
4th Mediterranean Conference on Embedded Computing MECO - 2015 Budva, Montenegro

Works in Progress in Embedded Computing

KEYNOTE SPEAKERS

Clinical Study of Microbial Markers by Mass
Spectrometry Method

G.A. Osipov1, , N.V. Verkhovtseva2, A.N. Vedenin3, D.A. Koluntaev3, A.N. Verenchikov3

1Academician Yu. Isakov Research Group, Bakulev Scientific Center for Cardiovascular Surgery,
2Lomonosov Moscow State University;

3Q-Technologies RD Center, Bar, Montenegro

Keywords: microbiological analysis, express test, fatty acids, mass spectrometry, clinical
applications.

ABSTRACT: Determination of semi-pathological bacteria is considered an important tool at
disease diagnostics, selection of appropriate treatment methods and verification of the correct
choice. Wide spread methods include biota sampling and bacterial incubation. The method is hardly
quantitative and takes several days. No need to say that in some cases it is too slow to treat the
disease timely.

This review presents a novel express method of quantitative and reliable measurement of wide
variety of semi-pathogenic bacteria - Mass Spectral measurement of Microbial Markers (MSMM).
The method allows simultaneous determination of more than one hundred microbial fatty acids in
situ for clinical, biotechnological or environmental samples. The method is quantitative and
express, since the measurements are made without prolonged incubation (precultivation) and
without using of biochemical test-materials and primers.

The proposed MSMM method has been applied for clinical studies. Unprecedented information on
the quantity of anaerobes and uncultivated aerobes, as well as actinobacteria, yeasts, viruses and
microscopic fungi provides full understanding of microbial etiology, and such information may be
obtained quick in critical cases in clinical practice. In one particular study of intestine dysbiosis, the
tested mass spectral method has confirmed the hypothesis about the nosological specificity of
changes in the intestinal microbiota. It has been proven that infectious processes are polymicrobial.
Measurements have shown that anaerobes dominate by number and by functional activities at
inflammations. The division of microbes into pathogenic and non-pathogenic is artificial – most of
microbes in a human body exist in both forms simultaneously. Lactobacilli and bifidobacteria
appear as agents of septic conditions and endocarditis. MSMM data confirm that anaerobes of
Clostridium, Eubacterium, Propionibacterium, as well as actinobacteria of Streptomyces, Nocardia,
Rhodococcus are infection dominants and usually act in groups. The data testify translocation of

– 1 –

4th Mediterranean Conference on Embedded Computing MECO - 2015 Budva, Montenegro

Works in Progress in Embedded Computing

KEYNOTE SPEAKERS

these microbes in inflammation loci from the intestine. Relative markers concentration stay
consistent between different biota samples, thus, any clinically convenient sample may be used for
determining microbes within the inflamed organ or at any specific locus. Quantification using GC-
MS reveals that the influence of antibiotics on the normal intestine’s microbiota are not as dramatic
as believed. Growth-promoting effects are the most important benefits of probiotic applications.
The probiotic essence is not the microbial biomass itself, but growth factors, alarm molecules, and
other factors of intestinal microbes. There are new possibilities in improving probiotics by using
microbial “consortia”

– 2 –

Using Architectural Abstractions in Embedded

System Design

Vasiliy Pinkevich

Computer Science Department

ITMO University

Saint-Petersburg, Russia

vpinkevich@niuitmo.ru

Alexey Platunov

Computer Science Department

ITMO University

Saint-Petersburg, Russia

platunov@lmt.ifmo.ru

Abstract— The conceptual part of complex embedded systems

design includes the following key stages: system analysis of initial

requirements, architectural and micro-architectural decisions

generation, evaluation of decisions. During these stages, many

important mechanisms of subsequent implementation are

defined. These are the stages that are the least formalized and

automated. The proposed method allows the design process to be

partially formalized by the usage of computational mechanism

concept as the central abstraction. The considered example

regards to analysis of languages used together in complex

embedded systems design with “immersion” to the level of

custom system on a chip design. The comparison of design

languages, carried out on the basis on the proposed approach,

allows the design means for subtasks and subsystems to be

chosen more effectively. The source code markup method is

proposed as a tool for automated processing of multi-language

projects targeted to work with design entities, which cannot be

adequately and directly expressed by the standard languages

means. In general, the demonstrated approach stimulates the

designers to concentrate on “cross-cutting” conceptual

mechanisms of a project and provides a way to monitor the

adequacy of their multi-stage implementation.

Keywords – embedded system; system level design; architectural

abstraction; design space exploration; multi-language design.

I. INTRODUCTION

Embedded systems (ES) design process in its conceptual
phase has to be based on methodologies of their complex
representation [1]. In the literature, this level of consideration is
typically attributed to electronic system-level (ESL) design [2,
3] or system-level design (SLD) fields, however, already in [4]
it is noted that activities in this design stage are wider. We call
these activities HLD – High Level Design. Abstract system
concepts are used at the stage of ES high-level design. They
largely form the ES project, but are not fixed in the ES
implementation. This greatly complicates the control over the
adequacy of system implementation in its “top-down”
transition from one level to another within design process.
Therefore, “cross-cutting” methods of working with conceptual
information, that cover all ES design phases, are needed.

II. DISCUSSED PROBLEM

Languages for design, programming, modeling and other
problems are critically important ES implementation

instruments. They are actually platforms containing abstraction
means to allow explicit allocation of conceptually important
design units – classes, functions, macros, modules and other
units. However, the serious problem with standard
programming languages is that they do not allow system
specification to be composed exactly in the same terms as
designer thinks about it. The examples of entities, which are
difficult to be expressed, include: cross-cutting mechanisms,
with support scattered over the entire specification code (means
of ensuring reliability, lower power consumption, etc.);
mechanisms that affect multiple levels of a system, described
in several languages (e.g. hardware description language and
software programming language); any significant logical
structures, unsupported by the language means. If developer
has used abstractions of higher level than the language and
standard library, these abstractions are typically left in his
mind. Thus, it is necessary to have an opportunity to establish
consistency between design abstractions, which are generated
by the developer “in free mode”, and constructions that are
directly provided by the languages used in the design. For this
purpose, both methodological framework and automation
toolset are needed to allow the developer to use this approach
in practice.

III. RELATED WORK

One of the known methods to solve the stated problem is
the usage of domain-specific languages (DSL) and related tools
[5]. However their usage may be limited due to the following
reasons:

 initial project of the system is not formalized enough to
be unambiguously realizable (synthesizable) from the
specification;

 architectural information is unavailable so the system
is considered only via its implementation;

 too much overhead for the creation or implementation
of the language and tools that provide the required
conceptual entities;

 legacy system support is required;

 manual optimization with the usage of low-level
language is required.

This work was partially financially supported by Government of Russian

Federation, Grant 074-U01.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 3 –

There are examples of allocation and classification of
conceptual elements for ES design and analysis in the
literature. Typically, several maximally independent axes in the
possible solution space is provided. Axes contain marks, which
designate possible problem solutions. The marks may represent
either various abstraction levels (see Fig. 1a, “design cube” –
model for VHDL language [6]) or technical decisions (see Fig.
1b, “design space evolution” [7]). Furthermore, axis may
represent the process that evolves in time within computer
system life cycle (see Fig. 1c, “rugby model” [8]). Also, the
known examples of this approach usage are VSIA taxonomy
and ESL taxonomy [9], which consider the properties of ES
structural units models. They can be applied for analysis of
programming and design languages properties [3, 10].
However, it is very important, that the presented models do not
consider the cross-cutting mechanisms problem.

IV. PROPOSED METHOD

Based on the concepts, models and principles of ES HLD-
methodology [11–14], the following method of analysis of
design entities and implementation languages is proposed.

ES design process should be carried out within aspect
approach [15–17]. In the initial step, system architect allocates
important design space segments (aspects). Each aspect reflects
a particular problem space in the project execution. Within a
single aspect, the sets of design space axes (subspaces) are
allocated. An axis is the certain problem within the project. On
each axis, the set of computational (and other) mechanisms,
ranged by the certain criteria, are located. The mechanisms
provide the means to solve design problems.

Computational mechanism (CM) is the central concept of
the proposed method. It is an architectural pattern that
demonstrates the principles of computational process
organization. In contrast with the popular concept of “design
pattern” that does not have fixed requirements for abstractness
of description and internals demonstration, CM has to
transparently provide with useful “computational” technical
principles without fixating of their implementation. Thus, CM
should be considered as a specific category of patterns of
computer systems design. Along with computational
mechanisms, other categories of mechanisms are used, e.g.
mechanisms of interaction, verification, debug. Thus, the
mechanism is the universal element that can be allocated both
within a single design language and across several layers,
which involve several languages to work with. The marks on
the axes that are proposed within the certain methodologies [6–
9], can be treated as the variants of the mechanisms, while the
proposed axes can be used as design space axes.

During ES implementation, the set of aspects, design space
axes and mechanisms within each axis is used by developers as
a library of design decisions, primarily, at the conceptual level
[18]. Also, the models that are constructed in these terms can
be used at the verification step [19].

Annotation of the source text of the project (primarily
multi-language) is proposed to enable the automated support
for this approach. The tag language, based on comments of the

special format, has been developed. Annotated code allows the
fast navigation through mechanisms implementation fragments
to be carried out that simplifies manual control over their
implementation correctness.

Figure 1. Variants of aspect and design spaces representation in embedded
systems design and analysis methodologies.

V. THE USE CASE OF THE METHOD

The proposed method has been applied to the typical set of
languages that are used for ES design and development with
utilization of programmable processors and dedicated hardware
units implemented in FPGA or ASIC (see Fig. 2 and Table 1).

The set of design space axes has been allocated for
analysis. This set includes four axes from ESL taxonomy [3, 9]
and two extra axes that have been added: data flow / control
flow ratio of structural unit functional implementation and axis

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 4 –

of functional verification mechanisms. Mechanisms of first
extra axis variously combine involvement of instruction and
data streams in computational process control. The second axis
contains the mechanisms that can be used for computer system
testing and verification during its design, depending on the
scale of the element under verification. The number of marks
on the concurrency and communication axes has been reduced
and only important mechanisms, which are not tied to specific
implementation, have been left.

Figure 2. Mechanisms of languages: a) SystemVerilog (synthesizable subset

+ verification) and b) generic assembler. Shaded outlined areas – built-in
mechanisms, outlined areas – mechanisms which can be implemented on the

basis of built-in mechanisms.

Generic assembler (assembler of abstract programmable
sequential processor core) reflects the capabilities of software
implementation and is not tied to specific architectures or
processor configurations. If needed, the set of language
mechanisms can be extended through processor specialization
(by redesign, IP-core configuration or custom extensions). The
examples are Microblaze (Xilinx), NIOS (Altera) and other
processor cores.

Languages have built-in support of the mechanisms of a
certain complexity (or abstractness) and, in most cases, means
for combining simple mechanisms to form complex ones. It is
assumed that the level of mechanisms’ complexity within
design space axis can be increased in case mechanism
implementation fits into language capabilities. Within this
approach, the languages have been analyzed from two
perspectives – from the viewpoint of the mechanisms that have
built-in support in the language and from the viewpoint of the

mechanisms that can be effectively realized by the language
means based on built-in mechanisms.

TABLE I. BUILT-IN MECHANISMS OF LANGUAGES.

Design

space

axes

Languages

System-

Verilog

(synthe-

sizable)

System-

Verilog

(for simu-

lation)

SystemC

(for simu-

lation

Generic

assem-

bler

SysML

(modeling

only)

Syn-
chroni-

zation

Cycle-

accurate

Cycle-
accurate,

system

events,
partially

ordered

Cycle-
accurate,

system

events,
partially

ordered

Instr.

cycle

Partially

ordered
(sequence,

activity

diagrams)

Data

ab-
strac-

tion

Bit and
format

(with wire

and reg

vectors)

All (with
enums

and

struc-

tures)

All (with

structures
and

classes)

Bit

From
format to

token

(package

diagrams)

Con-
cur-

rency

Signal and
block

parallelism

Signal

and block

paralle-
lism

Signal,

block,

software
processes

(with sc_

process_
handle)

Se-
quen-

tial

Signal,

block,
multi-

application

(with
internal

block

diagram)

Com-

muni-
cation

P to P and
buffered

(with wires

and regs)

Same as

synthesiz
able

P to P,

buffered,

memory
(with

pointers)

No
No specific

mechanism

Control
flow

Comb. and

register

logic

Same as

synthesiz

able

Same as

System-

Verilog

Pro-
process

or as a

plat-
form

FSM (state-
charts),

sequential

(sequence
diagrams)

Func.
veri-

fication

No

Assertion

-based,
const-

rained-

random

No No No

The example of using multi-language source code
annotation is demonstrated in Fig. 3.

Figure 3. Fragment of CRC implementation mechanism.

a)

b)

File: .\asm\boot.asm, line: 176

CALL P_LOAD_CRC # load from coprocessor to ACC

SUB CRC_REG # checking CRC

JEQ LABEL_BLOCK_CRC_OK

...

File: .\asm\asm.py, line: 198

"RWRK": [11, "R"], # read coprocessor cmd

"WWRK": [12, "R"], # write coprocessor cmd

...

File: .\hdl\wrk.sv, line: 236

if (ctrl_a == ADDR_CRC) begin

 ctrl_do <= crc;

end

...

File: .\hdl\crc32.sv, line: 35

always @* begin
 crc_new[0] = crc_old[0] ^ crc_old[6] ^ ...

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 5 –

Here, the fragment of cross-cutting implementation of
cyclic redundancy checksum (CRC) mechanism is
demonstrated. CRC is used for integrity control of bootable
software images for heterogeneous multiprocessor system. The
system has been implemented as system on chip (SoC).
Embedded boot manager is a specialized processor being
programmed in assembly language. The cut has been acquired
from the annotated code automatically. The source code has
been realized in assembly (program for the processor,
boot.asm), Python (compiler, asm.py), SystemVerilog (CRC
coprocessor, wrk.sv and crc32.sv).

VI. FUTURE WORK

The proposed approach is not formal, thus, quality of its
application depends greatly on expert’s qualification. Thus,
further refinement of the used concepts has to be carried out.
Also, extraction of individual subspaces with clearly defined
axes and mechanisms sets has to be done. Such axes could be
recommended as typical for certain class of projects and
problems. The mechanisms that require cross-level
implementation are of special interest.

CONCLUSION

The proposed method allows design process to be partially
formalized using HLD-methodology system of concepts.
Computational mechanism is the central abstraction. Design
languages comparison, carried out on the basis of the proposed
method and applied to the languages being used in complex
hardware-software projects, allows design tools to be chosen
more effectively for subtasks and subsystems. The
demonstrated approach makes the developers to concentrate on
“cross-cutting” conceptual mechanisms and enables control
over the adequacy of their multi-stage implementation.

REFERENCES

[1] J. Teich, “Hardware/software codesign: the past, the present, and
predicting the future”, Proceedings of the IEEE, 2012, vol. 100, pp.1411
– 1430.

[2] D. Densmore, R. Passerone, A. Sangiovanni-Vincentelli, “A Platform-
Based Taxonomy for ESL Design”, IEEE Design and Test of
Computers, September 2006.

[3] B. Bailey, G. Martin, “ESL models and their application”, New York:
Springer Publication, 2010.

[4] A. Sangiovanni-Vincentelli, “Quo vadis SLD: reasoning about trends
and challenges of system-level design”, Proceedings of the IEEE, 95(3),
2007, pp.467-506.

[5] M. P. Ward, “Language-Oriented Programming”, Software - Concepts
and Tools 15(4): 147-161 (1994)

[6] W. Ecker, M. Hofmeister, “The design cube - a model for VHDL
designflow representation”, Proceedings of the European Design
Automation Conference (EuroDAC), Hamburg 1992, 752-757.

[7] A. Chattopadhyay, “Ingredients of adaptability: a survey of
reconfigurable processors”, VLSI Design, 2013, vol. 2013, p.18.

[8] A. Jantsch, S. Kumar, A. Hemani, “A Metamodel for Studying Concepts
in Electronic System Design”, IEEE Design & Test of Computers, vol.
17, no. 3, pp. 78-85, Jul. 2000.

[9] B. Bailey, G. Martin, A. Piziali, “ESL Design and Verification: A
Prescription for Electronic System Level Methodology”, Elsevier
Morgan Kaufmann, 2007.

[10] Panagopoulos, G. Papakonstantinou, N. Alexandridis, and T. El-
Ghazawi, “A comparative evaluation of models and specification
languages for Embedded System design”, Languages, Compilers, and
Tools for Embedded Systems (LCTES-03), San Diego, Ca., June 11-13,
2003.

[11] A. Platunov, A. Nickolaenkov, and A. Penskoy, “Architectural
representation of embedded systems”, 2012 Mediterranean Conference
on Embedded Computing (MECO), June 2012, pp.80-83.

[12] A. Platunov, A. Kluchev, and A. Penskoi, “HLD Methodology: The
Role of Architectural Abstractions in Embedded Systems Design”, 14th
GeoConference on Informatics, Geoinformatics and Remote Sensing,
2014, pp. 209–218.

[13] Platunov A., Kluchev A., Penskoi A., “Expanding Design Space for
Complex Embedded Systems with HLD-methodology”, Proc. of the 6th
International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT) - 2014, pp. 253-260.

[14] A. Platunov, A. Penskoi, and A. Kluchev, “The Architectural
Specification of Embedded Systems”, 2014 3rd Mediterranean
Conference on Embedded Computing (MECO), June 2014, pp. 48-51.

[15] D. Broman, Ed. A. Lee, S. Tripakis, and M. Toerngren, “Viewpoints,
formalisms, languages, and tools for cyber-physical systems”, 6th
International Workshop on Multi-Paradigm Modeling - MPM'12,
October 2012, pp.49–54.

[16] A. Platunov, and A. Nickolaenkov, “Aspects in the design of software-
intensive systems”, 2012 Mediterranean Conference on Embedded
Computing (MECO), June 2012, pp.84-87.

[17] J. M. P. Cardoso, P. C. Diniz, J. G. de F. Coutinho, and Z. M. Petrov,
“Compilation and Synthesis for Embedded Reconfigurable Systems: An
Aspect-Oriented Approach (Google eBook)”, Springer, 2013, p. 215.

[18] Kustarev P., Bikovsky S., Antonov A., Yanalov R., “Process control and
synchronization patterns for SOC”, 14th GeoConference on Informatics,
Geoinformatics and Remote Sensing, 2014, Vol. 1, No. 2, pp. 287-294.

[19] Kustarev P., Bikovsky S., Pinkevich V., “Functional monitoring of SoC
with dynamic actualization of behavioral model”, unpublished.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 6 –

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

Hardware Approach of Text-to-Speech in Embedded
Applications: Work in Progress

Gordana Laštovička-Medin, Itana Bubanja
Faculty of Science and Mathematics

University of Montenegro
Podgorica, Montenegro

Abstract—This paper presents work in progress. Here, we
describe our ongoing experience teaching embedded systems to
physics students who’ve been given access to the Arduino
platform and its open source community. Our chosen topic,
Design and Applications of Embedded Systems for Speech
Processing, was researched as part of the Basic Measurement in
Physics course of the Faculty of Science and Mathematics at the
University of Montenegro. During the student research the
SpeakJet sound synthesizer was explored. Building embedded
systems has enormous potential for developing students’ skills
and cultivating a culture of thinking and participating

Keywords-speech processing, speech synthesis, SpeakJet,
processor TTS, Arduino

I. INTRODUCTION

Speech processing, especially audio manipulation and
sound processing is commonly performed by many everyday
electronic devices. Examples of such devices are are digital
voice recorders, speaking GPS receivers, and many others. In
general, the speech processing capabilities that can be added to
an electronic device are voice recording, voice playback, text-
to-speech (TTS) synthesis and speech recognition (SR). Voice
recording and voice playback are used in digital voice
recorders to store speech in non-volatile memory and then
replay it at a later time. TTS involves reading a written text and
converting it into spoken words that can be played through
speakers. People with reading or visual difficulties may find
such systems extremely useful.

TTS synthesis transforms any linguistic information stored
as data or text into speech. We can make robots speak by
simply recording human speech, and playing it back when
needed. True speech synthesis, however, is to allow robots to
generate boundless speech output- in other words to let them
speak their mind. TTS is true speech synthesis. It is the
synthesis of speech based on unrestricted text input. There are
three main classes of TTS synthesis: articulatory, formant, and
concatenative [1]. Articulatory synthesis is based on a
complete 3D model of the human speech apparatus. It uses
acoustic parameters extracted from the model to synthesize
speech. Articulatory synthesis is the most powerful process, but
also the most complex. It requires analyzing Magnetic
Resonance Imaging (MRI) scans of speech production. It

scores high in intelligibility, but low in naturalness. Formant
synthesis uses a black-box modeling approach to speech
production It analyzes the end transfer function of the vocal
tract, rather than the way it is made. Formants are the vocal
tract’s resonant frequencies. They give the phonetic character
to speech sounds. The voice of Stephen Hawking is an example
of formant synthesis. It shows high intelligibility but low
naturalness. Concatenative synthesis does not seek to model
speech production. It uses a database of prerecorded segments
of natural speech that it concatenates one after the other. This
approach gives the synthetic speech a very natural sound.

Figure 1. Block diagram of a general text-to-speech system. The figure has
been adopted from [1].

A text-to-speech system (or "engine") is composed of two
parts: front end and back end. The front end has two major
tasks, as illustrated in Fig. 1 [1]. Firstly, it converts raw text
containing symbols, such as numbers and mabbreviations, into
the equivalent of written words. This process is often called
text normalization, pre-processing, or tokenization. The front
end then assigns phonetic transcriptions to each word, and
divides and marks the text into prosodic units, like phrases,
clauses, and sentences. The process of assigning phonetic

– 7 –

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing
transcriptions to words is called text-to-phoneme or grapheme-
to-phoneme conversion. Phonetic transcriptions and prosodic
information together make up the symbolic linguistic
representation that is output by the front end. The back end,
often referred to as the synthesizer, then converts the symbolic
linguistic representation into sound. For more details we refer
to [2,3,4].

TTS in embedded systems can be analyzed from several
points of view: as TTS integrated circuits, TTS modules, TTS
across embedded operating systems and TTS software
applications for embedded devices. Details can be found in [5].
In this article we are interested in TTS integrated circuits (ICs).
We use a SpeakJet sound synthesizer chip and the TTS256
Text-to-Speech chip for SpeakJet, in order to create a text-to-
speech solution. The work is under progress.

II. SPEKAJET: ALLOPHONE BASED SPEECH SYNTHESIS

The central hardware component of this project is the
Magnevation’s Speakjet which is a 20-pin IC [6]. It is designed
to add speech and audio to embedded microcontroller
applications. The chip is self-contained and requires just an
external +5V supply and a speaker for its operation. A
mathematical sound algorithm is used to control its five
channel internal sound synthesizer to generate vocabulary
speech synthesis and complex sound generation. The chip is
low cost and is aimed primarily at the hobby market. The
Speakjet is programmed with 72 speech elements, 43 sound
effects and 12 DTMF touch tones. In addition, sound effects
such as the pitch, rate, bend and volume can be controlled. The
chip can easily be controlled from a microcontroller.

The SpeakJet uses a technique called allophone based
speech synthesis in order to create the sound that we interpret
as intelligible speech. A string of letters spelled out as “hello
world” can not be sent to the SpeakJet because the way the
words are written down in English and the way they are spoken
is very different. Written English text consists of a series of
letters but spoken text consists of a series of phonemes The
smallest meaningful unit of sound in human speech is called a
“phoneme”. Phonemes, in turn are represented by allophones
which are sets of multiple possible spoken sounds used to
pronounce a single phoneme. To be able to generate intelligible
speech from an allophone based synthesizer it is important to
understand the difference between letters and allophones.
There are 26 letters in the English alphabet but hundreds of
allophones. English language is not spoken phonetically since
subconsciously speakers apply various conventions that change
the sound represented by particular letters based the context
surrounding the word or sentence. For example, the letter “e”
may be short as in “set” or it can be long, as in the first e in
“concrete”. Contrary, the most southern Slavic languages
(Montenegrin, Bosnian, Serbian) are spelt phonetically. The
writing Serbian system does not take into account allophones
while as we saw before the allophones play a critical key in
naturalness of English synthesized speech.

Figure 2 shows block diagrams of the system designed to
control, manipulate and program the SpeakJet. The circuit

diagram is displayed in Fig. 3. The aim was to program chip to
be used in talking puppet, thus there are 3 tackle switches
(S1,S2,S3) in order to provide chip activation by pressing toy\s
hands on three different places. Besides the SpeakJet, two
additional integrated circuits were used to build the complete
electronic circuit: an LM386 low-voltage audio power
amplifier and a MAX232 driver/receiver.

Figure 2. Block diagram designed used to program SpeakJet.

The MAX232N-1 integrated circuit was used to convert the
signal from a serial port to signals suitable for use in digital
logic circuits. The created signal was transferred using 6 phono
jacks and phono plugs. By pressing one of three tactile
switches connected to the phono plugs, an electric circuit was
created and the SpeakJet was “ready” for uploading. A tactile
switch also known as a momentary button or push-to-make
switch, is commonly used for inputs and controller resets.
These types of switches create a temporary electrical
connection when pressed. One pin is supplied with +5 volts
and the other pin is grounded. The LM386N-1 audio amplifier
takes the electrical signal generated by the SpeakJet when we
push and release one of the tactile switches (S1 S2, S3) and
then amplifies the electrical signal to create enough power to
drive the speaker. Switches S1, S2, and S3 were used to control
the voltage on SpeakJet’s pins 2, 4, and 7. The switches are
normally open, which means each pin is connected to ground.
When we push one of the switches, the voltage on the
corresponding pin raises to +4.5 volts. This means that electric
circuit is created and SpeakJet is “ready” for software
uploading. for use in digital logic circuits.

The hardware system accompanying the circuit diagram is
displayed in Fig. 4. A breadboard was used for circuit
prototyping. Fig. 9 shows the same design as presented in Fig.
4 but with added phono plugs and phono jacks. A useful tool
from Magnevatron is a Windows program called Phrase-A-
Lator which has a great dictionary of word-to-allophone
translations, and also has the ability to pump information
directly at a Speakjet connected to a PC via a serial port. This

– 8 –

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing
is very useful because in this way phrases are directly
programmed into the EEPROM, and can be tested for sound.
Using the Phrase-A-Lator, we can convert the text/allophone
string into the proper codes to be sent to the Speakjet chip, and
apply those to our Arduino code (see next chapter).

Figure 3. A circuit diagram with SpeakJet, Max232 and audio op-amplifier
LM386 to program SpeakJet.

Figure 4. Breadboard SpeakJet prototyping

Figure 5. Breadboard as shown in Figure 4 but with added phono plugs and
phono jacks.

III. TEXT-SPEECH SOLUTION WITH SPEAKJET AND TTS256

 Speech processing with the IC SpeakJet works well for a
limited vocabulary, but if an application requires unlimited or
arbitrary speech output, the TTS chip does the work of
translating any English text into the allophenes that the
SpeakJet understands. The TTS256 chip [6,7,8], which
contains a dictionary of words-to-allophones converts English
text into a sequence of phonemes. This chip is a companion to
the SpeakJet and comes with a built-in 600-rule database to
convert English text to phoneme codes. Speech can easily be
generated from ASCII text in microcontroller-based embedded
applications, making the chip extremely easy to use in
applications where speech generation is required. The TTS256
is controlled from its serial port and, thus, it is compatible with
any microcontroller with such a port. Then a SpeakJet chip
converts the phonemes into sound. The problem is that the
Magnevation software can not communicate directly with this
chip, since the communication is with Arduino itself. All that is
needed is a simple little host program on the Arduino to
redirect information to the Speakjet.

Figure 6. Block diagram of speech synthesizer. It consists of BeagleBoard,
Arduino, TTS256, SpeakJet and Speaker

Figure 6 shows a block diagram of a speech synthesizer. It
consists of the BeagleBoard, Arduino, the TTS256, the
SpeakJet and a Speaker. The Arduino was used to control
TTS256 while the Beagle Board [9] was used as a single-board
computer which is is low-power, open-source hardware [9].
The TTS-Speakjet breadboard prototyping is displayed in
Figure 7.

In what follows we will show how the Magnevation
software works in order to program chip. The Magnevation
software opens and closes the serial port every time we send
information down. Arduino’s default setup will run the
following process: when the USB-Serial connection is opened
up by the host, it institutes a chip reset, and the program
restarts. Figure 8 shows a couple of Phrase-A-Lator
screenshots. When the phrase is completed (with the help of
“Say it“), we have to select “View Codes” to get the numerical
allophone sequence and then to paste it into the Arduino code.
Alternatively to the setup shown in Fig. 9 the VoiceBox shield

– 9 –

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing
can be used. It contains a SpeakJet chip while the TTS chip can
be soldered directly onto the VoiceBox shield, as shown in Fig.
9.

Figure 7. Breadboarding design of electronic circuit containing of TTS256,
Speakjet and Speaker

Figure 8. PhraseALator’s control panels.

IV. FUTURE WORK AND DISCUSSIONS

Our research towards speech processing is at its early stage.
An attempt had been made in order to implement and test the
text-to-speech solution. The hardware design is based on a
TTS256 chip, a sound synthesizer SpeakJet and an open source

platform. Paper also presents an pedagogical aspect of TTS
engine where students explored the hardware approach to TTS
and how to program SpeakJet. Currently we extended our
research towards the design of the audio hardware interfaces in
order to visualize and manipulate the audio signal. The issues
we are faced are the choice of the signal encoding schemes,
methods for signal visualization and the selection of
deployment platform. Additionally, the TTS-interface can also
be used creatively to create dynamic facial animation. The
project has potential to be additionally extended towards
designing the multimodal platforms in order to study the
various combinations of audio-visual speech processing,
including real-time lip motion analysis, real-time synthesis of
models of the lips and of the face, audiovisual speech
recognition of isolated words, and text-to-audio-visual speech
synthesis in Montenegrin

.

Figure 9. VoiceBox with SpeakJet and TTS256

REFERENCES

[1] X. Huang, A. Acero, H.-W. Hon, Spoken Language Processing, Prentice

Hall PTR, 2001

[2] Tanja Schultz (Edit.), Katrin Kirchhoff (Edit.), Multilingual Speech
Processing, Elsevier, 2006

[3] Thierry Dutoit , An Introduction to Text-to-Speech Synthesis, Published
by Kluwer Academic Publishers, ISBN 0-7923-4498-7, The
Netherlands, 1997

[4] Vincent J. van Heuven, Louis C. W. Pols, Analysis and Synhesis of
speech: Strategic Research towards High-quality text-speech-
generation, Published by Mounton de Grayter, 1993

[5] Shrikanth Narayanan, Abeer Alwan, Text to Speech Synthesis: New
Paradigms and Advances, Published by Prentice Hall. Part of the IMSC
Press Multimedia Series, 2004-ISBN-13: 978-0-13-145661-7

[6] http://magnevation.com/software.htm

[7] htto:://www.magnevation.com/pdfs/speakjetusermanual.pdf

[8] www.speechchips.com

[9] http://beagleboard.org/

– 10 –

New Study Program in Bioengineering and Medical
Informatics at University of Defense from Belgrade

Spasic-Jokic V. M.1,2, Vasilijic S.R..1, Ninkovic M.B. 1, Vucevic D.B. 1 and Ilic T.V.1

1Medical Faculty Military Medical Academy,
University of Defence,

Belgrade, Serbia
2Faculty of Technical Sciences,

 University of Novi Sad,
Novi Sad, Serbia

Abstract— The paper presents new study program in
bioengineering and medical informatics developed at Medical
Faculty Military Medical Academy, University of Defense in
Belgrade, Serbia, in the frame of BioEMIS TEMPUS activities.
The courses were aimed to educate well trained specialists in
medical physics, medical engineering and medical informatics
and to establish new programs in specialist studies incorporated
in continuing professional development programs for
professional licensing. This electronic document is a “live”
template. The various components of your paper [title, text,
heads, etc.] are already defined on the style sheet, as illustrated
by the portions given in this document.
Keywords- bioengineering, medical informatics, modular approach,

specialist studies, BioEMIS.

I. INTRODUCTION

Biomedical engineering uses engineering, mathematics
and computational tools to simulate and understand real-
world medical engineering problems. Bioengineering is an
evolving discipline in engineering that involves collaboration
among engineers, physicians, and scientists to provide
interdisciplinary insight into medical and biological problems.
Modern Health Care Services are provided with ever-
increasing demands for competence, specialization and cost
effectiveness. [1-3]

EEC Directive 97/43/Euratom (Official Journal of the
European Communities No L180, 9.7.1997) recognized special
groups of, generally, technical professionals whose training
and competence enable the development and use of complex
techniques and equipment, optimization, quality assurance,
including quality control, and other matters relating to
diagnostic and therapy techniques including ionizing and non-
ionizing radiation protection of patients, staff and general
public. Biomedical engineering Departments generally serve a
variety of medical specialities as are radiological field
(radiotherapy, nuclear medicine, X-ray diagnostics and
radiation protection), magnetic resonance and ultrasound
imaging, physiological measurements, clinical applications of
non-ionising radiations (lasers, ultraviolet light and
microwaves), bioengineering, electronics, information
technology, general data processing and computer technology

[1-3]. The role of biomedical engineers in these areas is
expected to increase in the future.

Generally the total number of staff required in hospital
depends upon:(i) the range of applications of technical service
to medicine; (ii) the scale of organizational and management
responsibilities (number of clinics, population served); (iii) the
amount and complexity of equipment and procedures used in
related clinical specialities; (iv) the number of patients
examined and treated in the relevant modalities and the
complexities of these examinations or treatments; (v) the load
for formal teaching and training and (vi) the level of
participation in maintenance, development, research and
clinical trials [4]. Minimum staffing levels should be calculated
from factors depending both on equipment load, number of
patients treated and sophistication of treatments. General
guidelines are based upon WTE (whole time equivalent) for
assessment of minimum staffing levels for routine clinical
work in various medical disciplines [4].

There is no doubt that a biomedical engineer must be an
engineer that possess broad knowledge of fundamental
engineering and physical sciences' principles, and must be able
to apply a multidisciplinary approach to solve problems dealing
with diagnostics, treatment, and prophylactics of the patients
and population. To arrive at this capability, a student interested
in Biomedical Engineering (BME) must be offered a study
program that provides specific education and training in
biomedical engineering. Problems that biomedical engineers
are expected to solve today vary tremendously and this
diversification can only be expected to increase further with
new and rapidly emerging technologies and demands of the
health sector. For this reason any BME study program must
provide a sound BME foundation together with specialisation
elements within a narrow field of BME, which address the
current and future needs of the Society [5-6].

The main objective of our work in the frame of TEMPUS
project titled Studies in Bioengineering and Medical
Informatics (BioEMIS), was to propose an updated
specialization study curriculum in the field of biomedical
engineering, in order to meet recent and future developments in
the area and address new and emerging interdisciplinary

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 11 –

domains that appear as a result of the R&D progress and
respond to the demands of the BME job market. Adoption of
the core program structure will facilitate harmonization of
studies as well as student and staff exchange in Europe.

II. SPECIALISTIC PROGRAM AT UNIVERSITY OF DEFENSE

A. General

The programs offered at Military Medical Academy
(MMA) will emphasize the confluence of basic engineering
science and applied engineering with the physical and
biological sciences, with emphasis in the areas of
biomechanics, cell and tissue engineering, therapy and
biomedical imaging. This joining of the diverse scientific
fields is complemented by strong academic and research
collaboration with various MMA departments.

The specialization programs in biomedical engineering
prepare students to apply the principles of engineering and
applied science to problems in biology and medicine, to
understand the dynamics of living systems, and to develop
biomedical systems and devices. Modern engineering
encompasses sophisticated approaches to measurement,
acquisition, storage and analysis of data, model simulations,
and materials and systems identification. These techniques are
used in the study of individual cells, tissues, organs, and entire
organisms. The increasing value of mathematical models in
the analysis of living systems is an important sign of the
success of contemporary biomedical engineering activity
[3,7].

After achieving the learning outcomes the students should
use the acquired knowledge in further education including
lifelong learning. Students should be able to communicate
effectively in both oral and written form, to participate in
social debates pertaining to technology, to carry out
independent and multidisciplinary team work, to perform
project management duties, and to understand the societal
impact of engineering solutions. Students will be able to
identify and formulate challenges in the biomedical and health
science domains which belong to the biomedical engineers.
Students should learn to work as members of multidisciplinary
teams and to apply advanced methodologies at the interface
between engineering and medical sciences [3, 7-9].

Students will be able to apply engineering expertise to the
design of devices, systems, algorithms, software, models,
materials, methods or processes in order to meet the desired
functional and regulatory requirements for the
commercialization of medical devices. They also should be
able to design and carry out a research plan to test hypotheses,
to analyze and interpret the results in the context of the
research, and to report the results according to scientific
principles [3,7-9].

B. The Structure of the Specialization Program

The main structure of the study program consists of 5
mandatory courses (core courses) which are evaluated with
total 30 ECTS and certain number of elective courses (30
ECTS in total). Specialization work brings 10 ECTS. Core

subjects consist of four courses and one research project
related to the selected topics. Students are required to choose
at least 10 ECTS electives from the selected specialization.
Study program and ECTS distribution are given in Table 1
[7,10-11].

TABLE I. DISTRIBUTION OF ECTS

No. Course ECTS Structure Note

1.
Physics and regulatory
mechanisms of the
human body

5 3+1+1 Mandatory

2.
Introduction to
telemedicine

5 2+3 Mandatory

3.
Ionizing and non-
ionizing radiation and
protection

5 3+1+1 Mandatory

4.
Ethics in biomedical
engineering

5 2+2 Mandatory

5.
Research Project related
to the selected module

10 8 Mandatory

6.
Processing of
Physiological Signals

6 2+3
Elective

7. Computer Networking 5 2+2
Elective

8.
Medical Imaging
Methods in Radiology

5 1+2
Elective

9.
Visualization techniques
in nuclear medicine

5 1+2
Elective

10.
Laser application in
therapy

6 3+3
Elective

11.
Methods of
Radiotherapy

6 2+2
Elective

12.
Non-invasive brain
stimulation

4 1+1
Elective

13.
Biomaterials and
biocompatibility

5 2+2
Elective

14. Stem cells in therapy 5 1+1
Elective

15.
Cell biology and
immunology for
engineers

5 2+2
Elective

16.

Techniques in Molecular
Biology and
Applications to Gene
Expression

6 2+2
Elective

C. Modular Approach

We recognized four study specialization directions as the
defining components for the BME specialization program. We
have not strictly and officially divided them. In any case, it is
possible to identify the four directions: Medical informatics;
Bioimaging; Biomedical Engineering in Therapy and Cell and
Tissue Bioengineering [11-14].

III. DISCUSION

The development of a biomedical engineering practioner
working in health care or in industry, and the maintenance of
effective performance depends on three components-
Education, Training and Continuing Professional
Development.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 12 –

A. Education

The results of the review of the existing Biomedical
Engineering educational programs in Europe have shown that
the number and proportion of undergraduate and postgraduate
BME programs is increasing. Biomedical Engineering
programs experienced a rapid growth after the year 2005 and
especially during the last five years. The study identified that
Biomedical Engineering programs are available in almost all
European countries. Approximately 200 Universities across
Europe offer in total more than 300 BME programs, even
around 50 % at the level of MSc and specialization study. This
results in an increased number of Biomedical Engineers
available on the market today. It can be expected that this
trend will continue as a response to an increasing demand of
health sector and relevant industry demand for BME
specialists. This increased demand and rapid emergence of
new technologies in biomedical instrumentation both require
an interdisciplinary approach to problem solving [2-3,5-6,8].

The results of the survey were then used as the basis for
discussions and to facilitate the definition of the core
curriculum for BME programs. The contents of a curriculum
are usually described by the titles of the courses included in
the curriculum. However, the actual contents of courses with
the same title can be quite different among the programs.
Moreover, the same contents may be covered by different
courses in different programs [2-3,5-6,8].

To avoid such ambiguity, it was decided that a more
appropriate way to define the curriculum is in term of modules
with well defined contents and with no overlap in contents
between the modules. For example, the contents of one model
can be covered by more than two courses. On the other hand,
the contents from different modules can be combined within
the same selected topic. The use of modules instead of fix
program provides for a higher degree of flexibility in
designing new BME specialization study programs.

B. Training

Education is primarily related to the acquisition and
integration of knowledge leading to understanding. The
outcome is generally evaluated by examination and thesis.
Training on the other hand is related to the utilization of
understanding leading to competencies. There is strikingly
little information on training programmes and how they are
delivered and evaluated. It appears, however, that like
Biomedical Engineering Education, there is considerable
national variation. Engineering scheme is of long standing,
organized by IPEM and EFOMP and clearly documented [2-
3,5-6,8].

The training should be undertaken in hospital based
training centre accredited by country authorities. Training
should be divided into Part I, which is basic training and Part
II, which shows increasing professional responsibility. Part I
training often include the acquisition of a specialization degree
and lasts for 1 year. Assessment of the non-academic
component of the training is carried out in three ways; by

continuous assessment during training, by examination of a
portfolio of evidence of training, and by viva voce
examination. Part II training normally should lasts for a
minimum of 1 year and its competence implies the ability, in
most instances, to perform without supervision, to make
independent professional calculations and judgments, to
supervise junior staff and to provide a service in a specified
area of work [2-3,5-6,8].

C. Continuing Professional Development (CPD)

It is the responsibility of professionals to maintain and
enhance their levels of knowledge, skills and professional
competence throughout their working life. CPD is essentially
structured and planned method of doing so. Many professional
organizations require those registered with, or accredited by,
the organization to show evidence of CPD. This also applies to
Biomedical Engineering. The essential features of a CPD
scheme should cover: definition of what is considered
acceptable CPD activity; CPD registration; CPD record and
CPD outcomes of individual activities [1,5,8,15].

IV. CONCLUSION

Within Europe there is considerable variation in the
education and training of Biomedical Engineers at the
specialization level. This Report advances a harmonized
syllabus and structure for education, supplemented by a
notional time-table, showing how the syllabus could be
implemented.

Training has not been considered within the framework of
the project, but there is even more variability than in
education. There is a need to evaluate the national practices to
identify best practice and develop a harmonized structure for
the training of Biomedical Engineers

ACKNOWLEDGMENT

This study is supported by the grant (BioEMIS, 530423-
TEMPUS-1-2012-1-UK-TEMPUS-JPCR) of the European
Commission Education, Audiovisual and Culture Executive
Agency.

REFERENCES
[1] Grimes, S.L., The future of clinical engineering: the challenge of

change. Engineering in Medicine and Biology Magazine, IEEE, vol.
22(2): p. 91-99, 2003.

[2] S.Grimes (2006): Mission, Function & Organizational Structure of
Clinical Engineering Services, Strategic Health Care Technology
Associates, www.SHCTA.com

[3] Kolitsi, Z., ed. “Towards a European framework for education and
training in medical physics and biomedical engineering”, IOS Press:
Amsterdam, 2001.

[4] The European Federation of Organisations for Medical Physics (1998):
Criteria for the staffing levels in a Medical Physics Department.
http://www.efomp.org/ No. 7: Criteria for the Staffing Levels in a
Medical Physics Department (pdf file-40 kB), Sept. 1997 [Physica
Medica XIII (1997) 187-194]

[5] Eudaldo, T. and K. Olsen, The European Federation of Organisations for
Medical Physics. Policy Statement No. 12: The present status of Medical
Physics Education and Training in Europe. New perspectives and

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 13 –

EFOMP recommendations. Physica Medica: European Journal of
Medical Physics. 26(1): p. 1-5, 2010.

[6] Christofides, S., et al., “Education and Training of the Medical Physicist
in Europe”, in World Congress on Medical Physics and Biomedical
Engineering, September 7 - 12, 2009, Munich, Germany, O. Dössel and
W. Schlegel, Eds. Springer Berlin Heidelberg. p. 1-4., 2010.

[7] Institute of Electrical and Electronics Engineers (2003): Designing a
Career in Biomedical Engineering Healthcare Technology Certification
Commission (2005): Certification in Clinical Engineering.

[8] European Alliance for Medical and Biology Engineering and Science
(2005): Protocol for the training of clinical engineers in Europe.

[9] S. Stankovic, V. Spasic Jokic and M. Veskovic, “Medical Physics
Education in Serbia: Current State and Perspectives,” Biomedizinishe
Technik, Berlin, vol.50, Supl.1/2, pp. 1376-1377, 2005.

[10] L.Christensen: WHO/WFME practical guidelines for allocation and use
of ects credits in medical education, WFME, University of Copenhagen
http://wfme.org/projects/wfme-publications/76-use-of-ects-credits-in-
medical-education/file

[11] ECTS: European Credit Transfer and Accumulation System.
http://ec.europa.eu/education/lifelong-learning-policy/doc48_en.htm

[12] Bronzino JD, "The Biomedical Engineering Handbook, Ed 3 Section
XX Ethical Issues Associated with the use of Medical Technology",
Sections 189-192. CRC Press/Taylor and Francis, Boca Raton FL, 2006.

[13] Monzon JE and Monzon-Wyngaard A, "Ethics and biomedical
Engineering education: the continual defiance" in Proc of 31st Annual
International Conference of the IEE EMBS, 2009

[14] Syllabus for postgraduate specialisation in nuclear medicine. 2002
Update. European Journal of Nuclear Medicine and Molecular Imaging,
vol. 30 (3): p. B1-B2, 2003.

[15] European Alliance for Medical and Biology Engineering and Science
(2005): Protocol for continuing education of clinical engineers in
Europe.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 14 –

Wireless Communication Architecture of a Robotic
Services System in an Unknown Environment

Eva Cipi,

Department of computer sciences

University of Vlora ―Imail Qemali‖

Vlore, Albania

eva.cipi@univlora.edu.al

Betim Cico

Department of informatics engineering

Polytechnic University of Tirana

Tirana, Albania

betim.cico@gmail.com

Abstract—This paper is focused on presenting the architecture

and the implementation of a semi autonomous simulation based

system which is able to navigate into a partially known

environment. Most of robotic agent does not support the mobility

according the requirements of application. Our work of

implementation provides a semi autonomous system which is

guided by an operator performing several services with better

quality and low costs. The design is a module based architecture

which supports the robot navigation using simulation offline

software and on line at the moment when the agency percepts

obstacles. The robot changes states of its mobility in real time

building a new strategy to achieve the normal path which is

received from a simulator that executes and communicates the

path calculated by a simple navigational algorithm in the virtual

static environment.

Using a communication protocol between robotic unit and

simulator software, it is possible to correct data and to improve

the system behavior using a wireless communication. The

physical system is tested in a laboratory environment. It is

situated in a environment which is the same designed in the

simulator interface. The robot updates its coordinates in the

virtual environment and the simulation runs exactly according

the navigation algorithms until the sensor module transmits to

simulation software new data of obstacle presences. We evaluate

the performance of the system and the results confirm an

improved behavior of robotic agent in extreme situations of

dynamic environment.

Keywords—semi-autonomous system, simulation offline,

simulation on line, robotic agent, module based architecture,

communication protocol

I. INTRODUCTION

Autonomous applications are those in which the user is

interested in the results of self processing large amounts of data

in several distributed locations in order to achieve some goals.

These applications are extremely useful in areas such as

intrusion detection systems, self service system or unknown

environment map analysis.

Robotic agent systems appear to be the most feasible solution

for their implementation. In these systems, autonomous

software entities (robots) may move across an environment of

execution platforms. The application is supported by an
architecture which seems to be based on two modalities of

agency work.

In this paper aims to study a semi-autonomous system that

operates into a partially known environment which is able to

bring services of transportation using robotic agents to every

point addresses generated from a central management system.

The robots move autonomously into a physical environment

area controlled by an operator but the robot path has been fixed

over a virtual partially known environment. A wireless

communication system supports the connection between the

central system and robotic entities. There are two channel

transmissions in separated frequencies. The system passes from

one modality (simulation off-line) in another one (simulation

online) when the robots percept the presence of unknown

obstacles.

The work aims to contribute on bringing new solutions on

solving the problem of the navigation in partially unknown

environments in order to avoid collisions with obstacles.

Another element is the designing process tents to be easier,

programming intelligent behaviors in virtual environments. The

robotic entity is equipped by a set of sensors to sense obstacles.

We have tested several behaviors of the system in different

environments and the performance of the system was very

good. In the Fig. 1 you can see a robotic prototype used to be

programmed as one of subsystems.

Fig. 1. The prototype used in this work

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 15 –

II. RESEARCH OBJECTIVES

In this research we propose a modulated architecture agent

based approach to develop complex applications. The approach

aims to increase the performance of systems on managing

autonomously the dynamism and changes of the application

environment. The general idea of self-management is to endow

computing systems with the ability to manage themselves

according to high-level objectives specified by humans.

Researchers divide self-management into four functional areas

[3]:

 Self-configuration: systems automatically configure

components to adapt themselves to different

environments;

 Self-healing: systems automatically discover,

diagnose, and correct faults;
 Self-optimization: system automatically monitor and

adapt resources to ensure optimal functioning

regarding the defined requirements; and

 Self-protection: they identify and protect against

attacks.

The environment will occupy an important role in this project.

An agent based system which pretends to be self managed must

take the appropriate actions based on a sensed situation of the

environment. This requires some functionalities of system such

as environment monitoring, decision making, and action

execution. This requires the coordination of behavior of agents

inside of the same environment. Another positive side is that

same approach can be used in different applications. Here we

show two modalities of the same system. This helps designers

and developers to resolve effectively problems of software

engineering processes.

III. MULTIAGENT SYSTEMS AND THE SOFTWARE

ARCHITECTURE

A multi agent system provides the software to solve a

problem by structuring the system into a number of interacting

autonomous entities embedded in an environment in order to

achieve the functional and quality requirements of the system.

In particular, a multi agent system structures the system as a

number of interacting elements in order to achieve the

requirements of the system. This is exactly what software

architecture is about. [4] defines software architecture as:

Software elements (or in general architectural elements)

that provide the functionality of the system, while the required

quality attributes (performance, usability, modifiability, etc.)

are primarily achieved through the structures of the software

architecture.

Typical architectural elements of multi agent system software

architecture are agents, environment, resources, services, etc.

The relationships between the elements are very diverse. In

short, multi agent systems are a rich family of architectural

approaches with specific characteristics, useful for a diversity

of challenging application domains. [5] There are applications

that provide different levels of complexity and various forms

of dynamism and change. The architecture for many of them is

a set of agents, for reuse, they can serve to develop software

architectures transporting them as ready entities with specific

attributes such as: each agent has incomplete information or

capabilities to solve the problem and, thus, has a limited

viewpoint and the computation is an asynchronous process.

A multi agent system consists of a (distributed) environment

populated with a set of agents that cooperate to solve a

complex problem in a decentralized way. [6] Behavior-based

action selection is driven by stimuli perceived in the

environment as well as internal stimuli. Situated agents

employ internal state for decision making relates to:

 Planning off line (static information of the system).

 Planning on line (dynamic information related to the

changes of the environment); or issues internal to the

agent.

 Environment encapsulates resources and enables

agents to access the resources. [7]

IV. A ROBOTIC SYSTEM: CASE STUDY

The system we propose, is a prototype which has to

transports loads from one point to another performing

intelligent behaviors being oriented themselves of service

points in a partially known market place, completing

successfully its tasks, avoiding the collision with obstacles

displayed dynamically and creating unexpected situations in

its path, which is been pre planed by a simulator software. The

tasks are generated by the information agent which is part of a

central information system, typically for a business

management program discussed in our past works. The task is

composed out of some processes like receiving order from

service agent acquiring the first service point address, moving

to first service point, receiving the second service point

address, moving to the second service point. In order to

execute this task, the system has to perform:

 Route assignment: paths are generated by the

information systems and have to be assigned to robot

vehicle that can execute them.

 Routing: the robot must route efficiently through the

environment layout of the warehouse when executing

transports.

 Gathering traffic information: although the layout of

the system is static, the best route for the robot in

general is dynamic, and depends on the actual traffic

condition. Using visual sensors, the robot routes

efficiently without collision with other objects. [8]

This model integrates the environment and agent

integrating mechanisms of agent adaption. We have divided

the model in two parts: environment and situated agent. The

environment model consists of a set of modules with flows

between the modules. The modules represent the core

functionalities of the environment. The model consists of two

main modules:

 the deployment context (referred to the given

hardware and software and external resources with

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 16 –

which the multi agent system interacts (sensors and

actuators, a printer, a network, a database, a web

service, etc.).and

 the application environment(refereed to the part of

the environment that has to be designed for an

application) .

The data flow diagram is showed in the Fig.2.

Figure. 2. The diagram of the robotic system for semi-automatic services.

The robotic agent model consists of four modules with flows

between the modules. Knowledge module provides the

functionality to access and update the agent's current

knowledge. Sensing module receives perception requests from

the Decision Making and Communication modules to update

the agent's knowledge about the environment. Decision

making and communication module use the agent's current

knowledge to make appropriate decisions. The communication

module writes the location in the agent's current knowledge

which in turn will be used by the decision making module to

move the agent efficiently towards the destination. Decision

Making provides the functionality to an agent for selecting

and invoking influences in the environment. Decision making

consists of two basic functions: Influence selection and

actuator execution. To select appropriate influences, an agent

uses a behavior based action selection mechanism extended

with roles and situated commitments. Execution provides the

functionality to invoke selected influences in the environment.

A. The Wireless Communication

The Fig. 3 is a view of environment communication of

robotic vehicles with the simulation software. We consider

robotic agent as independent entities that communicate with a

central management system which generates transportation

tasks through a generated path from a simulated known

environment but not updated. The control of task distribution

is centralized but the vehicle path is not completed

autonomous. We consider the presence of collision point but

this is provided by robotic agent which changes its status in

simulation on line. The central system sends instructions

according the simulation software which pretends to know the

environment in its first statement. All the exchanged messages

are done through a wireless module of communication.

Here is been presented some technical features of the

Wireless device which is composed by two modules:

 Receivers RX-B1 (433 MHz and 315 MHz) and

 Transmitters TX-C1 (433 MHz and 315 MHz)

Each message is transmitted as:

 36 bit training preamble consisting of 0-1 bit pairs

 12 bit start symbol 0xb38

 1 byte of message length byte count (4 to 30), count

includes byte count and FCS bytes

 2 bytes FCS, sent low byte-hi byte

Everything after the start symbol is encoded 4 to 6 bits,

Therefore a byte in the message is encoded as 2x6 bit

symbols, sent hi nibble, low nibble. Each symbol is sent LSB

it first. The Arduino clock rate is 16MHz => 62.5ns/cycle. For

an RF bit rate of 2000 bps, need 500microsec bit period. The

ramp requires 8 samples per bit period, so need 62.5microsec

per sample => interrupt tick is 62.5microsec. The maximum

message length consists of (6 + 1 +

VW_MAX_MESSAGE_LEN) * 6 = 222 bits = 0.11 seconds

(at 2000 bps). Throughout the range there are nulls and strong

points due to multipath reflection. Similar performance figures

were found for DR3100. 9000bps worked. Arduino and TX-C1

transmitter draws 27mA at 9V. Arduino and RX-B1 receiver

draws 31mA at 9V.

Fig. 3. Receiver and transmitter modules of the wireless communication

Here we present two protocols which allow the system to

send commands to robots and to receive data from its. There

are two simple protocols which are used to link the simulation

software with the physical entity. These messages are

transmitted in different frequencies to avoid signal

interferences and message errors:

 Receiving data protocol

int GetMessage()

uint8_t buflen = VW_MAX_MESSAGE_LEN;

 if (vw_get_message(buf, &buflen))

 {

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 17 –

int i;

 char inStr[25];

 char inChar=-1;

for (i = 0; i < buflen; i++)

{

 inChar = buf[i];

 inStr[i] = inChar;

}

 inStr[i]='\0';

 }

 return command;

}

 Sending commands protocol

void SendMessage(String msgToSend)

{

 int command=-1;

 uint8_t buf[VW_MAX_MESSAGE_LEN];

{

 char msgtmp[25];

 msgToSend.toCharArray(msgtmp,25);

 vw_send((uint8_t *)msgtmp, strlen(msgtmp));

 vw_wait_tx();

}

The operator can use a robot interface to view the

messages which are transmitted in both sides of the

communication. The fig. 4 presents the interface which is used

also to give basic manual command as connect or stop to the

robotic prototype.

Figure 4. The view of the robot interface

B. Off line simulation

Two robotic agents operate in a two dimensional

environments, first they act into a space without obstacles;

then the obstacles are generated randomly by mouse clicks;

i.e. in random sizes and distance between them, and their

black shapes are circular. We can add other obstacles during

the simulation time. A great number of obstacles increases the

complexity of the virtual world but this required more

calculation power to manage the dynamic information. At

each step, agent should perform two actions:

 interaction with simulation software if agents do not

sense an obstacle,

 interaction with environment if agents sense one,

 Orientation to choose the next step.

The final objective is to complete instructions came from

the central management system. For this purpose, we combine

two types of agent behavior in order to achieve the goal. The

system is designed to control constantly the changes of the

environment avoiding the failures. Our system is designed to

have a set of sensors. The agent can percept obstacles and can

overview its distance from them. Hanging around the motion

map, the agent can discover invisible areas behind the

obstacles to find the target which is not in the visible area.

Here he finds the motivation to change position for a new state

with purpose to reach his objective. He starts his movement

following a predicated plan in base of the visual sensor

information and simulation instructions.

Figure. 5 The virtual environment of the simulation off line with obstacles.

This is an important moment for showing the new state

after the action execution. These actions are divided in two

categories: normal actions that change the environment

sensing actions that accumulate information over the

environment to make decisions. In intelligent systems during

the execution the agent decides itself about the state of

conditions: true or false.

C. The simulation on line- Explorer modality

In this modality, the robotic agent does not know the

environment. The agent navigates choosing an explorer path

until it senses the presence of an obstacle. In this case, the

robot transmits data of its location and calculates the distance

from the perceived obstacle. Each new state of the robot is

calculated and it is showed in the virtual environment reaching

the knowledge about it. The robot must perform different

ways within the restricted environment by exploring the

presence of obstacles and transmitting information about this.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 18 –

We finally assembled and integrated graphic information of

calculated points, showing how the environment becomes

more complete and revealing. In the figure 6, we have showed

the simulation view. There are two windows, the first is

simulation view that would be in a physic environment and the

second is the map that the robot makes exploring the world.

The yellow obstacles are invisible for a human operator.

After 5 min of simulation, the robotic agents have

transmitted data to the environment map window translated in

some red points which are points of addresses where the robot

senses an obstacle. The third view is the suggested map after

discovering process. The same process is for the fourth view

after 12 minutes. The simulation integrates more red points

considering the distance criteria between them. The green area

is considered as obstacle area. The simulation software

calculates the rate of error made as the division of green

surface with white surface in percentage.

Fig. 6 View of Explorer Simulation modality

Error _rate
 =

1- Sgreen / S white %

In the first case, the error rate is 94 % considering the walls of

environment while, after 12 minute , this error is 66%. The

robotic agent needs much more time to discover exactly the

map.

V. CONCLUSIONS

During the simulation, we can observe the agent environment

relations and their dependencies:

 We have designed a software system that is capable

to integrate successfully the execution ability of

complex tasks using reflexive capacities needed to

manage uncertain situations in dynamic environment.

 We observe temptations for more reactive behaviors

in expected situations.

 The speed of mission is another of agent exigencies.

However the environment changes with certain speed

and the agent has not time enough to make a perfect

decision and to choose accurately the next action.

 Time in disposition do not compromises the agent

performance in the dynamic environment.

 The simulation software that we have designed

provides a simple way to study the complex

interactions between different types of environment

and agents.

 We were interested to study the stability on making

decisions of the system. Our attention was focused on

how much security offers an agent based system in

difficult situations.

 Many different types of robotic agent behaviors have

been introduced. We could observe the agent efforts

to reach the goal and the results were interesting

about agent intelligence.

 Combining simulation off line with simulation on

line, the agent can perform better behaviors in a

partially known environment giving a new solution in

software engineering.

 In further research it would be interesting to

introduce new types of environment making them

more complex. We aim to extend agent based

systems on modeling hierarchical structures of

control system and other industrial applications

REFERENCES

[1] Cipi, E., Cico, B.: Information Agents as a New Paradigm for
Developing Software, Applications in Database Systems, Conference
Proceeding DSC 2010, Thessaloniki, Greece , Vol. 1, 514–519, (2010).

[2] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice.,
Addison Wesley Publishing Comp,95--97, (2003).

[3] Kpheard, J., Kephart., J., Chess, D.:The Vision of Autonomic
Computing. IEEE Computer Magazine, No. 36(1), (2004.

[4] Bandini, S., Manzoni, S..and Simone. C.: Dealing with Space in
Multiagent Systems: A Model for Situated Multiagent Systems. In 1st
International Joint Conference on Autonomous Agents and Multiagent
Systems. ACM Press, (2002).

[5] Buchmann, F., Bass, L.: Introduction to the Attribute Driven Design
Method. 23rd International Conference on Software Engineering, IEEE
Computer Society.Toronto, Ontario, Canada, (2001) .Intelligent Agents
Solutions to Improve Strategic Level of Self-Management... 525

[6] Clements, P., Kazman, R., Klein, M.: Evaluating Software
Architectures: Methods and Case Studies. Addison Wesley Publishing
Comp. (2002).

[7] Steegmans, E., Weyns, D., Holvoet,T., Berbers, Y.: A Design Process
for Adaptive Behavior of Situated Agents. In Agent-Oriented Software
Engineering V, 5th International Workshop, AOSE, New York, NY,
USA, Lecture Notes in Computer Science, Vol. 3382. Springer, (2004).

[8] Weyns, D., Holvoet, T.: Multiagent systems and Software Architecture.
In Special Track on Multiagent Systems and Software Architecture,
Net.ObjectDays, Erfurt, Germany, (2006).

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 19 –

