Classification of pedagogical content using conventional machine and deep learning model
Keywords:
Document Classification, KNN, LSTM, coursera dataset, education, text classification, deep learning models, machine learning modelsAbstract
ed this discipline and made it more interesting for scientists and researchers for further study. This paper aims to classify the pedagogically content using two different models, the K-Nearest Neighbor (KNN) from the conventional models and the Long short-term memory (LSTM) recurrent neural network from the deep learning models. The result indicates that the accuracy of classifying the pedagogical content reaches 92.52 % using KNN model and 87.71 % using LSTM model.
Downloads
Published
How to Cite
Issue
Section
License
License Terms:
Except where otherwise noted, content on this website is lincesed under a Creative Commons Attribution Non-Commercial License (CC BY NC)
Use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes, is permitted.
Copyright to any article published by WiPiEC retained by the author(s). Authors grant WiPiEC Journal a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as it is not used for commercial purposes and its original authors, citation details, and publisher are identified, in accordance with CC BY NC license. Fore more information on license terms, click here.