG’, in Cryptographic Hardware and Embedded Systems -- CHES 2015, vol. 9293, T. Güneysu and H. Handschuh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 357–372. doi: 10.1007/978-3-662-48324-4_18.

B. Yang, V. Rožic, M. Grujic, N. Mentens, and I. Verbauwhede, ‘ES-TRNG: A High-throughput, Low-area True Random Number Generator based on Edge Sampling’, IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 267–292, Aug. 2018, doi: 10.13154/tches.v2018.i3.267-292.

B. Sunar, W. Martin, and D. Stinson, ‘A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks’, IEEE Trans. Comput., vol. 56, no. 1, pp. 109–119, Jan. 2007, doi: 10.1109/TC.2007.250627.

D. Lubicz and V. Fischer, ‘Entropy Computation for Oscillator-based Physical Random Number Generators’, J Cryptol, vol. 37, no. 2, p. 13, Feb. 2024, doi: 10.1007/s00145-024-09494-6.

O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, ‘A survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices’, in 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland: IEEE, Aug. 2016, pp. 1–10. doi: 10.1109/FPL.2016.7577379.

A. Peetermans, V. Rozic, and I. Verbauwhede, ‘A Highly-Portable True Random Number Generator Based on Coherent Sampling’, in 2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain: IEEE, Sep. 2019, pp. 218–224. doi: 10.1109/FPL.2019.00041.

Q. Tang, B. Kim, Y. Lao, K. K. Parhi, and C. H. Kim, ‘True Random Number Generator circuits based on single- and multi-phase beat frequency detection’, in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA, USA: IEEE, Sep. 2014, pp. 1–4. doi: 10.1109/CICC.2014.6946136.

C. Navarro, M. Bawedin, F. Andrieu, B. Sagnes, F. Martinez, and S. Cristoloveanu, ‘Supercoupling effect in short-channel ultrathin fully depleted silicon-on-insulator transistors’, Journal of Applied Physics, vol. 118, no. 18, p. 184504, Nov. 2015, doi: 10.1063/1.4935453.

J. M. Hernández-Lobato, ‘Balancing Flexibility and Robustness in Machine Learning: Semi-parametric Methods and Sparse Linear Models’.

‘SciPy -’. [Online]. Available: https://scipy.org/

A. Hajimiri, S. Limotyrakis, and T. H. Lee, ‘Jitter and phase noise in ring oscillators’, IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 790–804, Jun. 1999, doi: 10.1109/4.766813.

G. Ghibaudo, O. Roux, Ch. Nguyen-Duc, F. Balestra, and J. Brini, ‘Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors’, physica status solidi (a), vol. 124, no. 2, pp. 571–581, 1991, doi: 10.1002/pssa.2211240225.

W. R. Bennett, ‘Spectra of Quantized Signals’, Bell System Technical Journal, vol. 27, no. 3, pp. 446–472, Jul. 1948, doi: 10.1002/j.1538-7305.1948.tb01340.x.

D. W. Allan, ‘Statistics of atomic frequency standards’, Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966, doi: 10.1109/PROC.1966.4634.

P. Haddad, Y. Teglia, F. Bernard, and V. Fischer, ‘On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models’, in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, Dresden, Germany: IEEE Conference Publications, 2014, pp. 1–6. doi: 10.7873/DATE.2014.052.

E. Noumon Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, and V. Fischer, ‘Evaluation and Monitoring of Free Running Oscillators Serving as Source of Randomness’, IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. Volume 2018, pp. 214-242 Pages, Aug. 2018, doi: 10.13154/TCHES.V2018.I3.214-242.

B. E. Grantham and M. A. Bailey, ‘A Least-Squares Normalized Error Regression Algorithm with Application to the Allan Variance Noise Analysis Method’, in 2006 IEEE/ION Position, Location, And Navigation Symposium, Coronado, CA: IEEE, 2006, pp. 750–756. doi: 10.1109/PLANS.2006.1650671.

L. Benea, M. Carmona, F. Pebay-Peyroula, and R. Wacquez, ‘On the Characterization of Jitter in Ring Oscillators using Allan variance for True Random Number Generator Applications’, in 2022 25th Euromicro Conference on Digital System Design (DSD), Maspalomas, Spain: IEEE, Aug. 2022, pp. 534–538. doi: 10.1109/DSD57027.2022.00077.

L. Benea, M. Carmona, V. Fischer, F. Pebay-Peyroula, and R. Wacquez, ‘Impact of the Flicker Noise on the Ring Oscillator-based TRNGs’, IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2024, no. 2, Art. no. 2, Mar. 2024, doi: 10.46586/tches.v2024.i2.870-889.

Downloads

Published

2024-08-20

How to Cite

Benea, L., Pebay-Peyroula, F., Carmona, M., & Wacquez, R. (2024). COSOI: True Random Number Generator Based on Coherent Sampling using the FD-SOI technology. WiPiEC Journal - Works in Progress in Embedded Computing Journal, 10(2). Retrieved from https://wipiec.digitalheritage.me/index.php/wipiecjournal/article/view/60