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Abstract—Spiking Neural Networks (SNNs) have emerged as an 
energy-efficient alternative to Artificial Neural Networks (ANNs), 
particularly for edge-computing and safety-critical applications. 
Unlike conventional ANNs, SNNs leverage sparse event-driven 
processing to reduce energy consumption while significantly 
maintaining high computational efficiency. This paper presents a 
framework designed to optimize the conversion of ANNs into 
equivalent SNNs while balancing accuracy, reliability, and energy 
efficiency. The proposed framework systematically explores SNN 
hyperparameters to identify configurations that achieve superior 
performance compared to their ANN counterparts. Experimental 
evaluations on MNIST and Fashion-MNIST datasets with 
different network topologies demonstrate that the optimized SNNs 
achieve comparable accuracy while offering in some cases 27.81× 
and 15.17× lower energy consumption and 1.92× and 1.84× less 
accuracy drop in the presence of faults, respectively, over the ANN 
baseline. The results highlight the applicability of SNNs in 
reliability-critical power-constrained environments. 

Index Terms—deep neural networks, spiking neural networks, 
reliability, edge applications, safety-critical applications 

I.  INTRODUCTION

Spiking Neural Networks (SNNs) are gaining traction due to 
their bio-inspired processing, event-driven computation, and 
energy efficiency. Unlike Artificial Neural Networks (ANNs), 
SNNs operate similarly to biological neurons, making them 
well-suited for low-power edge devices and neuromorphic 
computing [1], [2]. Their sparse and asynchronous nature 
enhances computational efficiency and scalability, making them 
ideal for applications in autonomous systems and safety-critical 
environments [3], [4]. However, the temporal dynamics of 
SNNs both at the neuron and network levels, along with the non-
differentiability of spike functions, have made it difficult to train 
efficient SNNs [5]. Different studies with various approaches 
have attempted to adapt backpropagation-based supervised 
learning algorithms to SNNs [6]. To overcome these challenges 
and leverage the effectiveness of ANN training, many methods 
focus on converting well-trained ANNs into functionally 
equivalent SNNs. One key challenge in transitioning from 
ANNs to SNNs is ensuring structural consistency between the 
two architectures [7]. Many deep learning models are highly 
optimized for specific tasks, and modifying their topology 
during conversion can result in accuracy loss, increased training 
complexity, and inefficiencies in hardware deployment. For 
instance, in edge AI applications like real-time image 

recognition for autonomous vehicles, maintaining the original 
ANN topology ensures that pre-trained weights and feature 
extraction mechanisms remain effective while benefiting from 
SNNs' energy efficiency [8]. 

Beyond training, ensuring the reliability of SNNs is critical, 
especially in noisy or faulty hardware environments where 
robustness is essential [9]. Several frameworks have addressed 
specific aspects, such as memory fault tolerance (e.g., ReSpawn 
[10], rescueSNN [11]), Fault Injection (FI) and analysis (e.g., 
SpikingJET [12], SpikeFI [13]), or energy-efficient architecture 
search (e.g., AutoSNN [14]). 

Despite these advancements, there remains a lack of unified 
approaches that convert ANN to SNN, jointly considering 
reliability, energy efficiency, and accuracy with hyperparameter 
tuning. 

To fill these gaps, this paper proposes an automated 
framework for generating optimal, reliable, and low-energy 
consumption SNNs from ANNs. The proposed framework 
generates SNNs with topological similarity to the original ANN 
while searching for optimal SNN configurations within them 
that have balanced accuracy, reliability, and energy 
consumption. The proposed algorithm utilizes only the ANN 
architecture to generate new SNNs, distinguishing it from 
conventional ANN-to-SNN conversion methods that aim to 
transfer learned parameters for SNN training. SNN networks are 
learned with the surrogate gradient method. By using FI 
scenarios, our method ensures that the generated SNNs maintain 
or exceed the performance of their ANN counterparts while 
significantly reducing energy consumption. 

The key contributions of this paper are: 

• A hyperparameter optimization-based technique to
ensure a high-performance, high accuracy reliable SNN 
network

• An automated framework for optimized ANN-to-SNN
conversion based on accuracy, reliability, and energy
consumption

• Experimental validation on different datasets and
network topologies demonstrating the energy,
accuracy, and reliability trade-offs between ANNs and 
SNNs
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The proposed approach offers a practical and efficient 
pathway to leveraging SNNs in safety-critical power-
constrained edge applications, making them viable alternatives 
to conventional ANN-based solutions. 

The remainder of this paper is structured as follows: Section 
II presents the proposed methodology. Section III discusses 
experimental results and the comparison of the initial input ANN 
and the selected SNN. Finally, Section IV concludes the paper. 

II. PROPOSED METHODOLOGY

The framework is developed using PyTorch for ANN 
implementation and snnTorch [15] for SNN implementation, 
both of which support GPU acceleration for training and 
inference. The snnTorch framework supports multiple spiking 
neuron models, with one of the most widely used being the 
Leaky Integrate-and-Fire (LIF) model [15] which was also used 
in this research. Equation (1) represents the discretized form of 
the LIF neuron’s differential equation, which consists of three 
main components. The neuron's membrane potential is denoted 
as U. The input component is the product of the input vector X 
(a spike train of 0s and 1s) and the synaptic weights W. The 
decay term, governed by the decay factor β, causes the 
membrane potential to decrease at a rate of β per time step.  

The neuron's threshold voltage is represented by θ, which 
ensures that when the membrane potential reaches a certain 
threshold, it resets to a predefined value, producing a spike at the 
output [15]. The spikes generated at the output are denoted as 
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡]  ∈  {0, 1}. As described in (2), when 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 1, θ is 
subtracted from the membrane potential; otherwise, no reset 
occurs. This mechanism, known as the subtraction reset or soft 
reset mechanism, is widely used in spiking neural networks [15], 
[16]. 

𝑈𝑈[𝑡𝑡] = 𝛽𝛽.𝑈𝑈[𝑡𝑡 − 1]�������
decay

+ 𝑊𝑊.𝑋𝑋[𝑡𝑡]�����
input

− 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡 − 1].𝜃𝜃���������
reset

(1) 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡] = �1, 𝑖𝑖𝑖𝑖 𝑈𝑈[𝑡𝑡] > 𝜃𝜃
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (2) 

The snnTorch framework also supports multiple spike 
encoding schemes, such as rate coding and temporal coding. In 
this study, rate coding is employed, which converts input 
intensity into a spike count [15]. 

Since all networks in this study are bias-free, the energy 
consumption of ANN models is computed using the equation 
∑𝑤𝑤. 𝑥𝑥 where w and x represent the weight and input data, 
respectively. The computational operations required in ANN 
neurons consist of Multiply-Accumulate (MAC) operations, 
which can be theoretically estimated. The total energy 
consumption is then determined using (3). 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 (3) 

For spiking neurons, computations follow (1). However, in 
this study, the decay factor β is set to approximately 1, allowing 
us to disregard its effect for simplification. Additionally, the 

accumulation term U in (1) is ignored. Consequently, the 
computational operations in spiking neurons primarily involve 
the summation of weights, represented as ∑𝑤𝑤, corresponding to 
Accumulation (AC) operations. 

To determine the number of operations in spiking neurons, 
this study employs a state-of-the-art technique that accurately 
measures computational complexity by counting the average 
number of spikes fired across the entire network. This method, 
which accounts for dataset characteristics, spiking neuron 
hyperparameters, and encoding schemes, has been widely 
adopted in recent research [17], [18]. Specifically, after applying 
the full dataset to the network, the number of spikes generated 
in each layer is recorded, and the average spike count per layer 
is reported. The total energy consumption is then estimated by 
incorporating this spike count into (4) [17]. 

Table I shows the energy estimation resulting from the 
implementation of a 32-bit multiplier and adder at 45nm CMOS 
technology according to reference [19]. Therefore, the 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 and 
𝐸𝐸𝐴𝐴𝐴𝐴  in (3), (4) can be calculated using this table. 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐸𝐸𝐴𝐴𝐴𝐴  (4) 

TABLE I. ENERGY ESTIMATION OF AC AND MAC 
OPERATION IN 45NM CMOS TECHNOLOGY 

45nm Technology Energy (pJ) 
INT FP 

ADD 0.1 0.9 
MUL 3.1 3.7 
ACC 0.1 0.9 
MAC 3.2 4.6 

 SNNs have multiple hyperparameters affecting their 
performance, such as the spiking neuron model, time steps, 
neuron threshold voltage, and neuron reset type [1], [15]. These 
hyperparameters significantly influence SNN performance, 
impacting accuracy, spike rate, and energy consumption [1], 
[15]. A critical factor in SNN efficiency is the selection of an 
appropriate time step. Higher time steps improve accuracy but 
increase spike rate, leading to higher latency and energy 
consumption. Conversely, lower time steps reduce latency but 
may degrade accuracy. Similarly, adjusting the neuron threshold 
voltage modifies spiking behavior, influencing both the learning 
and inference phases. At the same time, these hyperparameters 
play an essential role in the reliability of the networks. The 
learning process in this research was conducted using the 
surrogate gradient method supported by snnTorch. Since a key 
objective of this research is to identify a suitable network for 
edge applications, adopting an integer number format is crucial 
compared to floating-point representation. To achieve this, 
quantization is applied to convert network parameters into an 
integer format. Notably, the proposed framework supports 
quantization with arbitrary precision; however, in this study, an 
8-bit integer format was used. Quantization improves efficiency
in hardware implementations such as FPGAs and ASICs by
reducing memory size and computational complexity. To assess
reliability, the FI method [20] is used, employing Bit Error Rate
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(BER) analysis to simulate faults. This allows systematic 
evaluation of model robustness without requiring exhaustive FI 
into all bits, thus reducing computational overhead. To model 
transient faults, the bit-flip FI method is employed, applying 
different BER to network parameters (weights) to simulate 
cumulative faults. The results are presented in terms of accuracy 
drop as an indicator of network reliability. 

Considering the described matters, Fig. 1 provides an 
overview of the proposed methodology. The workflow consists 
of three steps designed to find an optimal SNN topologically 
equivalent to an ANN, maintaining efficient accuracy, 
reliability, and energy consumption. 

Figure 1. The proposed methodology flowchart 

At first, a pre-trained ANN and a set of hyperparameters 
defining its equivalent SNN are input into the framework. 

In STEP 0, according to the pseudo-code proposed in 
Algorithm 1, the framework trains a set of SNN models, denoted 
as 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗, using the input hyperparameters. After training, post-
training quantization (PTQ) is applied, allowing the user to 
specify bit-width precision. The accuracy check is performed at 
the end of this stage on 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗. On the other hand, the accuracy, 
reliability, and total operations (Ops) of the ANN are also 
measured for comparison. 

In STEP 1, the accuracy of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗ is compared to that of the 
original ANN. If accuracy is maintained or improved, the model 
undergoes reliability assessment. Only configurations meeting 
accuracy and then reliability thresholds are stored in 
candidate_list1. 

In STEP 2, The final step evaluates energy consumption. 
Hyperparameters such as 𝜏𝜏∗, 𝜃𝜃∗ are items from the previous list 
that are met, so they are used in this stage. Configurations with 
lower energy usage than the ANN are stored in candidate_list2. 
If optimal networks exist in candidate_list2, the framework 
returns a selection of viable SNN models. Optionally, the user 
can request the lowest-energy solution. If no configurations meet 
the criteria, the input parameters must be adjusted again. 
Thereby, the algorithm back to the start of STEP 0 according to 
Algorithm 1, and using an automatic or manual mechanism the 
list of hyperparameters must be expanded or be selected in other 
ranges. 

3
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The framework systematically searches for an optimal SNN 
while ensuring minimal performance degradation. If a network 
from STEP 2 is selected, it is guaranteed to outperform the ANN 
in terms of energy efficiency and reliability while maintaining 
accuracy. 

By applying the order used in checking accuracy, reliability, 
and energy consumption, many weak cases are eliminated in a 
short period of time. According to the experiments performed, 
the accuracy check of an SNN, depending on the selected 
hyperparameters and with the topologies chosen in this study, is 
usually under 3 seconds. However, a reliability test may take 
several minutes to complete. In STEP 1, all cases with 
unacceptable accuracy are eliminated, and neither reliability nor 
energy efficiency tests are performed on them. Also, for SNNs, 
the energy consumption estimation in this algorithm is 
calculated simultaneously with their accuracy test. 

III. EXPERIMENTAL RESULTS

This section presents the results obtained from the proposed 
framework and its evaluated parameters. The evaluation 
considers multiple network topologies, ranging from shallow to 
deep architectures, as summarized in Table II. Fully connected 
SNNs are often chosen for experiments because of their 
simplicity and demonstrated effectiveness. Their ability to 
leverage the inherent sparsity and event-driven processing of 
spiking computation results in significant reductions in power 
consumption and computational load [5]. This makes them 
especially suitable for applications in edge scenarios such as 
health monitoring [21]. Key hyperparameters such as time steps 
and neuron threshold voltage, shown in Table III, are explored. 
To ensure comprehensive evaluation, a combination of the 
topologies in Table II and configurations in Table III is tested, 
allowing for the identification of the most energy-efficient and 
reliable SNN models. 

The analysis is performed using two widely used 
classification datasets, MNIST and Fashion-MNIST, 
abbreviated as “M” and “F” in the tables, along with network 
topologies and configurations. Two forms of reliability 
assessment are conducted: model-wise and layer-wise. In the 
model-wise method, FI is applied to the entire network 
simultaneously, while in the layer-wise method, faults are 
selectively introduced into specific layers to evaluate their 
individual resilience. 

TABLE II.  DIFFERENT NETWORK TOPOLOGIES 
USED IN THIS WORK 

Name Number of Neurons in layers Number of Layers 
TOP0 32-10 2 
TOP1 64-32-10 3 
TOP2 128-64-10 3 
TOP3 128-64-64-32-10 5 
TOP4 512-256-256-128-10 5 

TABLE III. THE TOTAL SNN CONFIGS USED 

Config Timesteps Threshold Voltage 
C1 10 0.5 
C2 10 1.5 
C3 30 0.5 
C4 30 1.5 

As shown in Fig. 2, the first experiment compares a trained 
and quantized ANN with four SNN variants that share the same 
topology but differ in configuration. Initially, SNN models are 
trained with predefined hyperparameters, followed by 
quantization and comparison with their ANN counterparts. The 
results indicate that SNN models achieved accuracy levels 
comparable to their ANN counterparts. 

Figure 2. Comparison of accuracy in different architectures 

The next study examines the impact of injecting faults into 
network parameters. For this purpose, four different topologies 
with four distinct configurations are evaluated, with each graph 
representing the results for a single BER. As shown in Fig. 3, the 
experiment covers four BER ranges. The analysis follows a 
model-wise approach, meaning faults are injected into all 
hyperparameters of a given model. In each experiment, an ANN 
is compared with four SNNs of the same topology but different 
configurations. By analyzing Fig. 3a to 3d, it is evident that 
networks with different hyperparameters exhibit varying levels 
of reliability. This underscores the importance of identifying the 
optimal configuration for an SNN with a given structure. Fig. 3d 
shows the results of heavy FI as BER equals 0.1, the network 
has started to lose its parameters, and fault resiliency is 
unreasonable in this situation.  

The layer-wise reliability analysis is presented in Fig. 4. 
Using the proposed framework, a test was conducted across all 
previously examined cases (various topologies and 
configurations). After determining the most reliable 
configuration for each topology, only the best-performing 
configuration was included in this layer-wise study. This 
analysis focuses on two topologies: a 3-layer and a 5-layer 
network. Faults were applied to all layers, and the ANN results
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(a) 3-Layer (b) 5-Layer

Figure 4. Layer-wise reliability analysis for two 3-Layer and 5-Layer network topologies at BER=0.01

were compared with their corresponding SNNs. In this 
experiment, only the C2 configuration was analyzed at a BER of 
0.01. The results show that SNN layers exhibit greater 
robustness to faults than their ANN counterparts. For instance, 
in Fig. 4b, the fourth layer (L4) of the TOP3 SNN achieves 
96.54% reliability—1.84× higher than the equivalent ANN 
topology, which has a reliability of 52.6%. 

Accuracy, reliability, and energy consumption trade-offs 
illustrated in Fig. 5. According to the values in Table I, the figure 
shows the energy consumption in the two equivalent ANN and 
SNN topologies. To better highlight differences in energy 
consumption, two topologies—2-layer and 5-layer networks—
are examined, as detailed in Table II. The selected 
configurations—C2 and C3 for TOP0 and TOP4 respectively—
represent the optimal SNN models identified by the proposed 
framework. As observed, for both topologies and datasets, the 
accuracy of SNN models remains comparable to their ANN 

(a) BER = 0.0001 (b) BER = 0.001

(c) BER = 0.01 (d) BER = 0.1

Figure 3.  Model-wise reliability analysis for some custom network topologies 
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counterparts, while their reliability surpasses that of equivalent 
ANN models. The figure shows the energy 

Figure 5. The comparison of accuracy, reliability, and energy for ANN and SNN topologies at BER=0.01

consumption difference between ANN and its equivalent 
SNN network, especially in a relatively large network. The 
energy consumption ratio of ANN to SNN in a 2-layer 
feedforward network (TOP0) is 23.36× for MNIST and 11.05× 
for Fashion-MNIST dataset. Also in a 5-layer feedforward 
network (TOP4) is 7.82× for MNIST and 4.2× for Fashion-
MNIST dataset. The difference in energy consumption in two 
SNNs with different datasets is related to the difference in the 
spike rate of the encoded data of the two datasets, which 
naturally changes the computational operations and energy 
consumption. 

Based on the data in Fig. 3c and TOP4, if a naïve conversion 
from ANN to SNN is performed and the proposed framework 
with three-lateral optimization is not used, the conversion result 
may end up in one of the configurations such as C1 or C2, which, 
as is clear from the results, although these configurations meet 
the accuracy and energy conditions, they deteriorate the 
reliability in the converted network up to 54.13%. In contrast, 
the network introduced by the proposed framework, although it 
meets the accuracy and energy conditions, has also improved its 
reliability in C3 configuration up to 28.03%. 

In some other cases such as TOP3, the proposed framework 
gives a set of optimizes SNNs, based on Fig. 3c where SNNs 
showed up to 1.92× and 1.84× better reliability compared to 
ANNs and lower energy consumption reached up to 27.81× and 
15.17× for the MNIST and Fashion-MNIST dataset when using 
the C2 configuration. Selecting candidate networks without 
considering reliability may yield better energy efficiency but 
often lacks fault resilience. Our framework addresses this by 
balancing all aspects to achieve an optimal trade-off, as reflected 
in the reported results. Expanding the SNN configuration space 
could further improve outcomes by offering more design 
choices. 

IV. CONCLUSION

This paper presented a novel framework for optimizing the 
conversion of ANNs to SNNs while balancing accuracy, 
reliability, and energy efficiency. The proposed method 
systematically explores SNN hyperparameters to identify 
optimal configurations that maintain accuracy while 
significantly improving fault tolerance and reducing energy 
consumption. 

Experimental evaluations on MNIST and Fashion-MNIST 
datasets demonstrated that the optimized SNN models achieved 
accuracy levels comparable to their ANN counterparts. 
Moreover, the proposed framework enhanced the reliability of 
SNNs, as reflected in FI studies, where SNNs showed up to 
1.92× and 1.84× lower accuracy degradation under injected 
faults compared to ANNs in some cases. Additionally, layer-
wise reliability assessments confirmed that certain SNN 
configurations exhibited significantly higher robustness in 
individual layers than their ANN equivalents. 

In terms of energy efficiency, the results showed that SNNs 
outperformed ANNs by substantial margins. The energy 
consumption ratio between ANN and SNN reached 27.81× for 
the MNIST dataset and 15.17× for the Fashion-MNIST dataset 
in some cases. These findings validate the effectiveness of the 
proposed approach in achieving energy-efficient and fault-
tolerant SNN architectures, making them ideal candidates for 
edge computing and safety-critical applications. 
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Abstract—The recent rise of open hardware, mainly driven by the 
momentum of the RISC-V ecosystem, has sparked significant 
innovation in the development of open-source CPUs and SoCs. 
This movement has enabled broad exploration across academia 
and industry, fostering collaboration and reuse. However, the 
diversity and openness that empower this space also introduce 
challenges: academic projects often fall short of industry-grade 
robustness, lack of standardization, and simulation limitations. To 
ease the work of researchers some key challenges must be faced in 
open hardware development: platforms’ reconfigurability, ease of 
integration of third-party IPs, and support for technological 
heterogeneity. To address these issues, we present Simply-V, a 
flexible, FPGA-based soft-SoC platform designed for rapid 
prototyping and open hardware research. Simply-V enables plug-
and-play support for multiple CPUs, IPs and accelerators, offers 
structured configurability across embedded and highperformance 
profiles, and supports the integration of both RTL and HLS-based 
components. We demonstrate the SoC’s capabilities through 
platform-fair CPU benchmarking and the iterative development 
of HLS-designed convolutional accelerators, showcasing 
simplified fast prototyping, configurability, and heterogeneous IP 
support on real hardware. Simply-V is openly available at 
https://github.com/HiSA-Team/Simply-V.git. 

Index Terms—RISC-V, FPGA, Fast-Prototyping, Experimental 
Research. 

I.  INTRODUCTION

In recent years, open hardware has experienced a remarkable 
surge, largely fueled by the RISC-V open ISA, which has 
become a catalyst for research into open-source CPUs and 
Systems-on-Chip (SoCs) across both academia and industry. On 
one hand, this rich, diverse, and open environment fosters 
knowledge sharing and promotes the reusability of hardware 
solutions. On the other hand, academic projects often fall short 
of industry-grade standards in areas such as documentation, 
usability, and long-term maintainability. As a result, open 
hardware researchers frequently encounter significant 
challenges, not only in reproducing experimental results, but 
also in building upon existing work. Most setups are often hard 
to reproduce, and the inherent heterogeneity can result in 
inconsistent or non-comparable performance figures. As a 
mitigation to these challenges, one would wish for a simple, 
verified and hardware-ready playground platform for open 

hardware research that is reconfigurable, easy to use and reuse 
in larger systems. Such an achievement, however, is nontrivial 
for several reasons. First, validating CPUs in realistic scenarios, 
such as running full operating systems or benchmarking memory 
hierarchies, goes beyond basic testbenches. Second, while 
reusable IP blocks like accelerators, peripherals and protocol 
bridges are widely available, they often lack consistent interface 
standardization and toolchain compatibility, shifting focus from 
open hardware research to low-level troubleshooting. Lastly, 
seamless configurability remains a major roadblock. Tasks like 
address mapping, dependencies management, memory and bus 
resizing, or clock domain crossing (CDC) are often hardcoded 
or require manual rework, limiting scalability and slowing down 
design iterations.  

To address these challenges, we present Simply-V 
(pronounced ”simplify-ve”), an easy-to-deploy, flexible, and 
extensible soft-SoC platform for rapid prototyping, open 
hardware research and development. Simply-V provides a 
simple, FPGA-based, hardware-ready playground platform for 
full-stack evaluation on real physical devices in open hardware 
research. The platform offers a structured reconfiguration flow, 
is portable across a wide range of FPGA devices, supporting 
both embedded and high-performance profiles. It enables drop-
in integration of multiple CPUs and accelerators, along with a 
configurable interconnect managed through a high-level flow. 
We demonstrate the capabilities of Simply-V with a platform-
fair benchmarking of set open-source CPUs, across the 
embedded and high-performance computing (HPC) profiles, in 
both 32 and 64 bits. Additionally, we validate the integration of 
custom IPs, support for technological heterogeneity and fast 
design iterations by deploying a set of incrementally-designed 
high-level synthesis (HLS) convolutional accelerators. 

II. BACKGROUND AND MOTIVTION

A. A Flexible SoC for Open Research and Fast Prototyping
While many reconfigurable RISC-V-based platform designs

have been proposed, a significant number of them are either 
proprietary or not publicly accessible. Conversely, most 
opensource RISC-V CPUs are distributed with minimal testing 
environments, valuable for evaluating the processor’s 
functionalities but not meant to serve as hardware-ready SoCs.  
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More sophisticated open-source SoCs do exist, such as 
lowRISC’s OpenTitan [1], however, these systems lack the right 
reconfigurability across a wide spectrum of technology needed 
for open-hardware research. In contrast to fixed-functionalities 
SoCs, frameworks for SoC generation can offer more flexibility, 
such as ESP [2] and Chipyard [3]. Similarly to Simply-V, using 
a configuration-driven design flow, they can generate RTL for a 
complete SoC, including the CPUs, caches, interconnects, and 
co-processors. On the other hand, Chipyard specifically focuses 
on verification of ASIC tape-outs, and ESP is mostly oriented at 
tiled architectures, integrating third party SoCs and IP cores. 
Instead, Simply-V is explicitly targets FPGA platforms and SoC 
architecture, with fast prototyping for academic research as its 
primary aim. 

B. A Practical Alternative to Simulation
Simulation frameworks have long been the cornerstone in

digital design validation. System emulation platforms such as 
QEMU, and instruction set simulator like Spike, are clearly 
limited to functional validation, and cannot be used for 
performance evaluation. More advanced tools, such as gem5 [4] 
and event-driven simulators, like GVSoC [5], offer reasonable 
trade-offs between timing accuracy and simulation time, but 
tend to be platform-specific and require a reimplementation of 
the simulated modules. On the other hand, cycle-accurate RTL 
simulators are often prohibitively slow, namely when simulating 
long-running programs like booting an OS. Hybrid 
hardware/software co-simulation approaches attempt to mitigate 
these issues, but they rely on custom intermediate 
representations, or emulation on expensive FPGA platforms [6].  

Simply-V addresses these challenges by providing the 
fidelity of hardware execution without the burden of RTL design 
and platform integration. Such flexibility allows rapid 
prototyping, fast design iterations, and real-system validation 
beyond cycle-accurate simulations or FPGA-based emulations. 

III. ARCHITECTURE
This section describes the design principles of our Simply-V 

and design challenges it addresses. To ease the work of 
researchers and practitioners, we focus on (1) system-wide 
reconfigurability, (2) ease of integration of custom IPs and (3) 
technological heterogeneity as pivotal requirements. 

MBUS: the Simply-V architecture, depicted in Figure 1, is 
based on fully parametric and reconfigurable, yet simple, main 
bus (MBUS) interconnect, based on AMBA AXI4. Most 
memories in Simply-V, generically encompassing ROMs, 
onchip SRAMs and external DRAMs, are mapped on the 
MBUS.  

PBUS: Low-end and low-frequency peripherals, which 
commonly require a limited range of addresses for register file 
data and control, are collected in the peripheral bus (PBUS), as 
an additional slave to the MBUS. By design, the PBUS is meant 
for non-performance-critical bus traffic, hence we opt for an 
AXI4-lite interconnect.  

HBUS: Our platform is also designed of accelerator 
development and HPC configurations, hence a high-bandwidth 
bus (HBUS) interconnect is exposed as a further slave of the 
MBUS. The HBUS offers streamlined, long-word access to 
more performant memories, such as DDR banks or HBM 
channels. The HBUS is suitable for high-performance 
accelerators, which require high-bandwidth to external DRAM 
memories, such as AI engines or vector co-processors.  

PLIC and interrupts: Interrupts are managed by an 
implementation of the RISC-V standard platform-level interrupt 
controller, namely PLIC, integrated as a custom unit leveraging 
our custom IP flow, detailed in Section III-C.  

SysMaster: Since Simply-V is primarily designed for 
research and development, host-side debug is a fundamental 
feature. We explicitly expose on the MBUS a host-side 
connection, the SysMaster. It allows the user to directly interact 
with the SoC, e.g. to inject faults or read-back data over a high-
speed link, e.g. PCIe, rather than low-speed JTAG.  

Cross-profile UART: A UART peripheral is hosted in the 
PBUS for both embedded and HPC profiles. For embedded, we 
leverage a physical UART IP over a PMOD connector. In case 
of HPC deployment, such as on PCIe acceleration cards, a 
PMOD connection is typically not available. Therefore, we 
design a virtual UART module to emulate the same behaviour 
of its physical counterpart over the PCIe link. 

A. SoC Configuration Flow
Simply-V provides a lightweight, parameter-based

configuration flow to re-shape the platform at build time and 
restructure the whole SoC to adapt it to their experimental needs. 

Fig. 1. General architecture and on-chip interconnect of Simply-V. It features a main bus (MBUS), a peripheral bus (PBUS) for low-speed devices and a high-
performance bus (HBUS) for high-bandwidth memory accesses, suitable for accelerators and co-processors. On the MBUS, the RV Socket hosts a RISC-V processor 
and debug module. Finally, the SysMaster grants the host full control of the platform and master access to the SoC interconnect. 
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Four modular input tables are required, namely a systemlevel 
configuration, e.g. target CPU, RISC-V XLEN, and three 
configuration files for MBUS, PBUS and HBUS, respectively, 
for interconnect, address map and CDC management.  

Buses are reconfigured in a transparent, automated and 
verified process. The necessary RTL modifications to remap 
addresses and interconnections are automated and hidden to the 
user. Peripheral IPs, such as timers, GPIOs or accelerators, can 
be optionally instantiated in one or multiple instances and their 
clock frequency, alongside the CPU clock, can be controlled 
from configuration files. 

B. RV Socket and Debug Support
Simply-V aims at providing a fast deployment flow that

targets different processors with a vendor-agnostic plug-in 
framework. To address such needs, we introduce the RV 
Socket, a modular CPU wrapper offering a unified interface for 
the RISC-V cores towards the MBUS for operation and the host 
for debugging. Figure 2 depicts the architecture of the RV 
Socket. In the following, we present motivation and detail our 
design choices. 

1) Unifying CPU Interfaces: In order to provide a vendor-
independent interface for CPUs, we leverage our custom IP 
flow to provide a packaging framework for compatible and re-
usable adapters. Adapters can be either imported or 
implemented from scratch, and deployed alongside the RISCV 
CPU to provide a unified interface for all CPUs, allowing plug-
in CPU support. 

2) RISC-V External Debugging: RISC-V CPUs can support 
a Debug Transport Module (DTM) for external debugging. The 
RISC-V debug specification defines a Debug Module Interface 
bus (DMI), but the implementation is left to the designer. 
Consequently, each RISC-V core comes with a tightly-couples 
DTM. With our simple configuration flow, the transition 
between CPUs remains seamless, which transparently enables 
the right DTM and compatible DMI interconnect.  

C. Custom IP Packaging
For Simply-V, we design a custom IP packaging

methodology to ease the integration of custom and third-party 
IPs. We allow users to package RTL or other HDL sources into 
a selfcontained IP, namely a blunt out-of-context netlist, with no 
remaining references to its source code. Such a flow is depicted 
in Figure 3. The first step of the packaging is to provide the 
necessary sources, resolve internal dependencies, and is 
IPspecific. Simply-V poses no constraints on this step, other than 

providing a custom top wrapper module for all IP sources. The 
second step is unified for all IPs and automatically builds such 
top module in a library IP element. Consequently, this strategy 
enables Simply-V to integrate third-party IPs with potential non-
compatible code bases, effectively turning third-party IPs in 
simple and off-the-shelf library elements. 

D. Managing Clock Domain Crossing
Managing clock domains can be difficult and deploying a

whole SoC in the same domain might be inefficient in 
performance and power. Our configuration flow allows for the 
slaves of the main bus to be clocked at different frequencies, 
with automated and verified CDC bridges deployment. A main 
clock domain is shared by RV Socket, MBUS, PLIC and 
BRAM memories, as such modules typically show no 
advantage in a dedicated domain. The PBUS hosts all of its low-
speed peripherals in a single domain, clocked at lower 
frequency. All MBUS additional peripherals, such as 
programmable co-processors or specialized accelerators, can be 
placed in a dedicated domain, allowing fast integration at their 
natural frequency, or use the MBUS domain. Moreover, the 
HBUS maximizes integration with DDR and HBM channels by 
deploying in their high-speed clock domain. Such a domain is 
available for accelerator deployment for the best performance 
and integration with the high-speed interconnect. 

IV. EXPERIMENTAL VALIDATION
In this section, we empirically validate the capabilities of 

Simply-V for fast prototyping and research. We configure our 
SoC CDC with PBUS, HBUS and DRAM memories in 
dedicated clock domains and build our FPGA designs with 
Vivado v2024.2. We deploy Simply-V embedded profile on 
Digilent Nexys A7 Artix-7 board. For validation in HPC 
profile, we use an AMD Xilinx Alveo PCIe Card. 

A. Cross-vendor CPU Benchmarking
We demonstrate a platform-fair comparison of RISC-V

CPUs and the plug-and-play support of multiple processors 
from a diverse pool of vendors, namely CV32E40P from 
OpenHW, Ibex from lowRISC, MicroblazeV from AMD 
Xilinx, and finally, we demonstrate RV64 support with CVA6. 
Leveraging our configuration flow, for given a Simply-V setup 
we seamlessly plug in and out different CPUs. Additionally, we 
showcase the transparent profile transition from embedded to 

Fig. 3 . Architecture of the RV Socket, with CPU-specific logic enclosed in 
dashed lines. 

Fig. 2. Custom IP packaging flow. On the left, in dashed lines the IP-specific 
steps. On the right, the common steps managing packaged IPs as library 
elements in the target EDA tool. 
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HPC setups, with no overhead from the practitioner. We run the 
tacle-bench1 benchmark on all CPUs and Simply-V profiles. 
For the embedded profile, we run software from onchip BRAM 
memory, in the main clock domain at 50MHz, alongside the 
CPU. For the HPC profile, we run the software both from 
BRAM memory and an external DDR bank. 

Figure 4 shows the tacle-bench1 latency results, averaged 
over 10 iterations. CPUs can be quickly evaluated and 
compared in the embedded profile, for its fast turn-around time, 
obtaining a fast, baseline indication with the sophisticated 
CVA6 core performing worse than simpler cores. Transitioning 
to a HPC configuration, namely and keeping code in local 
BRAMs or off-chip DDR, and increasing the target frequency 
in the main clock domain, a researcher can easily evaluate the 
differences in performance for the various cores. 

B. Fast Prototyping an HLS-based Convolutional Core
In this section, we demonstrate the use of Simply-V as a

hardware-ready platform for fast prototyping custom IPs, 
including support for technological heterogeneity with HLS 
technology. We target an 8-bit 2D convolutional engine, 
namely CONV2D, as a representative example of modern 
workloads. We implement a pool of CONV2D engines and 
integrate each one in Simply-V as an accelerator IP, 
demonstrating fastprototyping capabilities, both from the IP 
design and SoC integration perspective. Figure 5 reports the 
HLS engine’s performance across design iterations: (1) Naive 
loop-nest: the baseline prototype of our core is a basic HLS-
compatible Ccode, with a single AXI master port for memory 
access. (2) AXI bursts: activating memory coalescing; (3) 
Double buffering: implementing double buffering; (4) 
Frequency boost: leveraging our configuration-based CDC, we 
boost the IP clock frequency; Such approach improves 
performance by a only limited amount, suggesting the IP core 
is bottle-necked by memory accesses; (5) Split interfaces: 

1 https://github.com/tacle/tacle-bench/tree/V1.9 

maximizing data-access parallelism with three parallel read and 
write AXI ports; (6) HBUS access: alternatively, leveraging the 
HBUS interconnect for wider memory accesses, showcasing 
the best performance. 

V. CONCLUSIONS

In this work, we presented Simply-V, a reconfigurable, 
hardware-ready soft-SoC platform for fast prototyping and 
open hardware research. We demonstrated the capabilities of 
our platform by simplifying platform-fair CPU benchmarking 
and fast prototyping a HLS-based convolutional engine. 
Moving forward, we plan support for additional CPUs and IPs 
for RISC-V extensions and heterogeneous technologies, such as 
Chisel. We plan to soon boot Linux on Simply-V and deliver a 
full-fledged platform for experimental and applied research. 
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Abstract—Adapting a Cyber-Physical Production System
(CPPS) to different production goals and conditions requires
capabilities to validate multi-domain dependencies. Traditional
approaches to CPPS adaptation rely on domain experts’ implicit
knowledge, making reconfiguration prone to error, challenging
to validate, and hard to trust. Our research aims at improving
the trustworthiness of the CPPS adaptation process regarding ef-
fectiveness, risk mitigation, and understandability, with a formal
representation of reconfiguration dependencies and conditions.
This paper introduces the approach Trustworthy Adaptation Pro-
cess for CPPS (TAP-CPPS) to validate the feasibility of achieving
the adaptation goal by reconfiguration. TAP-CPPS is a systematic
approach to (i) model the adaptation process using BPMN;
and (ii) validate the adaptation process model using contracts
by verifying explicit reconfiguration pre-/post-conditions in the
BPMN model, which is linked to the CPPS configuration variants.
We initially evaluate TAP-CPPS with a use case of a CPPS for
joining car parts, and derive a research agenda.

Index Terms—Production Systems Engineering, Industry 4.0,
Multi-disciplinary reconfiguration, Adaptive production system.

I. INTRODUCTION

Industry 4.0 (I4.0) has envisioned to realize adaptive Cyber-
Physical Production Systems (CPPSs) [1] in order to meet the
growing demands for flexible and responsive production [2]. In
this work, CPPS adaptation refers to the process of adjusting
the CPPS’s behavior in response to a change in a dynamic pro-
duction environment [3]. An adaptation process often involves
reconfiguring several components, including Product-Process-
Resource (PPR) aspects, to achieve the target adaptation goal,
such as addressing changes in market demands and customer
requirements [4], technology [5], or regulations [3], [6].

Traditional approaches for CPPS adaptation and reconfig-
uration [7] rely on domain experts’ implicit knowledge. This
tacit knowledge is often fragmented among experts coming
from several domains, e.g., mechanical, electrical, system, and
software engineering, each of whom has partial or incomplete
knowledge required for designing and evaluating adaptation.
Hence, traditional CPPS adaptation approaches are prone to
error, challenging to validate, and hard to trust [5], [8].

Considering the complex multidisciplinary nature of a CPPS
and its adaptation process, structured methods and appropriate
models are required to enhance the trustworthiness of CPPS
adaptation and the underlying reconfigurations [1], [5], [8].
Trustworthiness is an umbrella term for properties including
safety, security, reliability, integrity, availability, and under-
standability [9]–[11]. This work focuses on the integrity and
understandability aspects of trustworthiness.

To address the challenges and enhance the trustworthiness
of CPPS adaptation, this paper proposes a systematic multi-
view approach to ensure (i) the target configuration variants
are valid; (ii) the target adaptation goal is achievable by
the planned reconfigurations; and (iii) the adaptation and
reconfiguration processes are understandable and verifiable by
humans (various stakeholders) and machines. This paper shall
address the Research Question: What approach can validate
whether a target adaptation goal is achievable by planned
reconfiguration activities?

With this aim, we introduce the approach Trustworthy Adap-
tation Process for CPPS (TAP-CPPS) built on the approach
PPR Asset Network with Reconfiguration (PAN+R) [5]. TAP-
CPPS is a systematic approach to (i) model the CPPS adapta-
tion process using the Business Process Model and Notation
(BPMN); and (ii) validate the adaptation process model and
underlying reconfigurations using contracts [12] by explicitly
verifying the reconfiguration pre- and post-conditions in the
BPMN, which is linked to the CPPS configuration variants.

We illustrate an application of TAP-CPPS to evalutate
the reconfiguration of an automated industrial screwdriver, a
typical flexible resource in car production.

The remainder of this paper is structured as follows. Sec-
tion II summarizes the related work. Section III introduces the
use case. Section IV introduces our proposed approach, TAP-
CPPS, illustrated with data from the use case. Finally, Sec-
tion V concludes the paper with a research agenda.

II. RELATED WORK

Multi-view Configuration Management (CM) in CPPS
engineering, according to the VDI 3695 [7], aims at managing
the correct migration between CPPS configurations. A CPPS
configuration represents a consistent, validated combination of
all required system elements. While the VDI 3695 addresses
multidisciplinary CM, it does not address trustworthy CM.

The guideline VDI 3682 [13] provides a formalism for
describing the production processes based on the core PPR
concepts. Building on PPR, the PPR Asset Network (PAN) [14]
is an I4.0 asset-based coordination artifact, which can repre-
sent PPR dependencies for a specific configuration variant.
However, it does not support multiple variants required for
reconfiguration. Extending the PAN, the PAN+R approach [5]
provides (i) knowledge representation required to coordi-
nate CPPS reconfiguration, and (ii) an approach for validating
the reconfiguration process based on multidisciplinary pre-

Manuscript received July 15, 2025; revised July 31, 2025; accepted July 
25, 2025. Published September 2, 2025. 
Issue category: Special Issue on DSD/SEAA 2025 on Works in 
Progress (WiP) Session, Salerno, Italy, Sept. 2025 
Paper category: Short 
DOI: doi.org/10.64552/wipiec.v11i1.87

12

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025 

https://doi.org/10.64552/wipiec.v11i1.87


and post-conditions. However, the PAN+R does not consider
formal notations for modeling complex adaptation processes.

Trustworthy adaptation of CPPS requires a suitable archi-
tecture that supports the modeling and management of multi-
domain reconfiguration knowledge and coordination of the
adaptation process [15]. MAPE-K [16] defines a reference
framework for self-adaptive systems by organizing the adapta-
tion process into four core functions: Monitor, Analyze, Plan,
and Execute, along with a central Knowledge component.
MAPE-K encourages the principle of separation of concerns,
which provides a suitable basis for our proposed approach.

The BPMN standard [17] allows modeling complex busi-
ness processes that technical and non-technical experts, and
machines can interpret. The BPMN can be used to extend
the PAN+R approach for modeling complex adaptation pro-
cesses. Yet, BPMN per se does not consider PPR assets or
the conditions and data required for the adaptation validation.
This work explores linking the adaptation process in BPMN
to PPR assets and conditions [5], [18] using contracts [12].

A contract for a component is a pair of an assumption and
a guarantee. The component guarantees a particular behavior
if the environment satisfies the assumption [12]. Contract-
based design is a rigorous method for verification, analysis,
and abstraction/refinement [12], However, to our knowledge,
this method has not been applied to adaptive CPPSs.

The modeling method procan.do [19], [20] facilitates un-
derstanding, for a process or system of interest, the assets,
stakeholders, and data required to analyze multi-domain con-
tributions to a desired or undesired outcome. In this paper, we
use procan.do to derive the stakeholders, contract conditions,
and data sources required to evaluate the contract conditions.

This paper shall go beyond the state of the art in CPPS adap-
tation and reconfiguration [5], [7]. We introduce a systematic
multi-view approach to validate whether the target adaptation
goal is achievable by the planned reconfiguration activities.

III. USE CASE WORK CELL ADAPTATION

Based on a domain analysis of screwing work cells [21],
[22], we abstracted the illustrative use case adaptation of a
screwing work cell. Moreover, we identified the requirements
for knowledge representation on reconfiguration. Specifically,
we describe components of a robotic work cell equipped with
an electric screwdriver. The screwdriver consists of a bit and
a screwer controller that uses a force curve to define the
screwing process behavior.

In the use case, a quality expert collaborates with process
experts and detail planners to define and validate reconfigura-
tion procedures for the operator who conducts the reconfigu-
ration. A representative multidisciplinary reconfiguration task
is changing the screw type. This change requires checking
and modifying the screwing bit and the force curve of the
screwing process. It involves dependencies between all PPR
aspects, including mechanical and automation engineering
disciplines. For validating a reconfiguration process with PPR
change dependencies, we identified three essential modeling

requirements: (R1) representation of the PPR change knowl-
edge, (R2) representation of the reconfiguration process, and
(R3) linking the reconfiguration process with the PPR model,
making dependencies explicit for validation and traceability.

IV. TRUSTWORTHY ADAPTATION PROCESS FOR CPPS

This section introduces the approach Trustworthy Adap-
tation Process for CPPS (TAP-CPPS) and demonstrates its
application using data from the use case adaptation of a
screwing work cell. We apply procan.do [19], [20] to analyze
dependencies in the adaptation process. We identify the assets,
stakeholders, conditions, and data sources required to evaluate,
verify, and validate contracts [12] in the adaptation process.

Fig. 1. Trustworthy Adaptation Process for CPPS (TAP-CPPS) approach:
Solution Overview.

Fig. 1 illustrates the TAP-CPPS approach consisting of
(i) a Production Model with PPR variants and the required
production change knowledge (cf. Fig. 1, middle), (ii) an
Adaptation Process Model including the required reconfigu-
ration knowledge (cf. Fig. 1, top), and (iii) Links between
the adaptation process elements and the production assets (cf.
Fig. 1, green dashed lines) for validating the reconfiguration
pre- and post-conditions (cf. Tab. I) using contracts. These
linked models form a knowledge graph that can be queried to
(i) derive and validate an adaptation plan with the underlying
reconfigurations, and (ii) inform the operators via a dashboard
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about the reconfiguration tasks and their current status. The
main parts of TAP-CPPS (cf. Fig. 1) are explained as follows.

(i) Production Model with variants. The TAP-CPPS pro-
duction model builds on the PAN [14] to represent PPR assets
and properties (circles and boxes in light blue color), such
as the screwing process and functional dependencies between
PPR assets (black arrows). The production model also contains
variants of the PPR assets and properties (PPR elements with
frames in brown color) to represent the production variants,
such as screw types, bits, screwing processes, and screwing
force curves. The variants of a PPR element are connected
by transition dependencies (brown arrows with dashed lines).
The change dependencies between (variants of) PPR elements
are also represented in the production model by brown dashed
lines, e.g., between the screw and the bit.

TAP-CPPS production model properties can represent the
reconfiguration states of components, such as assembly or
validation states. For validating a sequence of reconfiguration
tasks, the valid states and transitions can be defined using
state machines, considering multidisciplinary dependencies. To
represent reconfiguration assets or properties required only for
coordinating the adaptation, not for production, the production
model contains PPR elements in a light blue frame, e.g., Bit
Storage. The production model uses red and yellow diamonds
for marking a changed PPR asset and the related PPR elements
to validate. The validation of each element can be addressed by
a contract, defined as a set of assumption pre-conditions and
a set of guarantee post-conditions, and its evaluation process.

(ii) Adaptation Process Model. An adaptation process con-
sists of reconfiguration tasks with pre- and post-conditions,
each leading from a start to a goal state (cf. Fig. 1, top).
For instance, the adaptation of the screwing system requires
reconfiguration tasks for the screw, bit, and screwing curve.
The process expert defines the reconfiguration task conditions
considering dependencies and states in the TAP-CPPS produc-
tion model. A Business Process Management System (BPMS)
can track and monitor the execution of the adaptation process
for normal or special cases.

(iii) Knowledge graph of the adaptation process linked to
the production assets. The domain concepts in the task pre-
and post-conditions linked to PPR elements (cf. Fig. 1, green
dashed lines) build the foundation to validate these concepts
with their dependencies in the TAP-CPPS knowledge graph
using contracts [12] and an information system for validation.

Evaluation. As an initial feasibility evaluation, we con-
ducted TAP-CPPS for the use case adaptation of a screwing
work cell (cf. Section III) following the procan.do method.

Step 1: The scope of work is the adaptation of the screwing
work cell (cf. Fig. 1) with desired and undesired outcomes.

Step 2: Process analysis results in a BPMN process model
for adapting the screwing work cell with the required recon-
figuration tasks (cf. Fig. 1, top). This adaptation model should
lead to desired outcomes, such as completing the customer
orders on time, with limited resources. This step identifies
high-risk undesired process outcomes, such as completing the
customer orders with delays or high unplanned costs.

Fig. 2. Undesired conditions in adaptation process of Screwing Work Cell.

TABLE I
PRE- AND POST-CONDITIONS OF RECONFIGURATION TASKS (CF. FIG. 1).

Condition Id Condition Description
Screw.Reconfig.
Precondition

’Screw S1’.M.’Ready To Op’ == assembled ∨ ready
∧ ’Screw S2’.M.’Ready To Op’ == disassembled.

Screw.Reconfig.
Postcondition

’Screw S2’.M.’Ready To Op’ = assembled ∨ ready ∧
’Screw S1’.M.’Ready To Op’ == disassembled.

Bit.De-install
Precondition

’Bit B1’.M.’Ready To Op’ == assembled ∨ ready ∧
’Bit B2’.M.’Ready To Op’ == disassembled.

Step 3: Condition analysis starts with analyzing the desired
conditions of the “sunshine case” in the BPMN model, coming
from Step 2. Then, analysis shall focus on an undesired
condition, e.g., “probability of adaptation failure or delay is
high” (cf. Fig. 2). Domain experts shall identify conditions,
including the pre- and post-conditions (cf. Tab. I) to be verified
by contracts at interfaces between stakeholder modules.

Step 4: Analyze assets, stakeholders, and dependencies
related to the conditions and identify the asset properties and
data sources required to evaluate these conditions [20].

Step 5: Validate contract conditions evaluates for the steps
in a reconfiguration process the fulfillment of pre- and post-
conditions (cf. Tab. I) to list the issues, in particular, false post-
conditions (guarantee) with true pre-conditions (assumption).

In the evaluation, we identified lines of undesired conditions
likely to contribute to an undesired outcome (cf. Fig. 2).
The combination of conditions can specify special cases that
require countermeasures, which may be expressed as a contract
for the expected behavior. In the use case context, the TAP-
CPPS approach facilitated modeling the adaptation process in
BPMN and validating contract conditions on the adaptation
process for typical reconfiguration activities, which may result
in special cases. Therefore, TAP-CPPS was found sufficient
to validate the feasibility of the adaptation goal by stepping
through typical reconfiguration chains of tasks.
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V. CONCLUSION

The Industry 4.0 vision of adaptable robot work cells [23]
requires capabilities for (i) multidisciplinary reconfiguration
based on a model with PPR dependencies; (ii) the flexible
design of reconfiguration processes according to a production
model to accommodate for new products, processes, and
production system components; and (iii) coordinating human
and machine agents. However, traditional reconfiguration pro-
cesses are (i) often workflows designed for a specific produc-
tion system and (ii) unaware of production dependencies.

In this paper, we introduced the TAP-CPPS approach that
goes beyond the state of the art [5], [7] by representing PPR
asset dependencies in a production model. This representa-
tion facilitates validating a flexible reconfiguration process
as a foundation for coordinating production reconfiguration.
Together, the TAP-CPPS production model and the reconfigu-
ration process model can represent the data required for change
planning and monitoring. Further, the TAP-CPPS knowledge
graph facilitates queries to PPR elements, their variants, and
dependencies [14]. Thus, TAP-CPPS provides the basis for
effective change coordination of human and machine agents.
An initial evaluation of the TAP-CPPS knowledge graph using
the screwing work cell use case showed promising results.
This suggests exploring its application in a broader range
of production adaptation settings that face trustworthiness
challenges to better understand its strengths and limitations.

Overall, TAP-CPPS seems well suited to enhance the trust-
worthiness of the CPPS adaptation process by supporting the
specification and validation of reconfiguration effectiveness
and mitigating associated risks. It also offers a formal repre-
sentation of PPR reconfiguration dependencies and conditions,
making it suitable for auditing industrial production processes.

Research agenda. Towards trustworthy self-adaptive pro-
duction. We plan to apply the TAP-CPPS approach for pro-
duction system reconfiguration by coordinating (i) the PPR
reconfiguration process design and validation regarding con-
tracts on dependencies in and across disciplines; and (ii) one or
more operators with tool support towards valid reconfiguration
with run-time input data. We consider investigating (i) operator
assistance with a reconfiguration dashboard (cf. Section IV);
and (ii) automating selected reconfiguration tasks towards a
self-adaptive CPPS for a suitable scope of reconfiguration.

Empirical studies. We plan to identify applicable metrics
and explore the trustworthiness, usability and usefulness, and
scalability of the TAP-CPPS approach with domain experts
in empirical studies in various production adaptation contexts.
Also, we plan to conduct quantitative evaluations to report the
results of quantitative performance analysis for TAP-CPPS.

Scalability. We plan to explore how to derive a reconfigura-
tion process from a TAP-CPPS production model for large use
cases, such as a robot for flexible use in various work cells
and lines that may require dozens of production dependencies
and a dozen change variants to the robot configuration.
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kler, “Business risk analysis of production variants considering technical
dependencies,” in Int. Conf. Busi. Inf. IEEE, Sep. 2024, pp. 178–187.

[19] Biffl, S., “Introduction to procan.do,” QSE Technical Report QSE 2025-
02, TU Wien, 2025.

[20] S. Biffl, S. Kropatschek, K. Meixner, D. Hoffmann, and A. Lüder,
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Abstract—Real-time video analytics powered by artificial 
intelligence (AI) enables public safety agents to effectively perceive 
and respond to dynamic environments. However, processing 
large-scale video streams introduces computational and latency 
challenges. This work presents a framework that combines edge 
and cloud computing to facilitate efficient AI-based processing of 
video streams for public safety applications. We evaluated the 
framework’s performance in a face recognition task by comparing 
edge and cloud processing. Our initial results demonstrate that 
edge processing achieves lower total latency compared to cloud 
processing despite higher inference times, primarily due to 
reduced transmission overhead. The framework also achieves high 
accuracy in recognition tasks, though with trade-offs in recall. 

Keywords-public safety; situational awareness; edge 
intelligence; stream analytics 

I.  INTRODUCTION

Situational awareness (SA) refers to the ability to perceive 
environmental factors, understand their significance, and 
anticipate future developments [1]. In contrast to traditional 
methods relying on radio communication and manual reporting, 
which present significant delays and inefficiencies, modern 
technologies like surveillance cameras and body-worn devices 
can enable real-time data collection and dissemination, thereby 
improving SA and decision-making [2]. 

Public safety operations require quick detection, analysis, 
and response to incidents. To comply with these requirements, 
real-time processing of video streams can be used to detect 
threats and support decision-making. While artificial 
intelligence (AI) techniques can significantly enhance this kind 
of advanced analysis, the large volumes of data to be handled 
and the high computational demand of intelligent models 
typically require cloud resources, which introduce latency due 
to data transmission and depend on reliable connectivity [3]. An 
alternative to alleviate these issues is processing AI close to the 
data source through edge intelligence, i.e., the convergence of 
AI-based task processing and edge computing. This kind of 
approach can reduce latency and bandwidth usage while 
ensuring continuity in low-connectivity environments. 
Nonetheless, the resource constraints of edge devices and 
bandwidth costs of cloud transmission demand a careful task 
distribution strategy. 

This paper addresses these issues through SAALSA [4], a 
framework designed to enable efficient, low-latency video 
analytics by combining edge and cloud computing. We 
instantiated SAALSA into a public safety scenario, including the 
real-time identification of individuals based on face recognition 
resulting from AI-based processing of video streams. We 
assessed SAALSA’s performance for this task by comparing 
edge and cloud processing in terms of latency and accuracy. Our 
preliminary findings have demonstrated the potential of edge 
intelligence to support critical decision-making in public safety 
operations. 

The remainder of this paper is organized as follows. Section 
II brings an overview of SAALSA. Section III describes a face 
recognition use case in public safety that we utilize to 
demonstrate the framework. Section IV reports a preliminary 
evaluation of SAALSA’s performance in AI-driven face 
recognition regarding edge and cloud-based processing latency 
and accuracy. Section V points out final remarks and directions 
for future work 

II. A FRAMEWORK FOR AI-DRIVEN STREAM ANALYTICS IN 
THE EDGE 

SAALSA addresses the fundamental challenge of balancing 
computational efficiency with latency requirements for AI-
based stream analytics [4]. Public safety operations often occur 
under unstable or absent network conditions, requiring solutions 
that function independently of the cloud. AI-powered video 
analytics at the edge addresses this need by directly enabling 
real-time tasks, such as object detection and face recognition, on 
local devices. This enables the provision of timely insights that 
support faster and more accurate decision-making. 

The SAALSA’s architecture, depicted in Fig. 1, allows 
distributing processing tasks across three tiers. The Data Source 
Tier captures and collects raw data (e.g., audio and video streams 
and geolocation data) from various devices. The Edge Tier 
handles initial data processing near data sources, reducing 
latency and minimizing data transmission overhead to the cloud. 
The Cloud Tier handles computationally intensive tasks and 
provides centralized coordination and storage. Unlike traditional 
cloud-based architectures that send raw data to remote servers 
for processing, SAALSA collects data from several sources, 
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processes it at the edge to reduce latency and bandwidth use, and 
offloads it to the cloud for intensive tasks or long-term storage. 
Using SAALSA, it is possible to convert real-time data streams 
into actionable insights in public safety scenarios. 

SAALSA comprises processing, management, and service 
components. Edge nodes handle streaming, detection, and 
recognition, while the cloud coordinates orchestration and 
complex analytics. Services include task scheduling, 
monitoring, multimedia storage, and user interfaces. This 
modular architecture enables adaptive, distributed video 
analytics tailored to public safety operations. 

Data flows from the Data Source Tier to the Edge Tier, 
where the Device Manager and Streaming Service, built with 
Kurento,1 handle media streaming. The Multimedia Storage 
Service records video streams and synchronizes them with the 
cloud when possible. A shared Dashboard provides real-time 
visualization with geolocation. FogFlow2 orchestrates tasks 
between edge and cloud, with the Resource Allocation Manager 
coordinating task distribution between edge and cloud tiers. The 
Intelligence Task Service performs AI-driven task processing by 
using GStreamer3 and DeepStream,4 while Qdrant5 supports 
face recognition. Finally, the Data Communication Manager 
handles inter-tier communication and data synchronization. 

SAALSA implements dynamic task distribution based on 
computational requirements and network conditions. Initial 
processing tasks, such as detection and tracking, occur at the 
edge to minimize latency. Conversely, intensive tasks, including 
feature extraction and database queries, can be offloaded to the 
cloud when network conditions permit and computational 
demands exceed the edge’s capabilities. 

1 https://kurento.openvidu.io/
2 https://fogflow.readthedocs.io/ 
3 https://gstreamer.freedesktop.org/ 
4 https://developer.nvidia.com/deepstream-sdk 

III. FACE RECOGNITION USE CASE IN PUBLIC SAFETY

We implemented a face recognition pipeline to demonstrate 
the feasibility of SAALSA. This use case represents a common 
public safety requirement where officers need to rapidly identify 
individuals in the field. Detected faces are first matched locally; 
if no match is found, embeddings are sent to the cloud. Results 
are annotated on-screen, enabling efficient, low-latency 
recognition adapted to hardware constraints. 

The pipeline comprises three sequential stages that process 
video frames for accurate face recognition. Face detection 
employs the NVIDIA FaceNet model6 to extract faces within 
bounding boxes [5]. Next, the FaceNet convolutional neural 
network [6] performs feature extraction, generating a feature 
vector (embedding) that maps each face to a compact Euclidean 
space. Finally, face recognition is achieved by comparing the 
extracted embedding to those stored in a vector database. 
Considering the incident response scenario, we adopted high-
performance models that strike a balance between robustness 
and low latency, meeting the resource constraints of edge 
environments and the variability of public safety conditions. 

Given the unpredictable nature of public safety scenarios, we 
also implemented an accumulation strategy to improve 
recognition accuracy. The strategy operates by assigning unique 
identifiers to each detected face, extracting embeddings, and 
identifying the closest match in the database for each frame. 
Recognition results are stored for N frames, after which the most 
frequent recognition is selected, and an average distance is 
computed for the final decision. This strategy prioritizes 
precision over recall, a crucial feature for public safety 
applications where false positives can have severe 
consequences. 

IV. EVALUATION

Experimental setup. We evaluated SAALSA using two 
configurations representing typical deployment scenarios. The 
edge configuration utilized an NVIDIA Jetson Nano7 4 GB 
(ARM Cortex-A57, 128 CUDA cores). The cloud configuration 
utilized a server equipped with an Intel i5-9300H processor, 64 
GB of RAM, and a GTX 1650 GPU. 

The evaluation considered streaming a recorded video from 
a simulated device to the edge and the cloud (see Fig. 2). The 
stream, sent via GStreamer using the RTSP protocol, was 
processed by a DeepStream-based face recognition pipeline 
(Section III), which used Qdrant for vector-based identity 
retrieval. Both setups used identical versions of DeepStream 
(6.0) and Qdrant (1.12.1), with consistent configurations and 
quantization levels: INT8 for detection and FP32 for embedding. 
We implemented tracking using NVIDIA’s discriminative 
correlation filter. While we are aware that the hardware used in 
our evaluation does not currently represent the state-of-the-art of 

5 https://qdrant.tech/ 
6 https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/facenet 
7 https://developer.nvidia.com/embedded/jetson-nano 

Figure 1. Main components of the SAALSA framework. 
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specialized AI hardware, we aimed to provide valuable insights 
into trade-offs between edge and cloud processing. 

In addition to edge-only and cloud-only experiments, we 
evaluated a hybrid configuration where detection is performed 
at the edge, and only cropped faces are sent to the cloud for 
recognition. We measured transmission times for both full 
frames (1920 × 1080, RGB) and cropped faces (160 × 160), 
encoded in base64. We also established a secure Tailscale8 
network to simulate realistic cloud latency. 

It is worth mentioning that our study focused on the overall 
pipeline processing rather than the latency due to transmitting 
data, as network conditions can introduce variability that must 
be accounted for in real-world deployments. Future work can 
explore controlled environments with dedicated network 
configurations to provide a more precise evaluation of 
transmission delays in edge and cloud scenarios. 

Data sets. We constructed the dataset used in the evaluation 
from two publicly available face recognition datasets: CelebA 
[7] and Labeled Faces in the Wild (LFW) [8]. CelebA comprises
10,177 individuals, while LFW includes 5,749 individuals. For
this study, we randomly selected 5,000 individuals from CelebA
and 800 individuals from LFW, ensuring each individual had
one to four images. This selection resulted in a total of 5,800
individuals and 9,199 images. Additionally, four volunteers
from our research group contributed three images each, captured 
from different face angles (frontal and both sides profiles),
adding 12 more images to the experimental dataset. We used two 
videos: Video V1 (duration 1’45”) features a single individual
per frame for accurate timing analysis, and Video V2 (duration
3’10”) features the four volunteers in dynamic outdoor settings
to assess the model’s robustness under real-world conditions.

A. Processing Time Assessment
The first experiment evaluated the computational cost of

each stage in the face recognition pipeline, aiming to identify 
performance bottlenecks. This experiment utilized Video V1, 
which includes one person per frame, enabling consistent 
measurement across all frames. We timed four tasks: (i) face 
detection, (ii) face tracking, (iii) embedding extraction, and (iv) 
database query, on both edge and cloud environments. As shown 
in Table I, all stages were faster in the cloud. Embedding 
extraction was the most expensive task, especially on the edge 
(288.37 ms per frame), due to a non-optimized ONNX model9 
that did not fully exploit DeepStream’s acceleration. In contrast, 
face detection used a native DeepStream model, enabling much 
faster inference. Database queries also exhibited higher latency 
on the edge, primarily due to slower communication between 

8 https://tailscale.com/

DeepStream and Qdrant, limited memory bandwidth, and lower 
processing capacity. 

Table II summarizes the total frame processing time. Edge 
processing had lower overall latency than cloud, despite slower 
inference. The hybrid approach, which balanced computation 
and communication, was slightly slower than the edge-only 
approach. These results reflect the trade-offs between 
computation and transmission, as well as the benefits of 
minimizing unnecessary data transfer. 

B. Recognition Assessment
The second experiment evaluated the face recognition

performance by using Video V2. To analyze the accuracy of the 
system, we employed precision and recall metrics, considering 
two parameters: the number of accumulated frames used to 
confirm an identity and a Euclidean distance threshold T that 
defines a valid match. Recognition was considered correct (true 
positive, TP) when the average distance between the detected 
face and its closest match in the database was below T, and the 
predicted identity matched the ground truth. Conversely, a false 
positive (FP) occurred when the distance was acceptable, but the 
identity was incorrect, while a false negative (FN) indicated a 
correct identity with a distance above the threshold. Precision is 
computed using Equation 1, while recall is computed using 
Equation 2: 

Precision = TP
TP + FP

(1) Recall = TP
TP+FN

(2) 

According to the results shown in Fig. 3, precision reached 
100% upon accumulating N = 110 frames and T = 0.8, indicating 
no false positives. However, recall remained at 0.39 due to a high 
false negative rate. This configuration prioritizes accuracy over 
coverage and is suitable for public safety applications where 
minimizing false alarms is crucial. We observed that recall 
improved significantly when we relaxed the threshold; however, 
this came at the cost of reduced precision, with an increase in 
false positives. This trade-off illustrates the balance between 
identifying as many individuals as possible and maintaining a 
high level of confidence in each recognition. These findings 

9 https://onnx.ai/ 

Figure 2. Face recognition setup used in the evaluation. 

TABLE I 
AVERAGE PROCESSING TIME FOR EACH PIPELINE OPERATION 

Operation Cloud Edge 
Face detection 4.73 ± 1.02 ms 47.27 ± 1.96 ms 
Face tracking 2.47 ± 2.31 ms 10.48 ± 11.07 ms 
Embedding extraction 8.85 ± 4.14 ms 288.37 ± 10.58 ms 
Database query 7.05 ± 1.26 ms 29.87 ± 3.20 ms 

TABLE II 
TOTAL PROCESSING TIME PER FRAME 

Metrics Edge Hybrid Cloud 
Average frame processing 
time 

375.99 ms 65.74 ms 23.20 ms 

Average frame 
transmission time 

108.85 ms* 606.75 ms 3,019.42 ms 

Total processing time per 
frame 

484.84 ms 672.49 ms 3,042.62 ms 

*Time to transmit a Full HD frame via Gigabit Ethernet 
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suggest that in public safety scenarios, where reliability is 
paramount, using stricter parameters can help ensure that only 
highly confident identifications are acted upon, even if fewer 
matches are detected overall. 

V. CONCLUSION

This work presented preliminary results for an edge-cloud 
video analytics framework tailored to public safety applications. 
Our initial experiments demonstrated the feasibility of edge 
processing for real-time video analytics, with edge deployment 
achieving the lowest total latency despite computational 
constraints. The face recognition use case illustrated the 
framework’s potential while highlighting key trade-offs between 
accuracy and performance. The accumulation strategy 
successfully eliminates false positives, which is crucial for 
public safety applications, though at the cost of reduced recall. 

The preliminary evaluation revealed several key insights into 
the performance of edge-cloud video analytics. Despite 
computational constraints, edge processing achieves lower total 
latency due to reduced transmission overhead, challenging the 
assumption that cloud processing is always superior for AI-

driven tasks. The accumulation strategy effectively eliminates 
false positives but at the cost of increased false negatives, 
representing a critical trade-off in public safety applications. 
Additionally, selective offloading of computationally intensive 
tasks shows promise but requires careful consideration of 
network conditions and latency requirements. 

Our future work will address current limitations through 
comprehensive evaluation and optimization, considering 
modern hardware, such as NVIDIA Jetson Orin and Raspberry 
Pi 5, in the evaluation. Future evaluation will include large-scale 
testing with realistic public safety scenarios and dynamic task 
distribution algorithms for optimal edge-cloud task allocation. 
An energy efficiency analysis will also examine the implications 
for power consumption and battery life. 
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Abstract—Modern neural networks often rely on 
overparameterized architectures to ensure stability and accuracy, 
but in many real-world scenarios, large models are unnecessarily 
expensive to train and deploy. This is especially true in Internet of 
Things (IoT) and edge computing scenarios, where computational 
resources and available memory are severely limited. Reducing 
the size of neural networks without compromising their ability to 
solve the target task remains a practical challenge, especially when 
the goal is to simplify the architecture itself, not just the weight 
space. To address this problem, we introduce ImproveNet, a 
simple and general method that reduces the size of a neural 
network, without compromising its ability to solve the original 
task. The approach does not require any pre-trained model, 
specific architecture knowledge, or manual tuning. Starting with a 
standard-sized network and the standard training configuration, 
ImproveNet verifies the model's performance during training. 
Once the performance requirements are met, it reduces the 
network by resizing feature maps or removing internal layers, thus 
making it ready for AI-on-the-edge deployment and execution. 

Index Terms—IoT, Edge AI, Deep Model Optimization, Neural 
Network Compression 

I.  INTRODUCTION

The Internet of Things (IoT) concept, first introduced by 
Ashton in 1999, describes a system in which physical objects 
equipped with sensors are connected to the Internet and used to 
collect data from the environment. Since then, the idea has 
evolved rapidly and today includes billions of devices that can 
communicate with each other and exchange information in real 
time. There are currently over seven billion IoT devices in the 
world, and this number is expected to exceed twenty billion in 
the coming years. 

As the number of connected devices increases exponentially, 
the amount of data generated is also growing. Although this data 
may contain useful information, it is often affected by noise, 
redundancies or errors [1]. As a result, traditional processing 
methods are no longer sufficient and increasing machine 
learning techniques are being used to extract knowledge from 
collected data. However, running machine learning models 
directly on IoT devices is extremely complex. These systems, 
also called edge devices, are characterized by limited resources, 
limited memory, low computational power, and stringent energy 
constraints. For these reasons, running large models locally (on-
device) is often impractical. 

An alternative solution could be to send the data to a remote 
server (cloud), where heavier models can be run without 
hardware constraints. However, in many real-world scenarios 
this option is limited or unacceptable, either for latency reasons 
(such as in real-time applications) or for privacy reasons (in 
healthcare, industrial, or personal contexts). In these scenarios, 
keeping the computation local is the only sustainable choice, 
provided that the model is light enough to be run safely and 
efficiently on the device. 

To address this trend towards AI-on-the-edge (a.k.a. Edge 
AI), we propose ImproveNet, a simple method that reduces the 
size of a neural network directly during training, while ensuring 
that the model maintains the required performance. The 
approach starts with complete architecture, which is then 
progressively reduced as training progresses. 

Block removal and filter reduction are the two structural 
alterations that lead to reduction. Removing a block means 
eliminating entire sequential portions of the network, each 
composed of one or more convolutional or linear layers, with a 
direct impact on the depth of the model. Filter reduction, on the 
other hand, consists in decreasing the number of output channels 
in the convolutional or dense layers, with the effect of reducing 
the width of the intermediate representations. Both operations 
allow us to simplify the architecture in a controlled way, keeping 
the capacity of the model within acceptable thresholds. 

In the following sections, we describe in detail how this 
strategy works and analyze its application in different scenarios. 
In particular, Section II presents the main existing works 
dedicated to the reduction of neural networks through pruning, 
quantization or architectural simplification. Section III 
introduces the logic of ImproveNet and how reduction 
operations are integrated into the training cycle. Finally, in 
Section IV, we report the experimental results obtained by 
applying the method to the ESA-ADB dataset, using two 
autoencoders, one linear and one fully convolutional. 

II. RELATED WORKS

In our application context, oriented to industrial scenarios 
and constrained by efficiency and compatibility requirements 
with edge systems, requirements analysis has led to narrowing 
the focus to fully convolutional or linear networks. Despite this 
choice, the comparison with existing compression techniques 
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will be conducted in a fair way, highlighting for each approach 
the context of validity and the reference architectures to which it 
applies. Several methods have been proposed to reduce the size 
and complexity of neural networks, particularly in applications 
with limited computational or memory resources, such as 
embedded or IoT devices. Most existing techniques are based on 
static approaches, including quantization [2], pruning [3], and 
knowledge distillation [4] [5], and are typically applied after 
training. Table 1 summarizes the main differences between 
ImproveNet and other model compression techniques, i.e., 
Structured Pruning, Unstructured Pruning, and Distillation. 

III. IMPROVENET

Unlike traditional techniques based on neural importance, 
induced sparsity in weights, or post-training strategies, 
ImproveNet takes a completely different approach. The method 
acts directly during the training process, progressively reducing 
the network only when performance reaches predefined 
thresholds. This reduction occurs without requiring a fully 
trained model or the use of external heuristics. 

The method takes as input the initial model together with all 
the components needed for training, such as the dataset, the 
optimizer, the metrics estimator, the loggers, and the 
performance constraints to be achieved such as the loss ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
and the accuracy ℳ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . At regular intervals, the optimizer 
checks whether the current model 𝑀𝑀 satisfies the target 
requirements. These requirements are expressed as constraints 
on global quantities, such as the loss ℒ(𝑀𝑀) and the accuracy 
metric ℳ(𝑀𝑀), as formalized in the following equation 

ℒ(𝑀𝑀) ≤ ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⋀ ℳ(𝑀𝑀) ≥ℳ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

If the conditions are satisfied, ImproveNet applies a 
structural transformation to the network, choosing between 
reducing the number of channels and removing an internal 
block.  

The type of reduction applied is managed dynamically based 
on the size of the current model compared to the initial one. The 
first two attempts apply a channel reduction and a simple block 
removal respectively. After this, the method computes the 
reduction ratio between the current network and the original one. 
If this ratio is still higher than the first threshold, priority is given 
to block removal, alternating every three attempts with a filter 
reduction. When the ratio drops below the first but above the 
second threshold, the two types of reduction are alternated more 
frequently (once every two attempts). Finally, only channel 
reduction is performed below the second threshold, preventing 
further excessive structural eliminations. 

Using this technique, the model can gradually reduce while 
preserving its structural balance and avoiding excessive 
compression in subsequent training phases. To avoid repeated or 
harmful activities, the system also considers the number of 
reductions performed previously. 

An additional protection mechanism is activated in case the 
network starts to stagnate. If the model does not converge within 
a certain number of iterations and the reduction attempts exceed 
half of the maximum expected number, ImproveNet performs a 
controlled reallocation of the architecture.  The goal is to prevent 
excessive compression from trapping the model in non-ideal 
local minima.  

Finally, if at the end of a reduction cycle the model fails to 
stably maintain the convergence conditions, the system restores 

TABLE 1 - COMPARISON OF MODEL COMPRESSION TECHNIQUES 

Property ImproveNet Structured Pruning 
 [7] [8] 

Unstructured Pruning 
[9] [10] Distillation [11] 

Reduction type  Structural Structural Sparse Knowledge transfer 

Granularity Blocks, Channels, Neuron Filters Weights - 

Inference time Reduced Reduced Same Reduced 

Memory footprint Reduced Reduced Same Reduced 

Compression ratio High High Same Reduced 

Performances 
retention Preserved Not guaranteed Not guaranteed Teacher-dependent 

Loss stability Controlled Requires retraining Requires retraining Regularized 

Training Time High High Low Low 

Architecture 
agnostic Yes No No Yes 

Self contained Yes Yes Yes No 

Repeatability Yes 
[7] Available in Caffe (Python) 

[8] Available in PyTorch 

[9] Not available 

[10] Official not available
(3rd part) 

[11] Official not available
(3rd part) 

Neural Network 
Supported Linear & Fully Convolutional  CNN CNN Any 
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the last effective configuration, i.e. the last architecture that 
satisfied the performance constraints. An alternative strategy is 
then adopted, for example switching from block removal to filter 
reduction, or vice versa. This rescue mechanism ensures that the 
compression process does not irreversibly compromise the 
optimization capacity of the network.  

The described structural transformations are based on the 
reduction of the number of channels (i.e. of input and output 
channels) and on the removal of entire blocks, which include 
sequences of convolutional or linear layers. Both operations take 
into account both the number of attempts already made and the 
size of the current model compared to the original one, Figure 1 
shows the full workflow underlying the ImproveNet procedure, 
highlighting how the system monitors the training progress and 
applies structural reductions when the target conditions are met. 

IV. PRELIMINARY RESULTS

To evaluate the performance of ImproveNet, one approach 
could have been a comparison with the methods in Table 1, but 
since most of them did not provide official source code or were 
not implemented in PyTorch or the code was available but did 
not work properly, we decided to test our method using ESA-
ADB  dataset [6], a recognized benchmark for multivariate time-
series anomaly detection based on real data from space missions. 
We chose this dataset because it is representative of an edge 
environment where there is a need for small and compact 
models, suitable for resource constrained environments and a 
real-time operational context. The dataset is composed of three 
missions from which we selected Mission 1, composed of 76 
channels, 58 of which are target channels and are splitted into 4 
subsystems. Mission 1 includes 200 annotated events where 118 

are anomalies, 78 nominal rare events (atypical but expected 
telemetry variations), and 4 communication gaps. We conducted 
experiments on a lightweight subset consisting of channels 41 to 
46 as suggested by [6]. These channels were selected because 
they contain interesting but manageable anomalies, are useful 
for monitoring the health of the satellite, are relatively easy to 
visualize and analyze manually, and are independent of other 
channels or subsystems. The data were normalized in the range 
[0, 1] using a Min-Max scaling channel by channel, to ensure 
uniformity between the signal scales and avoid distortions in the 
calculation of the loss function. 

The data were split respecting the temporal order of the 
observations where 70% was used for training, while the 
remaining 30% was divided into equal parts for validation and 
testing. The anomalous pattern is present exclusively in the test 
set, to train the model on the reconstruction of normal 
conditions. The time series were then transformed into fixed-
length windows of 50 samples, with a stride of 50, obtaining 
sequences of the type (batch, 50, 6), where 6 represents the 
number of channels.  

Training was conducted for a maximum of 100 epochs, using 
the Adam optimizer with a learning rate of 0.0001. The objective 
function used is a weighted combination of mean squared error 
(𝑀𝑀𝑀𝑀𝑀𝑀) and mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀), defined as 

ℒ = 𝛼𝛼 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀 + (1 − 𝛼𝛼) ∙ 𝑀𝑀𝑀𝑀𝑀𝑀 

where (𝛼𝛼 = 0.5) represents the balance between the two 
components. This formulation allows to penalize both large 
point errors (that the 𝑀𝑀𝑀𝑀𝑀𝑀 effectively intercepts) and moderate 
diffuse errors (captured by the 𝑀𝑀𝑀𝑀𝑀𝑀), resulting particularly 
suitable for anomaly detection tasks. 

We considered a Fully Convolutional Autoencoder (FCAE) 
and a Linear Autoencoder (LAE). ImproveNet was applied to 
these models, which operated during training by progressively 
reducing their structural complexity through functional criteria, 
generating compressed versions capable of maintaining 
comparable performance in terms of predictive accuracy. 

All the experiments were run using an Intel core I5-
13600KF, 32 GB of RAM and an RTX 3060 with 12 GB of 
VRAM. The results obtained show a significant reduction in the 
size of the models, in the case of the convolutional autoencoder, 
as shown in Table 2, the number of parameters goes from 
130,886 in the original version to only 6,734 in the compressed 
network, with a reduction ratio of  94.85%, a reduction in the 
inference  time from 3.4 ms to about 1 ms (3.4x faster) and a 
reduction in memory footprint of 94.07%. Similarly, in the linear 
model, as shown in Table 2, the parameters drop from 244,972 
to 15,284 (93.76% reduction), and the inference time is reduced 
from 1.56 ms to about 0.15 ms (10.4x faster) and a memory 
footprint reduced of 93.37%. 

Figure  and Figure  display anomaly detection results on a 
test sequence for linear autoencoder and convolutional models, 
respectively. In both situations, it is noted that the smaller 

Figure 1 - Schematic representation of the ImproveNet workflow. 
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version of the network (the lower time series in both images), 
parameters. For the convolutional model, the compressed 
obtained using ImproveNet, retains the ability to accurately 
detect abnormal patterns, despite the reduction in the number of 
network shows a slightly lower reconstruction quality than the 
original network, but the ability to detect anomalies remains 
unchanged, with comparable predictive performances. 
Similarly, in the case of the linear autoencoder, a slight 
degradation of the reconstruction is observed, but the anomaly 
is still correctly identified. 

V. CONCLUSIONS

In this paper, we demonstrated the effectiveness of our 
approach for convolutional and linear networks in AI-on-the-
edge scenarios where the size of the model is a central constraint. 
The ability of ImproveNet to progressively reduce architectural 
complexity while maintaining stable performance makes it 
particularly suitable for use in systems where the trade-off 
between accuracy and computational efficiency is essential. 

In addition to the space/satellite, similar applications are 
found in sectors such as autonomous robotics, distributed 
industrial monitoring systems, wearable biomedical devices, and 
IoT infrastructures, all of which share the need to run neural 
models under limited computation and energy constraints. 

A future development consists of directly integrating the 
compressed models generated by ImproveNet into real devices, 

evaluating their behavior on embedded hardware and low-power 
microcontrollers, in unsimulated operating conditions. 

ACKNOWLEDGMENT 
The work of Adriano Puglisi is supported by Thales Alenia Space 

and Regione Lazio, through the fellowships (CUP B83C23001060009), 
(SIGEM 22066DP000000035) AI-based digital industrial processes for 
space systems production workflow. 

REFERENCES 

[1] H. N. W. R. C. W. W. H. Z. Z. &. V. A. V. Dai, "Big data analytics for
large-scale wireless networks: Challenges and opportunities," ACM
Computing Surveys (CSUR), pp. 1-36, 2019.

[2] B. K. S. C. B. Z. M. T. M. H. A. .. &. K. D. Jacob, "Quantization and
training of neural networks for efficient integer-arithmetic-only 
inference," Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp. 2704-2713, 2018.

[3] H. K. A. D. I. S. H. &. G. H. P. Li, "Pruning filters for efficient convnets,"
arXiv preprint arXiv:1608.08710, 2016.

[4] T. G. I. &. S. J. Chen, "Net2net: Accelerating learning via knowledge
transfer," arXiv preprint arXiv:1511.05641, 2015.

[5] R. C. a. A. N.-M. C. Buciluˇa, "Model compression," Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery
and data mining, p. 535–541, 2006.

[6] K. H. C. A. J. R. B. N. J. L. D. .. &. D. C. G. Kotowski, "European space
agency benchmark for anomaly detection in satellite telemetry," arXiv
preprint arXiv:2406.17826, 2024.

[7] J. H. Z. H. Z. H. Y. X. C. W. W. J. &. L. W. Luo, "ThiNet: Pruning CNN
filters for a thinner net," IEEE transactions on pattern analysis and 
machine intelligence, vol. 41, no. 10, pp. 2525-2538, 2018.

[8] Y. K. G. D. X. F. Y. &. Y. Y. He, "Soft filter pruning for accelerating 
deep convolutional neural networks," arXiv preprint arXiv:1808.06866, 
2018.

[9] S. &. B. R. V. Srinivas, "Data-free parameter pruning for deep neural
networks," arXiv preprint arXiv:1507.06149, 2015.

[10] S. P. J. T. J. &. D. W. Han, "Learning both weights and connections for
efficient neural network," Advances in neural information processing 
systems, vol. 28, 2015.

[11] G. V. O. &. D. J. Hinton, "Distilling the knowledge in a neural network,"
arXiv preprint arXiv:1503.02531, 2015.

TABLE 2 – COMPARISON BETWEEN THE LARGE AND THE REDUCED FULLY 
CONVOLUTIONAL AUTOENCODER (FCAE) AND LINEAR AUTOENCODER 

(LINEAR AE) ARCHITECTURES 

Figure 2 - Anomaly detection on a test sequence by the original convolutional model (the upper one) and reduced one (the lower one). 

Figure 3 - Visual comparison between the original linear autoencoder (the upper one) and the reduced linear autoencoder model (the lower one). 

Total Param 
# 

CPU Inference Time 
(ms) 

Size 
(MB) 

FCAE 130,886 3.4073 0.5046 

Reduced 
FCAE 6,734 1.019 0.0299 

Linear AE 244,972 1.5676 0.9397 

Reduced  
Linear AE 15,284 0.1508 0.0623 
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Abstract—Numerical programs are typically conceived with
real numbers in mind. However, programming languages operate
at a lower abstraction level with fixed-width machine arithmetic.
This abstraction gap limits the scope of legal arithmetic opti-
mizations in compilers, in particular when targetting hardware.

This work introduces a set of MLIR dialects that explicitly
separate concerns between real-valued computation and low-level
arithmetic representation. The RealArith dialect captures math-
ematical intent, enabling algebraic rewrites and approximation-
aware transformations. The FixedPointArith dialect expresses
quantized arithmetic with fine-grained control over bit widths.
This separation enables arithmetic optimizations beyond those
supported by conventional compilers. An example end-to-end
lowering flow performs polynomial approximation, then gener-
ates fixed-point Horner-form architectures tailored for hardware
synthesis. Early hardware results on signal processing bench-
marks demonstrate the potential of this approach.

Keywords—MLIR, arithmetic optimization, fixed-point, poly-
nomial approximation, high-level synthesis

I. INTRODUCTION

Numerical programs are often written under the implicit as-
sumption that operations behave like those over real numbers.
However, modern compiler infrastructures, including MLIR,
typically operate on machine-level formats such as fixed-width
integers and floating-point numbers (IEEE754). These formats
impose rigid evaluation semantics, limiting the set of legal
arithmetic transformations.

For example, while addition is associative in real arithmetic,
it is not in floating point. Similarly, expression fusion or
algebraic rewrites that are mathematically valid may become
unsafe or imprecise when executed with finite-precision types.
These constraints hinder possible optimizations, particularly
in domains like signal processing, scientific computing, and
machine learning, where computations follow well-defined
mathematical patterns such as matrix multiplication (GEMM),
quantization, sparse accumulation, activation functions, or
transcendental operations. These patterns are often amenable
to algebraic simplification or approximation before being low-
ered to low-level arithmetic circuits, where further hardware-
specific rewrites such as operator specialization and bitwidth
tuning can be applied.

When compiling to hardware, such limitations can and
should be relaxed. Hardware offers the freedom to implement
arithmetic operators with arbitrary bit widths and optimized
datapaths. Given the ability to tune precision and layout at
the circuit level, designers can trade off accuracy, and area
according to application needs. To fully exploit this flexibility,
compiler flows must reason not only about bits, but also about
the mathematical semantics of computation.

The Multi-Level Intermediate Representation (MLIR) [3]
offers a promising foundation for building such flows. Orig-
inally developed to improve the compilation of machine-
learning models, MLIR now also serves as a foundation
for hardware-oriented compiler projects such as CIRCT1

and Dynamatic2. Its extensible infrastructure enables modular
modeling of programs across abstraction levels. In MLIR,
these levels are described as dialects, each of which defines
an Intermediate Representation (IR) with its own operations,
types, and transformation rules. However, existing MLIR di-
alects remain tightly bound to machine arithmetic and lack a
systematic way to express real-valued computation or reason
about approximation.

This work introduces an arithmetic-aware MLIR flow that
bridges high-level mathematical intent and hardware-oriented
representation. Our contributions include two dialects with
transformation passes and lowerings for arithmetic optimiza-
tion and hardware generation:

• RealArith represents computations over real numbers,
enabling semantic-preserving rewrites and symbolic ap-
proximation control.

• FixedPointArith expresses quantized arithmetic with
precise control over fixed-point types and is designed to
target hardware synthesis.

Building on these dialects, we implement a full low-
ering pipeline that transforms real-valued expressions into
hardware-oriented fixed-point arithmetic. The pipeline per-
forms approximation using external tools such as Sollya [1]
and FloPoCo [2], generating Horner-form evaluators with
precision-tuned datapaths. This enables the synthesis of op-
timized arithmetic accelerators directly from high-level math-
ematical IR. Our contributions are as follows:
(1) We design and implement the RealArith and

FixedPointArith MLIR dialects to support multi-
level arithmetic reasoning and transformation.

(2) We develop an approximation-aware lowering pipeline
that translates real expressions into fixed-point arithmetic
using Sollya and FloPoCo.

(3) We generate precision-tuned, pipelined Horner architec-
tures, suitable for RTL and HLS-based synthesis.

(4) We demonstrate early hardware results on signal pro-
cessing benchmarks, where our approach enables trade-
offs between memory footprint and arithmetic complexity
under an accuracy budget.

1https://circt.llvm.org/
2https://dynamatic.epfl.ch/
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II. BACKGROUND

A. Multi-Level Intermediate Representation (MLIR)

MLIR provides an extensible infrastructure for building
compiler pipelines with multiple abstraction levels. Its core
abstraction, the dialect, allows different computational mod-
els to coexist, enabling progressive lowering from high-level
semantics to hardware-ready representations. Projects such as
CIRCT and Dynamatic extend MLIR for hardware synthesis,
motivating our use of dialects to capture arithmetic intent
across levels of precision and abstraction.

B. Functional Audio Stream (FAUST)

Faust [5] is a domain-specific language for real-time digital
signal processing, making it well-suited to capture the associ-
ated mathematical intent. It adopts a functional programming
model and supports multiple backends, including C++, LLVM
IR, and hardware targets. To enable FPGA deployment, the
Syfala toolchain [6] compiles Faust-generated C++ via Vitis
HLS, producing hardware for real-time audio. More recently,
an MLIR backend has been introduced, enabling lowering of
Faust programs to hardware-oriented IR flows.

C. Floating-Point Cores (FloPoCo)

FloPoCo is an open-source tool for generating parameter-
ized arithmetic cores, particularly optimized for FPGA targets.
Internally, FloPoCo is structured around a clear separation of
concerns between high-level arithmetic modeling, such as real-
valued polynomial and piecewise approximations, low-level
datapath construction, including components like bit heaps,
and target-specific mapping to FPGA resources. While this
philosophy guides its architecture, these layers are currently
intertwined in implementation and not explicitly exposed,
making them difficult to access or reuse from external tooling.

These internal abstractions align naturally with MLIR’s
dialect model. Our work seeks to expose each layer as an
explicit dialect, making FloPoCo’s arithmetic reasoning and
circuit synthesis capabilities more accessible and interoperable
within MLIR-based hardware flows.

D. Polynomial Approximations and Horner Architectures

Polynomial approximation is a classical technique that en-
ables efficient evaluation of functions using only additions
and multiplications. This topic has been well studied in the
literature: textbooks [2], [4] detail both the mathematical
foundations and implementation strategies, including range
reduction and hardware-oriented considerations.

polynomial coefficient table

× + × + × +
S̃2 S̃1

C0C1C2C3

X

A
α

Y
Ỹ2 Ỹ1

Ỹ0 = Y

final round

S̃0
R

Fig. 1: Horner-form evaluator for degree-3 polynomials.

A univariate polynomial p of degree d over a real variable
X has real-valued coefficients Ci ∈ R. The Horner evaluation

scheme is often used, since it involves only one multiplication
per coefficient:

p(X) = C0 +X(C1 + · · ·+X(Cd−1 +XCd))). (1)

Figure 1 represents a piecewise polynomial evaluator the
fixed-point architecture for evaluating degree-3 polynomials
using Horner’s method. The input X is decomposed into
two parts: the most significant α bits, denoted A, addresses
a coefficient table holding 2α polynomials. The remaining
wX−α bits, denoted Y , serve as the local offset for evaluation
within the selected sub-interval.

In a fixed-point implementations (Figure 1), the smallest
possible format of each coefficient Ci can be derived from the
function and the accuracy constraints. Similarly, each Horner
step may use a truncation Ỹi of Y to minimize the size of the
corresponding multiplier [2] – this is implemented in FloPoCo.

The segmentation parameter α introduces a trade-off: in-
creasing α reduces the required polynomial degree and hence
arithmetic cost, but exponentially increases memory usage due
to the 2α coefficient sets. This trade-off must be co-optimized
based on implementation constraints. MLIR provides a suit-
able infrastructure to capture this trade-off explicitly, enabling
lowering strategies or automated heuristics to tune the arith-
metic / memory balance in the generated hardware.

III. END-TO-END COMPILATION FLOW

A. System Integration Overview

tensor
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C++
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Fig. 2: Overview of the proposed arithmetic dialects and the high-level
synthesis toolchain.
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Fig. 3: From real-valued audio signals to synthesizable RTL: multi-intent arithmetic dialects and transformation passes.

Figure 2 illustrates the integration of our arithmetic-aware
flow within a high-level synthesis toolchain. While the diagram
emphasizes signal processing use cases, the flow is designed
to accommodate a broader range of inputs, such as AI models
or polyhedral C++ code. Figure 2- A and - B denote baseline
that bypass the proposed optimizations.

B. Multi-Level Arithmetic Dialects

We introduce two MLIR dialects that reflect distinct levels
of arithmetic abstraction. The RealArith dialect operates
over mathematical real numbers and supports symbolic expres-
sions with both algebraic and transcendental operations. As
illustrated by Figure 3- B , it introduces the machine_repr
operation, which defines the transition point from infinite-
precision real arithmetic to a concrete fixed-point format
suitable for implementation. The FixedPointArith dialect
encodes quantized fixed-point arithmetic with operations. This
dialect serves as an intermediate representation amenable to

hardware synthesis and lowers directly to the core MLIR
dialects (Arith).

C. Transformation and Pass Pipeline

Figure 3 illustrates the transformation pipeline across inter-
mediate representations in our flow. The process begins from
high-level real-valued expressions written in DSLs like Faust,
which are then mapped to the RealArith dialect. Approx-
imation is triggered by the insertion of a machine_repr
operation, introduced by the faust-opt pass (Figure 3-
B ). This operation marks the boundary between real-valued

computation and fixed-point implementation, as indicated by
the absence of the R badge. The LSB of its return type
determines the desired output precision.

This request is handled by a transformation pass that per-
forms symbolic approximation using the Sollya library. The
result is a fixed-point polynomial architecture expressed in
Horner form. The corresponding evaluator is emitted with our
FixedPointArith dialect, paired with SCF (Structured
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Fig. 4: Uniform piecewise polynomial approximations.

Control Flow) Dialect to implement a case-based memory
access over 2α coefficient sets.

The generated architecture corresponds to the fixed-point
Horner evaluator depicted in Figure 1. The fixed-point co-
efficients ci are defined by the values yielded in each
scf.index_switch case. Since each of the 2α segments
requires a polynomial of degree d, each case yields d + 1
constants, totaling (d + 1) · 2α coefficients. The truncated
inputs Ỹi are propagated through the stages, visible in the
IR as shared extract and rescale operations. Adder
output sizes S̃i result from precision growth at each stage and
correspond to the bitwidths seen in the intermediate addition
results on lines %88–%90. Eventually, to target hardware
synthesis tools, the IR is lowered to core dialects: Arith, CF,
and Builtin. This includes scaling fixed-point into integers
and converting control constructs into the CF dialect required
by CIRCT or Dynamatic. Once in this form, downstream tools
such as dynamatic-opt and export-hdl can be used to
generate synthesizable HDL.

IV. RESULTS DISCUSSIONS

A. Experimental Setup and Methodology

We evaluate our compilation flow on a ring modulation
algorithm expressed in Faust. The computation consists of the
product of two sine waves, y(t) = sin(2πf1t) · sin(2πf2t),
chosen for its relevance to real-time audio processing and
the presence of a nonlinear transcendental function. Two
baselines are considered (see two first rows of Table I).
The first uses Syfala, which compiles Faust-generated C++
through Vitis HLS to produce synthesizable RTL (see Fig-
ure 2- B ). The second bypasses our proposed optimiza-
tions by lowering Faust-generated MLIR directly to the
arith dialect in floating point, and applies the mlir-opt
-test-math-polynomial-approximation pass to
expand transcendental functions into f32-based polynomial
approximations(see Figure 2- A ). Figure 4 shows two of our
polynomial approximation configurations after range reduction
to [0, 1) of a subset of a full period. The visible alternation of
segments reflects the piecewise scheme. The degree-16 case
needs to store 21 ·(16+1) = 34 coefficients, likely wider than
the 25 · (4 + 1) = 160 narrower ones of the degree-4 case.

B. Hardware Results

Table I reports hardware usage across methods on the
xc7z020-1clg400c FPGA. DSP usage increases with polyno-
mial degree due to deeper pipelines and wider coefficients,
which result in more arithmetic stages and facilitate automated

TABLE I: Resource usage across methods on xc7z020 FPGA.

Method (output precision) Poly. degree Hardware resources

LUT FF DSP
faust-syfala (32 bits) * 3,765 3,142 32

faust-mlir (32 bits) * 14,638 8,226 27

4 2,868 4,172 4
Uniform Piecewise 5 3,209 4,460 5

Poly. Approx. (10 bits) 14 1,252 1,157 50
18 1,531 1,369 63

3 127,441 209,121 5
4 32,042 56,004 8

Uniform Piecewise 5 17,608 30,399 11
Poly. Approx. (24 bits) 6 9,712 16,489 15

8 4,965 7,886 24
9 5,228 8,229 27

* Not applicable in this case.

DSP inference. Lower-degree piecewise configurations trade
arithmetic for memory by increasing the number of segments.
Both 32-bit floating-point baselines show high DSP usage due
to mantissas being mapped to dedicated multipliers.

While these early results demonstrate the feasibility of our
flow, we note that baseline paths required manual construction
due to gaps in existing MLIR hardware lowering support. A
detailed and systematic evaluation of baseline strategies, as
well as more precise comparisons across numeric formats, will
be the subject of future work.

V. CONCLUSIONS AND FUTURE WORK

This work presents a multi-level arithmetic-aware MLIR
flow that connects high-level mathematical semantics to low-
level hardware representations in an end-to-end pipeline.

Preliminary results on a signal processing benchmark show
promising trade-offs between memory footprint and arithmetic
complexity. However, the current state of end-to-end MLIR
hardware support poses challenges for establishing robust
baselines. With the dialect and lowering infrastructure now
in place, future work will focus on introducing hardware-level
optimizations – such as bitheap-based arithmetic synthesis [2,
ch. 7] – as well as supporting a wider range of approxima-
tion schemes, including table-based methods and non-uniform
segmentation strategies. We also plan to extend evaluation to
larger workloads in signal processing, linear algebra, and AI,
where the benefits of semantic-aware arithmetic compilation
are expected to be more pronounced.
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Abstract— The evolution of autonomous driving is reshaping the 
automotive landscape into a highly cooperative and interconnected 
system, where vehicles and infrastructure exchange data to 
improve safety, efficiency, and responsiveness. In this context, 
service-based architectures are becoming essential to support the 
modular, scalable, and dynamic nature of automotive applications 
such as Cooperative Perception, demanding robust mechanisms 
for real-time communication, service discovery, interoperability, 
and secure data handling. This work aims at investigating the 
suitability of the Arrowhead Framework—a service-oriented 
architecture initially designed for industrial automation—as a 
middleware to enable and manage services in the context of 
cooperative autonomous driving. By integrating Arrowhead into a 
multi-dimensional co-simulation framework, encompassing the 
simulation of realistic vehicle models, control and 
communications, we evaluate its effectiveness in supporting 
service orchestration, system integration, and interoperability in 
different scenarios. In parallel, we aim to demonstrate how co- 
simulation environments can facilitate the rapid prototyping and 
deployment of distributed autonomous driving services. 

Keywords-ITS; service-oriented architecture; co-simulation; 

I. INTRODUCTION

The rapid advancement of autonomous driving technologies 
is steering the automotive industry toward a cooperative and 
intelligent ecosystem. Vehicles are no longer isolated systems 
but integral nodes in a broader and more complex Intelligent 
Traffic System (ITS), in which they collaborate with the 
roadside infrastructure, traffic control systems, and even 
pedestrians. One of the most promising paradigms in this 
domain is Cooperative Perception, which relies on the fusion of 
sensor data shared among various entities to enhance the 
awareness and safety of automated driving systems. To realize 
this level of cooperation, future automotive applications must 
be highly modular, distributed, and interoperable—qualities 
well-aligned with service architectures. Services allow 
developers to break down complex functionalities into 
independently deployable units, enabling scalability, fault 
isolation, and easier updates. Particularly in ITS, services 
architectures hold the potential to enable a multitude of services 
while reusing and repurposing the roadside infrastructure and 
sensors. Roadside deployed sensors such as cameras or radars 
can support cooperative highway merging applications, while 
enabling traffic emergencies detection, and helping authorities 
enforce traffic rules, by monitoring vehicles’ speed. However, 
deploying services in automotive contexts introduces several 
challenges, including low-latency requirements, dynamic 
service discovery, orchestration, data standardization, and 
secure communications. 

In response to these challenges, our work explores the use of 
the Arrowhead Framework, an open-source service-oriented 
architecture originally developed for industrial automation, as a 
service orchestration platform tailored for automotive use cases. 
We present an integration of Arrowhead into a Co- Simulation 
Framework, designed to simulate cooperative driving scenarios 
in its multi-dimensional perspective, encompassing realistic 
vehicle dynamics, control and communications, to validate the 
service interactions in a controlled virtual environment. This 
setup enables the development, testing, and evaluation of 
automotive-grade services without the high cost and complexity 
of real-world testing. 

The contributions of this work are threefold: 
• Assessment of Arrowhead’s applicability to cooperative

autonomous driving, focusing on its support for multiple
automotive service registration, discovery, and secure
communication.

• Demonstration of service-based integration for
Cooperative Driving applications, leveraging the
modularity and extensibility of the Arrowhead
architecture.

• Development of a unified co-simulation framework,
which allows seamless integration of services across
Autonomous Driving and Smart City scenarios,
facilitating experimentation and iterative development.

II. RELATED WORK

A. Service-Based Vehicular Networks
Service-based architectures for Vehicular Networks

promise to deliver high flexibility, modularity and scalability 
for designing and implementing ITS applications. This 
architecture allows the breakdown of specific services into 
smaller functionalities, which can be further developed and 
improved on their own, allowing for more efficient, reliable, 
and fault tolerant applications. Moreover, it facilitates the 
integration of security, enabling finer-grained access control 
and monitoring, and reducing the impact of attacks on specific 
services. Nevertheless, it is fundamental to address the specific 
cyber-physical requirements such as bounded latency, prevalent 
in many ITS applications, particularly those involving 
Advanced Driving Assistance Systems (ADAS) or cooperative 
driving. 

The authors in [1] proposed a service-based architecture that 
integrates modular V2X services such as Cooperative 
Awareness with autonomous vehicle systems. The framework 
developed relies on the Data Distribution Service (DDS) and 
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introduces a bridge between the V2X services and the 
autonomous navigation stacks of the vehicles, the Vehicle 
Programming Interface (VPI). It’s capable of dynamic handling 
of emergency notifications and traffic light states, and its 
effectiveness was validated by the use of a hybrid experimental 
setup that combines real world simulation and real-world V2X 
infrastructure using ITS-G5 communications. This being said, 
the validation relies on hybrid small-scale tests. Large-scale 
deployments or edge cases with dense traffic or adverse weather 
conditions are not addressed. Moreover, security aspects are not 
addressed. 

Another service-based architecture was proposed in [2], 
promising to handle reliability and latency requirements of 5G 
and upcoming 6G networks. This solution integrates multiple 
layers of computing with both fog and mobile edge computing 
(MEC) and software-defined networking (SDN) that enables 
adaptive resource management and seamless communication in 
highly dynamic vehicular environments. Furthermore, the 
architecture incorporates efficient task offloading, service 
migration, and handover mechanisms that ensure continuity of 
service operation under high-speed vehicular mobility. Unlike 
in our work, the authors used ns-3 for network simulation, using 
C-V2X. Tests were done with Sumo and ns-3, using the C-V2X
as the foundation technology for communications. While the
work offers valuable contributes for scaled networks that have
a need for the use of handover, task offloading and service
migration mechanisms, it also fails to address a few security
concerns, such as authentication and encryption and relies
heavily on C-V2X/NR and SDN, therefore compatibility with
legacy systems such as ITS-G5 is unclear.

Din et al [3] presented a multilayered framework combining 
services and Named Data Networking (NDN) for efficient in- 
network computation in autonomous vehicular systems. Their 
architecture is composed of physical edge servers, and cloud 
infrastructure to support distributed, computation-intensive 
tasks. In comparison with more monolithic architecture, 
through the use of hybrid simulation, the system was capable of 
enabling efficient offloading of tasks, reducing latency, and 
optimizing bandwidth usage. 

All these works provide a meaningful foundation for the 
development and improvement of Service-based architectures. 
While we develop an architecture of our own, we intend to 
provide an expansible framework that offers the tools to 
develop these types of architectures. 

B. Arrowhead Framework
The Arrowhead Framework is a Service-Oriented

Architecture (SOA) designed to enable IoT interoperability in- 
between almost any IoT elements [4]. The framework provides 
a well-defined structure for managing loosely coupled, event- 
driven automation systems through core services such as 
Service Registry, Authorization, and Orchestration [5]. These 
services enable dynamic discovery, secure access control, and 
more efficient coordination of distributed systems, making 
them suitable for industrial automation, IoT, and smart 
infrastructures. The framework also supports local cloud 
deployments  and  inter-cloud  collaboration  for  broader 

scenarios, which is important to ensure the low-latency and 
scalability requirements needed for autonomous driving 
applications. Arrowhead has been applied to a few related 
scenarios with success, however, none with the stringent 
requirements imposed by ADAS services. For instance, Joniken 
et al. [6] demonstrated the capabilities of the use of the 
Arrowhead Framework for smart city service integration, 
implementing and connecting two distinct urban infrastructure 
systems (a street lighting system and a car engine block heating 
system) into a unified, collaborative automation environment. 
In this work each system was wrapped with an Arrowhead- 
compliant interface, exposing RESTful services for monitoring 
and control, and integrated using Arrowhead’s core systems. 
The control system, acting as a consumer, was capable of 
dynamically discovering and orchestrating services based on 
environmental sensor data, such as temperature and luminosity. 
Passerone et al. [7] presented a comprehensive design 
methodology for secure and safety-compliant communication in 
autonomous vehicle systems, specifically those who rely on 
V2V communication. They introduced a contract-based design 
approach to formalize and verify system requirements and used 
the Arrowhead Framework to manage secure service-oriented 
communications. Verification of system behaviors against 
formalized safety assertions is done through Contract Analysis 
Tool (CAT) and 3D simulations in Blender, and it was finally 
validated through a prototype implementation involving real- 
time control of wheeled robot platoons. Arrowhead’s token- 
based authorization was able to enable secure communication 
with latencies of up to 40ms, which addresses the trade-off 
between security and overhead. 

III. ARCHITECTURE

In this section, we describe the architecture of the Co- 
Simulation setup and its integration with the Arrowhead 
Framework. Moreover, we will delve into the case scenarios 
that will be developed for testing Vehicular Networks. 

A. System’s Architecture
Figure 1 displays a simplified architecture of our Co-

Simulation Framework and its integration with Arrowhead. It 
integrates both ROS 2 and Gazebo with the Omnet++ and 
Arrowhead Frameworks. Omnet++ is a network simulation 
tool, and we use it together with the libraries from the Artery 
framework which allows us to simulate Vehicular 
Communications with protocols such as ITS-G5. 

Our Framework leverages ROS2 and the underlying DDS as 
the foundation for the interaction between the different tools that 
compose our application. The Omnet++ Interface is composed 
by a Omnet++ transmitter that creates a publisher, whose topics 
are subscribed by the Omnet++ module, which then relays the 
information to the correct nodes within the Omnet++ simulation 
environment. The interface also has an Omnet++ receiver which 
captures the packets from the Omnet++ simulation environment 
and publishes them into the respective ROS topics. 
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Figure 1: Architecture of the Simulation Framework. 

In the context of simulation for connected vehicles, 
integrating real-time communications with simulation time can 
be quite challenging due to the Event-Driven nature of network 
simulation tools, while Simulation tools like Gazebo operate on 
real-time progression. To ensure that our Network Simulation 
tool, in this case Omnet++, is on par with real-time events, it’s 
necessary to build a scheduler capable of synchronizing event 
times with the simulation times. To ensure both Omnet++ and 
Gazebo are on par with each other, we are using an event 
scheduler previously made for Omnet++ in [8]. 

The Arrowhead Interface is a module that sends and handles 
RESTful requests to the Arrowhead Framework from the nodes 
within our simulation environments. Within our network, 
Arrowhead allows for service discovery and authentication. As 
already mentioned, we intend to test the capabilities of 
Arrowhead, evaluating the impact services delays may have on 
the performance of cooperative driving tasks. In our network 
architecture we decompose services into smaller services 
capable of interoperating together in many scenarios. In this 
case, we have Arrowhead Core Services, Service Registry, 
Orchestrator and Authorization along with some services that 
are going to be provided by Roadside Units (RSU). The 
following services are deployed at Edges and discovered and 
orchestrated by Arrowhead’s core services: 

• Road Perception – Detects and classifies static and
dynamic road agents, such as vehicles and pedestrians.

• Intent and Trajectory Prediction – Predicts the
behavior and trajectory of nearby road agents using past
motion and context information.

• Traffic Surveillance – Monitors the road and detects
any unsafe or irregular behaviors or events, such as
stalled vehicles or illegal maneuvers.

• Merge Coordination – Dedicated to the highway merge
scenario, its function is to coordinate highway merging
by calculating and suggesting safe gaps and speeds for
entering vehicles.

• Intersection Coordination – Dedicated to the urban
intersection scenario, its function is to coordinate and
assign priorities to vehicles approaching and traversing
intersections.

Figure 2: Vehicle Detection in Gazebo. 

The Road Perception service relies on cameras that are 
distributed across the road positioned in a Bird’s Eye View 
(BEV) configuration within the Gazebo simulation 
environment. YOLOv8 [9] was used for object detection and 
tracking, and trilateration was applied to fuse the different 
cameras’ perspectives to provide more precise estimations of 
the positions of the road agents as shown in Figure 2. 

B. Test Scenarios
To validate the proposed solution and assess the

applicability of Arrowhead Framework within the context of 
cooperative autonomous driving, we design and implement two 
different test scenarios, High-Speed Highway Merge and 
Intersection Assistance. The interaction between vehicle and 
infrastructure requires the vehicle to first communicate with the 
RSU’s requesting which services are available to use in that 
region. The RSU connected to an Edge forwards this request to 
an Arrowhead node deployed at a considerable distance, which 
will reply with the list of services available in that region. After 
receiving the list, the vehicle can finally choose what services it 
wants to subscribe to, through the same process, where then the 
Arrowhead will verify the vehicle’s authenticity to consume 
those services. 

The Highway Merge scenario serves as the most demanding 
test case, since it imposes lower latencies upon the performance 
of our services. In this setup, multiple vehicles will be deployed 
randomly, at speeds up to 120 km/h, simulating real world 
traffic. The cameras detect and track the vehicles' positions and 
speed, which will be used to inform incoming vehicles wanting 
to merge onto the highway. The Highway Merge service 
identifies suitable gaps and assigns them to incoming vehicles 
along with the recommended speeds for merging. Our primary 
goal is to evaluate the latency bounds and responsiveness of the 
Arrowhead Framework at higher speed cooperative scenarios. 
Through pushing the framework’s capabilities, we can identify 
limitations and explore possible enhancements that could make 
Arrowhead more appropriate for automative applications where 
low latency is a critical aspect. 

The Urban Intersection Assistance scenario, while less 
sensitive to higher latencies than our previous scenario, offers a 
controlled environment that can be used to test communications 
under mixed traffic conditions and serve as a test bed for service 
scalability, orchestration and integration with other types of 
services, specifically Smart City applications. Furthermore, it 
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provides an opportunity to explore intersections as convergence 
points between cooperative driving and urban infrastructure 
services, namely traffic monitoring, pedestrian safety, and 
emergency management. Figure 3 presents a more general and 
hierarchical view of the deployment scenarios. The vehicles, 
sensors, and RSU’s are distributed throughout the environment. 
The RSUs are directly connected to the Edge nodes, providing 
them with sensorial data required for service execution. The 
Edges communicate with Arrowhead nodes that are deployed 
further from the urban environment usually in the form of Fog’s 
deployed in the city where these services are provided. 

Ongoing and future work will focus on profiling service 
delays, optimizing orchestration logic, and exploring 
enhancements to the Arrowhead Framework to better meet the 
stringent demands of vehicular networks and general QoS 
demanding ITS services. Ultimately, this research contributes 
to the broader goal of enabling safer and more efficient 
cooperative autonomous systems by evaluating service- 
oriented solutions within realistic, simulation-driven 
development pipelines. 
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Figure 3: Hierarchical deployment Scenario. 

IV. CONCLUSION AND FUTURE WORK

This work aims at assessing the performance of the 
Arrowhead Framework as a middleware in enabling and 
managing services in the context of cooperative autonomous 
driving. To this end, we integrated the Arrowhead Framework 
over a co-simulation framework relying on ROS 2, Gazebo, and 
OMNeT++ and devised a set of cooperative autonomous 
driving scenarios. By leveraging Arrowhead’s service-oriented 
architecture, we enable dynamic service discovery, 
orchestration, and secure communication between distributed 
vehicular and infrastructure nodes. Our initial implementation 
focuses on validating the feasibility and responsiveness of 
Arrowhead microservices in two representative scenarios: high- 
speed highway merging and urban intersection coordination. 
These scenarios allow us to examine the framework’s behavior 
under both strict latency constraints and complex, scalable 
service environments. Early results suggest that while 
Arrowhead offers promising mechanisms for structuring and 
managing ITS services, its performance in real-time vehicular 
contexts—especially under high-speed conditions—must be 
thoroughly assessed. The proposed co-simulation setup 
provides a flexible and extensible environment to iteratively 
develop, test, and refine distributed services for automotive and 
smart city applications. It serves as a valuable platform to 
simulate real-world conditions encompassing multiple cyber- 
physical dimensions, while maintaining controlled test 
parameters for the intended evaluation. 
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Abstract—In response to the challenges posed by an ageing 
population, radar-based fall detection is gaining attention as a 
valuable tool for clinical monitoring and teleassistance. Once the 
radar signals are processed, they can be visualised as spectrograms 
that capture the dynamic signatures of human activity. In this 
work, we propose an approach that leverages image processing 
techniques to extract descriptive features, such as Area, Perimeter 
or Orientation from these activity signatures. These features are 
then fed into a Support Vector Machine (SVM), a lightweight yet 
effective classification model. Our method achieves an accuracy of 
88.85%, providing a resource-efficient alternative that matches or 
exceeds more complex state-of-the-art solutions. 

Keywords-Radar Spectrogram, Human Activity Recognition, 
Classification, SVM, Clinical Context 

I.  INTRODUCTION

Many developed countries face an ageing population, 
increasing the risk of motor impairments and falls. In France, 
20% of the population is at risk, leading to 10,000 deaths and 
more than 136,000 hospital admissions each year [1]. In 2022, 
global recommendations were established for elderly fall 
prevention [2]. The standard approach involves physician 
referrals for clinical gait and balance assessments. However, 
overcrowded services often lack sufficient staff and time. 

Wearable sensors, such as gyroscopes and accelerometers in 
necklaces or watches, can be used to recognise activities like 
"Walk" [3], but they are restrictive. Cameras offer alternatives, 
yet remain intrusive as well [4]. Radar provides a non-intrusive 
way to detect micro-movements without visual imaging. The 
resulting micro-Doppler spectrograms reflect activity-specific 
limb movements [5]. Classification models like Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN) and GoogLeNet 
achieved recognition accuracies from 74% to 94%.  

The study [6] achieved 87.10% accuracy with ResNet-18, 
without modifying the model or input data. This suggests 
potential for improvement using basic image processing and a 
lighter model. This paper proposes a lightweight classifier for 
human activity recognition based on spectrogram features, and 
explores simple image processing techniques.  

Section II reviews radar pre-processing, classification 
methods, and image processing techniques used. Then,   
Section III presents the spectrogram generation, feature 
extraction, and classification applied. Section IV describes and 
compares results with [6], while Section V offers an overall 
analysis. 

II. RELATED WORK
In this section, we present the radar data extraction method 

and the recognition techniques developed from it. 

A. Radar Data Extraction
Radar (Radio Detection And Ranging) uses radio waves to

detect and track objects. For activity recognition, its key 
advantage is analysing Doppler signatures [6]. Doppler 
signatures reflect frequency changes due to movement, while 
micro-Doppler are small variations caused by finer movements, 
such as arm motion during walking. 

The radar emits signals and measures reflections. Most 
studies use Frequency Modulated Continuous Wave (FMCW) 
radars [7]. Analysis of the received signal provides Doppler 
frequency and time delay (beat frequency). Raw data undergoes 
Fast Fourier Transform (FFT) to extract distance and time, 
followed by filtering to remove static elements. Then, a Short 
Time Fourier Transform (STFT) generates velocity-time 
representations, highlighting Doppler variations.  

The pre-processed data are spectrograms, visually 
representing movement speed over time. As shown in  
Figure 1a, spectrograms display signal energy distribution 
during an activity. These representations serve as the basis for 
recognition algorithms, which distinguish activities by their 
unique signatures.  

For FMCW radar, range resolution depends on bandwidth, 
while Doppler resolution depends on observed signal duration 
in the STFT. In this study, we use a range resolution of 37.5 cm 
and Doppler resolution of 1.25 Hz ( 0.03 m/s), enabling 
accurate velocity analysis and classification. Using these 
parameters, spectrograms like Figure 1a are generated. 

B. Activity Classification
Current research aims to improve image classification using

radar data from animals or humans [9], [10]. Common models 
like SVM, KNN and ResNet-18 [6], [11], [12] require sufficient 
data for training. Experiments on the Radar Signatures of 
Human Activities dataset [8] show spectrograms are effective for 
recognition. Studies [11], [12] used AlexNet for feature 
extraction and transfer learning to SVM and KNN, achieving 
accuracies of 78.25% and 77.15%. Transfer learning uses 
knowledge from pre-trained models to solve related tasks.  
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ResNet-18, an 18-layer network, achieves 70% to 90% accu-
racy without optimisation, and suits resource-limited systems 
[6]. The study [6] reported 87.10% accuracy with unmodified 
ResNet-18. While deep learning models perform well, SVMs 
remain a viable lightweight alternative for embedded 
applications due to fast training and low resource needs. 

SVMs are effective in human activity recognition by con-
structing optimal hyperplanes between classes. The study [13] 
showed SVMs can reach 92.8% accuracy on Continuous Wave 
(CW) radar and 95.4% on FMCW, though performance varies 
with pre-processing. Based solely on micro-Doppler data, the 
accuracy drops to around 80%. Kernel choice, hyperparameters, 
and pre-processing are critical. SVMs remain a strong option for 
balancing performance with hardware constraints, especially 
when combined with feature extraction. 

C. Image Processing, Parameters Extraction & PCA
Studies [12], [13] on human activity recognition from

spectrograms aim to improve performance by processing data. 
Some approaches [14] adjust parameters during data acquisi-
tion and pre-processing, like filters or biases. Others [15] modify 
the data before classification, with common classifiers including 
Convolutional Neural Network (CNN) or SVM.  

Most datasets offer opportunities to enhance accuracy with 
different processing strategies. These datasets address human 
activity recognition in diverse contexts, based on spectrograms 
from radar or simulated sensors. The Radar signatures of human 
activities dataset [8], widely used with over 5,000 downloads, 
has been extensively tested in pre-processing, spectrogram 
manipulation, and classification. Techniques like binarisation 
and masks help extract relevant activity features. 

Classical processing methods bring only slight 
improvements. Studies [16] show that Principal Component 
Analysis (PCA) effectively reduces dimensionality by selecting 
key spectrogram variables. This enhances model accuracy and 
lowers computational cost. 

III. METHODOLOGY
This section describes the input data generation method and 

the classification model employed to improve accuracy. 

A. Spectrogram Generation & Parameter Extraction
The Radar signatures of human activities [8] dataset, chosen

for its completeness and relevance, contains 1,753 images across 
6 activity classes. We follow the pre-processing chain of authors. 
After generating spectrograms, activity signatures are extracted 
by binarising the images, unlike [6], which used raw 
spectrograms. To reduce storage and computational costs, 
classical shape-based features are preferred. 

We extract 8 shape features, Area, Perimeter, Orientation, 
Major, Minor, Centroids X and Y, and Excentricity, using 
mathematical methods and the skimage1 Python library. Ac-
tivity signatures are isolated by identifying connected regions in 
the binarised spectrograms. Morphological and geometric 
descriptors are computed via the regionprops function, while 
contours are extracted using measure.find_contours with a  
0.9 threshold and fully_connected = ”high” option enabled to 
have full diagonal connectivity. 

θ = � θ + 90,  if θ < 0
θ − 90, else   (1) 

Contours oriented clockwise are reversed to counterclock-
wise to maintain geometric consistency. Orientation 𝜃𝜃 is 
converted to degrees and adjusted for the image coordinate sys-
tem, where y increases downward, as described in Equation 1. 

B. Hyperparameter & Parameter Selection
The Radar signatures of human activities [8] dataset

contains two similar activities: "Pick" and "Drink". The paper 
[6] showed this confusion. To address this issue, we propose
combining these activities under a single label, "Other". As a

1 https://scikit-image.org/ 

(b) Parameters Extraction (Area, Perimeter, Orientation, Centroid) (a) Spectrogram of "Walk" [8]

FIGURE I. Spectrogram Analysis, from the Original to the Parameters Extraction 
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result, we work with 5 activity classes: "Walk", "Sit", "Stand", 
"Other", "Fall".  

The optimal SVM kernel was chosen based on the five 
highest classification accuracies from spectrogram parameters. 
Among common kernels (Linear, RBF, Sigmoid, Polynomial), 
Linear and Sigmoid were excluded due to the nonlinearity data. 
RBF and Polynomial kernels, which performed well in initial 
tests, were compared to identify the most suitable kernel and 
hyperparameters for human activity recognition.  

For the Polynomial kernel, key hyperparameters include C 
(error penalty), degree (model complexity), and coef0 
(importance of lower degree terms, especially when degree > 1). 
Hyperparameter tuning was done using GridSearchCV 
(exhaustive search with cross-validation) and Randomized-
SearchCV (random sampling within defined bounds), both 
ensuring model robustness and generalisation.  

Finally, we apply PCA to reduce data dimensionality, 
capture key variations, and compare results with and without this 
technique. The goal is to optimise model parameters and 
hyperparameters by selecting the most relevant features from 
spectrogram signatures. 

C. Classification Method
The study [6] has highlighted the feasibility of recognising

activities using a simple and easily implementable recognition 
method. ResNet-18 performed initial training directly on the 
spectrograms obtained at the output of a radar recording. 
However, we are now exploring an alternative approach for 
interpreting the signatures, while still aiming to maintain a 
simple and lightweight solution. 

An SVM is used to learn from spectrograms after feature 
extraction. It offers a lightweight, fast, and effective solution, 
especially for small datasets, and requires minimal storage. The 
SVM implementation from the Python library sklearn2 is used, 
with the kernel type selected based on extracted data results. 
Hyperparameter tuning, detailed in Section III-B, identifies 
optimal settings.  

Training is conducted on the Radar signatures of human 
activities dataset [8], using the same train and test splits as [6] 
for fair comparison with the ResNet-18 model. Despite the 
imbalance of the dataset, particularly fewer samples for the 
"Fall" activity, this does not hinder performance evaluation, as 
noted in [6]. The model is trained on features extracted from 
spectrograms stored in text files. From eight initial features, the 
most relevant ones are selected, as described in Section III-B, 
along with suitable kernels and hyperparameters. 

IV. RESULTS & DISCUSSION
This section outlines the results, from parameter extraction 

to model training. 

A. Hyperparameter Selection
The results presented here focus on the Polynomial kernel.

To identify optimal hyperparameters, we applied two search 
techniques: GridSearchCV, which exhaustively explores a 
predefined set, and RandomizedSearchCV, which samples a 
fixed number of combinations randomly. We tuned the 
hyperparameters C, degree, and coef0. Both methods agreed on 

coef0 = 1.0, but highlighted two promising values for C (100, 
1000) and degree (3, 4).  

TABLE I. ACCURACY FOR ALL HYPERPARAMETERS COMBINATIONS 

C=100 C=1000 

degree=3 87.45% 87.45% 

degree=4 87.80% 86.41% 

All four combinations were tested, revealing up to a 10% 
accuracy difference between degree = 3 with C = 1000 and 
degree = 4 with C = 100. The highest accuracy was achieved 
with degree = 4 and C = 100, as shown in Table I. The next step 
involves extracting and selecting the most relevant features from 
the spectrogram data. 

B. Parameter Extraction and Selection
To extract the characteristic data, the spectrogram image is

first binarised as shown in Figure 1b, followed by contour 
extraction to recover the activity signature. This enables the 
computation of eight previously described parameters, includ-
ing Area, Perimeter, and Orientation. In Figure 1b, the Area is 
outlined in red, the Orientation indicated by the orange line, and 
the Centroid marked by the green dot. 

These parameters serve as SVM inputs, but their relevance 
must be assessed to determine whether the full set is necessary. 
PCA is then applied: the data are centred and standardised, and 
the explained variance of each principal component is 
calculated. As shown in Figure 2, at least 5 components are 
needed to preserve 90% of the total variance, indicating robust 
data representation. 

FIGURE II. Explained Variance per PCA 

Subsequently, all parameter combinations were evaluated. 
Subsets of 5 to 6 features proved sufficient to achieve recog-
nition rates of approximately 80% or higher. Among the top-
performing subsets, the most consistently relevant features, 
identified using the polynomial kernel with tuned hyperparam-
eters, are Orientation, Major, Minor, Centroid X, Centroid Y, 
and Excentricity. 

C. SVM Application and Its Advantage over ResNet-18
Using the selected feature set, the SVM with a Polynomial

kernel achieved an accuracy of 88.85%. This configuration 

2 https://scikit-learn.org/stable/ 
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included the features Orientation, Major, Minor, Centroid X, 
Centroid Y, and Excentricity. The confusion matrix in Figure 3 
confirms strong classification performance, with clear diago-
nals and minimal confusion between classes.  

The use of SVM improved activity recognition performance 
by 1.75% compared to the ResNet-18 of [6]. Grouping similar 
activities helped reduce confusion, while learning from image-
extracted parameters led to further gains, exceeding a 1% 
improvement. These results emphasise the value of clearly 
defined spectrogram signatures, as more distinctive features 
allow for more accurate classification. In [6], an accuracy of 
87.10% was achieved using dataset [8]. Our approach demon-
strates that a lightweight, resource-efficient method focused on 
the most relevant features can still deliver strong performance. 

V. CONCLUSION

This paper proposes a method for recognising human activity 
using Frequency Modulated Continuous Wave (FMCW) radar 
data. Spectrograms are generated through a preprocessing chain 
from an open-source dataset [8]. Key features such as Area, 
Perimeter, and Orientation are extracted from these 
spectrograms and used to train a Support Vector Machine 
(SVM). Using Principal Component Analysis (PCA), the 
approach achieved an accuracy of up to 88.85%, demonstrating 
that complex radar data can be effectively analysed with simple, 
informative features.  

Future work will focus on exploring lightweight, efficient 
activity recognition methods and enhancing existing techniques. 
Once detection and recognition reach satisfactory performance, 
the next step will involve developing and evaluating a real-time 
solution for fall risk prediction. The long-term objective is to 
create a real-time embedded system suitable for real-world 
deployment. 
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Abstract—Hardware attacks exploit the vulnerabilities discov-
ered in state-of-the-art CPUs. As an example, attacks such as
Meltdown and Spectre have made the headlines. To benefit from
the vulnerabilities, hardware attacks stress tremendously some
section/s of the processor, usually the branch-prediction unit and
the different cache levels. This gives us a recognizable pattern
and a way to implement a system capable of detecting the
presence of these attacks while monitoring the computer. In this
paper, we describe the set of hardware attacks under focus, then
we describe how we create the dataset and, finally, the use of
machine learning to detect the attacks in three scenarios (i.e.
training on both benign applications and attacks, training on
only benign applications and training only on attacks) and two
x86 CPUs (Intel and AMD). The techniques proposed are capable
of achieving over 99% detection rate with a machine learning
model. This provides a run-time solution to quickly identify the
attack as it starts running and take remedial actions.

Index Terms—Security, hardware attack, Spectre, Meltdown,
Fallout, machine learning

I. INTRODUCTION

In today’s world, computers are integral to our daily lives,
from work desktops to personal smartphones. We trust these
devices to securely store our data, but this trust is often
misplaced, as we are continually at risk of cyber attacks.
Most modern attacks exploit vulnerabilities in operating sys-
tems, with privilege escalation being the most common goal.
These software-based vulnerabilities can often be quickly fixed
through updates. In contrast, hardware-based attacks, like
Meltdown [1] and Spectre [2], target vulnerabilities in the
microprocessor itself. These hardware attacks typically stress
parts of the processor, such as the branch-prediction unit and
caches, creating recognizable patterns that can uncover them.
Modern solutions such as KPTI [3] are effective in mitigating
many hardware attacks. However, the objective is to develop
a solution that can also address future attacks. By employing
machine learning’s pattern recognition capabilities, similar
behaviours in new exploits can be identified. The objective of
this work is to develop, train, and fine-tune a machine learning
(ML) model capable of detecting both current and future
hardware attacks by learning their characteristic patterns.

Specifically, in this work, we will refer to hardware attacks
as a set of attacks falling under the category of hardware-based
attacks known as cache side-channel attacks. Cache side-
channel attacks are a type of attack that exploit unintentional

information leaks within the processor’s cache system. These
attacks use variations in cache access times, storage patterns,
or eviction behaviours to infer sensitive information such as
cryptographic keys or private user data. These attacks leverage
the subtle changes in how data is stored, accessed, or evicted
across different cache levels, enabling attackers to deduce the
operations performed by a program without directly accessing
the target data. This poses a significant and sophisticated
security threat to modern computing systems.

There are various types of attacks within this category.
In this work, we focus on the following cache side-channel
attacks: Spectre V1, Spectre V2, Spectre V4, Meltdown,
ZombieLoad, Fallout and Crosstalk.

II. HARDWARE ATTACKS IN X86

A. Threat model

This work assumes an unprivileged attacker (i.e., without
kernel-level access) and the absence of kernel-level mitigations
against microarchitectural vulnerabilities such as Kernel Ad-
dress Space Layout Randomization (KASLR) (e.g. KAISER
[3] LAZARUS [4], or FLARE [5]) —which are designed for
x86 architectures and rely on platform-specific features —are
not considered active. This assumption is realistic as we are
considering a platform-independent mechanism to detect the
attacks.

B. Related Work

Hardware attacks create distinctive performance anomalies,
such as an unusual frequency of branch mispredictions or
excessive cache evictions. These patterns are often consistent
across different executions of the attack, enabling ML models
to generalize and detect them reliably. Previous approaches
to detecting hardware attacks using hardware performance
counters and ML models have shown great performance [6],
[7], [8], [9]. However, these efforts focus only on a single
attack and do not share their training datasets, models, or
instructions for generating similar models locally. This lack of
extensive analysis and reproducibility in the area has brought
some authors [10] to believe that ML is not appropriate, even
disregarding previous work and evidence.

Other studies, like Carnà et al. [7], provide examples of
binaries used in attacks, they lack details on data recording
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conditions and methods, as well as specifics on benign pro-
grams, making exact replication difficult.

The primary goal of this work is to build and release
[11] a comprehensive dataset comprising multiple known
attacks and describing the creation methodology. With this,
we develop a novel ML model for detecting hardware attacks
using hardware performance counters (HPCs). This effort aims
to facilitate replication and foster further research within the
community.

The ML model is designed to enable rapid, real-time
analysis of HPC data streams, making it possible to scale
the detection mechanism across multiple systems without
sacrificing responsiveness or reliability. In summary, our work
makes the following contributions:

• Build a reliable and reproducible dataset. The dataset
must include relevant samples from both hardware attacks
and benign programs, correctly labeled and compatible
across different machines and architectures. It should
be reproducible under the same conditions on other
machines, involving:

– Identify hardware attack binaries and benign pro-
grams for data collection.

– Record HPC data and sample rate.
• Develop a ML model. The model should classify input

samples as either malicious or benign, and also distin-
guish between known attacks and benign programs. The
ML model will be broken down in the following steps:

– Identify the optimal ML model for the task.
– Preprocess data for the selected model and training

it.
– Optimize parameters.

III. ML MODELS

Machine learning is preferred over deep learning because
the dataset is too small. Deep learning models require hun-
dreds of thousands to millions of samples, while the current
dataset only has 28,000 samples from 14 different programs.
This size is insufficient for deep learning, making traditional
ML methods more suitable and recommended for smaller
datasets.

This paper uses Naive Bayes, Decision Tree, Random
Forest, and Support Vector Machines classifiers for multi-class
classification tasks. Each method is briefly described below.

Naive Bayes is a simple and efficient probabilistic classifier
based on Bayes’ theorem, assuming feature independence [12].

Decision trees are widely used supervised learning algo-
rithms for classification [13]. They have a hierarchical tree-
like structure, where the internal nodes represent decisions
based on the feature values, the branches represent the decision
results, and the terminal nodes represent the classification
categories.

Random Forest (RF) is a classification algorithm that
builds multiple independent decision trees using bootstrap
sampling of the training data [14]. For each split, it randomly
selects a subset of features. In classification, each tree votes on
the class, and the majority vote determines the final prediction.

Support Vector Machine (SVM) is a supervised learning
algorithm for classification tasks, such as distinguishing be-
tween benign and malicious samples and identifying specific
attacks [15]. SVM uses support vectors, the critical data points
closest to the decision boundary (hyperplane), to maximize
the margin between classes, improving generalization to new
data. The margin can be determined using linear or non-linear
functions like polynomial or radial basis functions (RBF).

One-Class SVM, a variant of SVM, is used for anomaly
detection by learning the majority class space and identifying
deviations as anomalies. This is useful for detecting cyberat-
tacks in datasets with mostly benign or few attack samples
by training the model on benign patterns and identifying
deviations as potential attacks. This method will be applied
to unbalanced datasets where the samples are entirely benign
or malicious.

IV. SYSTEM SETUP AND DATASET CREATION

The platforms selected are two x86 CPUs from different
manufacturers: Intel i5-8250U and an AMD Ryzen 7 3700X.
In our analysis, some older architectures are not vulnerable
to certain attack types. This ensures the ability to create a
consistent dataset for each platform with multiple attacks.
The hardware attacks selected run successfully in the host
machines (thus, we guarantee we log ”real” traces). We
use Lesimple’s spectre-meltdown-checker script available on
GitHub [16] for this purpose. This script analyzes computer
characteristics and available mitigations and provides a list of
successful hardware-based attacks on the computer. Section
IV-C describes the attacks in detail.

The selection of benign programs is performed to ensure
reliable and reproducible execution behavior that mirrors com-
mon workloads. Various benchmarks with different focuses
will be chosen to maximize dataset coverage. Section IV-D
describes the attacks in detail.

A. Selection of HPCs

The selected HPCs should accurately represent the patterns
exploited by hardware-based attacks, enabling the detection of
anomalies when compared to benign executions. The selected
counters must also be generic enough to avoid dependence on
specific architectures, ensuring the solution’s portability across
a wide range of computers. Experimentally, we found that
there is a soft limit of four counters before some samples are
lost in our system. Therefore, monitoring will be limited to
four counters.

Some hardware attacks, like those in the Spectre family,
exploit speculative execution, triggered when the branch pre-
dictor predicts the outcome of a branch instruction. Both
branch instructions and branch misses are

generic perf events, providing the ratio between the total
branches and those where the predictor missed. This selection
is supported by previous work, such as Congmiago Li et
al. [6]. Additionally, many hardware-based attacks use side
channels to extract information, which heavily stress the
computer’s cache memory. A high count of cache misses on
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the last-level cache (LLC) memory may indicate the presence
of a FLUSH+RELOAD side-channel attack, known as the
most effective and popular among hardware-based attacks.
The first-level cache is also a common target in other at-
tacks, as used by Stefano Carnà et al. [7]. Thus, the other
two HPCs to be analyzed will be LLC-load-misses and
L1-dcache-load-misses.

For dataset generation, the perf tool will be utilized. This
tool enables recording of multiple HPCs during binary exe-
cution. The perf stat command will output HPC counts
in a csv file format. To streamline operations, only one CPU
core will be utilized, achieved using the taskset Linux tool,
ensuring collected HPC data remains unaffected by workload
distribution across cores.

B. Sample rate

Another decision to make is the sampling rate. Previous
works have used sampling rates ranging from 1 ms per sample
to 100 ms per sample. Congmiago Li et al. [6] even dynam-
ically change the sample rate to prevent evasive malware. To
generate a large number of samples for the ML model, the
aim was to use the lowest possible sample rate. However,
experimentally it was found that anything under 10 ms caused
anomalies in perf, such as some samples not being recorded.
Therefore, a 10 ms sample rate was chosen.

C. Selected hardware attacks

The selected hardware attacks are:
• Meltdown: among the most notorious hardware attacks,

operates uniquely. While modern computers typically
have the KPTI/KAISER mitigation against it, analyzing
its behavior could be beneficial for the dataset. The
Meltdown code was extracted from the IAIK GitHub
repository [17].

• Spectre V1, V2, and V4: the infamous companion of
Meltdown, has seen several versions released to date,
with minor changes between them. A functional proof
of concept (PoC) for Spectre V3 was not found, so it
was skipped. Codes for the first [18], second [19], and
fourth [20] versions of PoCs have been obtained from
GitHub repositories.

• ZombieLoad [21]: similar to Meltdown, it captures sen-
sitive data accessed by a user on a machine, and has been
shown to work even on Meltdown-safe computers. The
PoC by IAIK can be found on their GitHub repository
[22].

• Fallout [23]: akin to Meltdown, leaks data from the CPU
pipeline’s store buffer and is classified under Microarchi-
tectural Data Sampling (MDS) attacks along with RIDL
[24]. The PoC code for the Fallout attack is sourced from
Tristan Hornetz’s GitHub repository [25].

• Crosstalk [26]: another MDS attack, aims to leak infor-
mation between CPU cores, making it unique as it utilizes
multiple cores, unlike other attacks. The source code for
the proof of concept used is also obtained from Tristan
Hornetz’s GitHub repository [27].

These attacks bring the total number of malicious programs to
7. Other hardware attacks, like RIDL, Foreshadow [28], and
ForeshadowNG [29], among others, were not selected because
they rely on features not present in the laptop’s architecture,
such as Intel TSX [30].

D. Selection of benignware

The other half of the dataset will be generated using benign
programs to contrast the behavior of the hardware attacks. To
maintain balance, an equal number of benign programs (7)
have been chosen:

• Matrix multiplier: A simple C program that multiplies
large amounts of integer numbers to stress the computa-
tional sections of the CPU.

• stress -c: This is from the Debian stress tool, which
stresses the CPU computing unit by repeatedly perform-
ing square roots of random numbers [31].

• stress -m: Also from the same tool, this option stresses
the memory unit by repeatedly running malloc() and
free() [31].

• MiBench Bitcount:A benchmark from the MiBench suite
under the automotive category [32] available on Embe-
cosm’s Github repository [33]. It performs a bitcounting
benchmark algorithm that stresses the CPU.

• STREAM: The STREAM benchmark [34], known for
measuring memory bandwidth, will be used to stress
the memory unit. The source code is available in Jeff
Hammond’s Github repository [35].

• bzip2: This is a high-quality lossless data compres-
sor, chosen for both computational and memory work-
loads [36]. It will compress a fixed file, specifically the
FreeBSD ISO image, to ensure replicability [37].

• FFmpeg: A multipurpose audio and video tool, used as
a benchmark and example of a common mixed workload
[38]. In this case, it will decode the ”Big Buck Bunny”
animation [39], commonly used for video testing [40],
[41], [42].

The benchmarks selected are chosen to have similar execu-
tion profiles as the attacks listed. They either stress the memory
unit, the CPU computational units or a mix. This ensures
that the model can reliably distinguish malicious memory
usage from memory-intensive workloads; and similarly for
computational units or a mix.

V. EXPERIMENTS AND RESULTS

The first architecture used for testing is based on the
Intel Core i5-8250U processor. The system runs Debian 11
(Bullseye) with the Linux kernel version 5.10.0. The processor
operates at a maximum clock frequency of 3.4 GHz and
features a 4-core / 8-thread configuration. This CPU belongs to
Intel’s Kaby Lake R (8th generation) family and is built using
a 14nm process. It includes the following cache hierarchy:

• L1 Data Cache: 128 KiB
• L2 Cache: 1 MiB
• L3 Cache: 6 MiB
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TABLE I
DATASETS, SCENARIOS AND SAMPLES

Dataset name Representative scenario %Samples/Type Total samples

Balanced Both representative benign applications and attacks are available for training. System
administrator knows representative applications and attacks. The ML method has both
information on what is benign and malign to make its prediction.

50% benign
50% malicious 28,000

Benign-only Only representative benign applications are available for training. System administrator only
knows the representative applications running on the system. Any other application will be
deemed malign. The ML method turns into an anomaly detection setup.

100% benign 14,000

Malicious-only Only representative malign applications are available for training. System administrator
only knows the representative malign applications that can target the system. Any other
application will be deemed benign. The ML method turns into an anomaly detection setup.

100% malicious 14,000

TABLE II
PARAMETERIZATION OF THE METHODS USED IN THE BALANCED DATASET

Method Kernel Parameters

Naive Bayes Gaussian n.aMultinomial

Decision Tree n.a

entropy, max depth=10,
min samples leaf=1,
min samples split=5
entropy, max depth=None,
min samples leaf=1,
min samples split=2

Random Forest n.a
Same optimal parameters of
decision tree with 100
decision tree estimators

SVM

Lineal C=1000
Polinomial
(second degree) C=100

RBF (Detection) C=10, γ=10
RBF (Classification) C=100, γ=10

As mentioned in subsections IV-C and IV-D, we have
a total of 14 programs: 7 benign and 7 malicious. From
each of these programs, we obtain 2,000 samples, totaling
14,000 benign plus 14,000 malign samples. To conduct the
experiments, we group these samples into three datasets:
benign-only, malicious-only and balanced (both benign and
malign samples). Table I shows for each dataset, its intended
representative scenario and the proportion and type of samples.
In all cases, 80% of the samples from each dataset were used
for model training and 20% for testing.

A. Balanced dataset: Attack detection

For the balanced dataset, all the methods described in the
previous section have been studied, except for the One-Class
method (as it does not apply). For each case, hyperparameter
tuning was performed using GridSearchCV [43], [44]. Table
II shows the resulting hyperparameters for each method and
variants or kernels studied in each case in the balanced dataset.

Table III shows the accuracy of each method studied. As
shown in the table, Naive Bayes is the worst performing
unless as it fails to detect benign samples correctly. We
analyzed the case an it is caused by the non-independence
between the counters used. The other 3 ML methods perform
similarly (above 99% accuracy) being the SVM with RBF
kernel the method that gives the best results for detection (i.e.

benign/malign decision). Table IV shows the accuracy, recall,
precision and F1-Score of this case (together with the best
performing mechanisms of the next subsections).

TABLE III
PERFORMANCE OF MACHINE LEARNING MODELS ON THE BALANCED

DATASET (INTEL CORE I5-8250U)

Method Kernel Metric

Naive Bayes Gaussian

90% to detection and classification,
but with the presence of false positives
in detection, which impairs the
for FFmpeg samples.

Multinomial

53.69% to detection with problems
to detect benign samples. By modifying
the dataset to eliminate non independent
HPCs, accuracy improves up to 90,89%.

Decision Tree n.a 99.85% (Detection)
99.79% (Classification)

Random Forest n.a 99.94% (Detection)
99.89% (Classification)

SVM

Lineal 99% detection and classification
Polinomial
(second degree) 99.8% detection and classification

RBF 99.9% detection and classification

B. Balanced dataset: Classification

Beyond detecting if our system is under attack, we may want
to know what kind of attack are we suffering to take specific
remedial actions. As listed in Section IV-C, the attacks under
study focus on different parts of the CPU and specific actions
could be taken in each case.

We used the same ML methods as in the previous section
to evaluate the effectiveness of detecting each different malign
attack and benign application. Table III shows the accuracy
results and, again, SVM with the RF Kernel is the most accu-
rate. Figure 4 shows the confusion matrix for the classification
using this method. Classification is nearly perfect (just 10
out of 24000 samples are misclassified and 5 being between
Spectre V1 and Spectre V2).

C. Benign-only and malign-only

For the completely unbalanced datasets (benign and mali-
cious), we used the One-Class SVM method with parameter
values γ = 1 and ν = 0.01 (obtained through GridSearchCV
[43], [44]). Figures 2 and 3 show the confusion matrices of
each dataset for detection. In the scenario where One-Class

39

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025 



SVM is used to detect benign samples, there are many false
positives because the model encounters unseen samples during
training and misclassifies them as malware. Similarly, in the
case of using One-Class SVM to detect malicious samples,
there are also numerous false positives due to the model’s
inability to accurately identify samples from the FFmpeg
program. Overall, the F1-score is still over 90% in both cases,
but not 99,9% as it is for the balanced dataset.

Fig. 1. Confusion matrix for classification using a RBF kernel SVM

Fig. 2. Confusion matrix using a One-Class method and a benign dataset

D. Summary of results on Intel Core i5-8250U

Table IV displays accuracy, recall, precision and F1-score
for both the SVM RBF method and the One-Class method. For
the balanced dataset, all values are above 99,9%, indicating
very precise predictions. In contrast, for the only-benign and
only-malign datasets, the recall and precision values indicate
the a higher presence of false positives. Thus, clearly perform-
ing behind the balanced dataset.

E. Cross-Architecture Experimental Validation

To assess the portability of our approach across different
hardware platforms, we replicated the dataset generation pro-

Fig. 3. Confusion matrix using a One-Class method and malicious dataset

Fig. 4. Confusion matrix for classification using a RBF kernel SVM

TABLE IV
EVALUATION SUMMARY OF SVM-BASED MODELS ON INTEL CORE

I5-8250U

Dataset Method Accuracy Recall Precision F1

Balanced
SVM RBF
(Detection) 99.96ª% 99.92% 100% 99.96%

SVM RBF
(Classification) 99.91% 99.91% 99% 99.91%

Benign One-Class SVM 98.5% 92.71% 98.74% 95.63%
Malicious One-Class SVM 95.51% 99.48% 84.5% 91.38%

cess on a machine with a different architecture. The second
architecture is based on the AMD Ryzen 7 3700X processor.
This system also runs Debian 11 (Bullseye) but with a more
recent Linux kernel version 6.1.0. The CPU has a base clock
frequency of 3.6 GHz and can boost up to 4.4 GHz. It
features 8 cores and 16 threads, offering significantly more
parallel processing capabilities than the first architecture. The
processor is part of AMD’s Zen 2 architecture, manufactured
using a 7nm process. Its cache configuration is as follows:

• L1 Data Cache: 256 KiB
• L2 Cache: 4 MiB
• L3 Cache: 32 MiB
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The only required modification involved adapting one hard-
ware performance counter (HPC): the original counter for
last-level cache load misses, LLC-load-misses, was unavail-
able on the AMD processor. Instead, we substituted it with
an equivalent counter, l3 comb clstr state.request miss [45],
which provides analogous information regarding cache miss
behavior on this architecture.

Using this setup, we generated a new dataset equivalent
in structure and size to the original. We then evaluated
the previously trained models: RBF SVM and the malign-
trained One-Class SVM (without retuning the hyperparame-
ters), maintaining consistency with the original system. As in
the baseline experiments, we applied the same post-processing
steps for prediction smoothing and result refinement.

Table V presents the results obtained using the same
methods previously applied to the Intel-based architecture
(Table IV).The results confirm that the models exhibit similar
behavior to that observed on the Intel platform.

TABLE V
SUMMARY OF SVM-BASED MODELS ON AMD RYZEN 7 3700X

Dataset Method Accuracy Recall Precision F1

Balanced
SVM RBF
(Detection) 99.96% 100% 99.92% 99.95%

SVM RBF
(Classification) 98.92% 98.72% 99.2% 98.95%

Benign One-Class SVM 98.32% 92.6% 97.41% 94.94%
Malicious One-Class SVM 94.41% 99.96% 75.1% 85.76%

The two architectures employed in this study exhibit sub-
stantial differences in computational capabilities and target de-
sign. The Intel Core i5-8250U is a low-power, 8th-generation
mobile processor featuring 4 cores and 8 threads, optimized
for energy-efficient operation in portable devices. Conversely,
the AMD Ryzen 7 3700X is a high-performance desktop
processor with 8 cores and 16 threads, manufactured using
a more advanced 7nm process. It offers higher base and
boost frequencies, as well as significantly larger cache ca-
pacities—most notably a 32 MiB L3 cache compared to 6
MiB in the Intel counterpart. These architectural distinctions
position the Ryzen 7 3700X as more suitable for compute-
intensive and parallelizable workloads, while the i5-8250U is
better aligned with lightweight, general-purpose computing in
mobile environments.

Despite these disparities, the experimental findings indicate
that reproducing the complete workflow—including dataset
generation and model evaluation—on an alternative hardware
platform yields consistent and reliable results. The models
under evaluation (RBF SVM and One-Class SVM) attained
comparable levels of accuracy, even though they were initially
trained and hyperparameter-tuned on the Intel-based system.
Although a minor degradation in performance was observed,
it was largely mitigated through post-processing techniques.
This performance gap is attributed to the hardware-specific
nature of the original hyperparameter optimization, which was
tailored to the Intel architecture.

VI. CONCLUSIONS

This work builds a reliable and reproducible dataset by
using hardware counters to generate samples through the
execution of 14 programs in two x86 CPUs (Intel and AMD).
It then evaluates various ML models to determine the most
effective model for detecting and classifying hardware attacks.
Among the models evaluated, the SVM with RBF kernel
showed superior performance in detecting and classifying
attacks. With an accuracy and F1-score over 99.9% for both
detection and classification tasks.

We also analyzed two scenarios where only the benign
applications are known and only the malign applications are
known. In these scenarios, the One-Class ML model was
used and was capable of achieving an F1-score above 90% in
both cases. Yet, significantly below the 99,9% of the balanced
dataset. The larger amount of false positives reduced the F1-
score accordingly.
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Queryable Microarchitecture Knowledge Base using 
Retrieval-Augmented Generation

 
 

Abstract—Microarchitecture documentation, such as datasheets 
and user manuals, is indispensable for embedded software 
development. However, the extensive volume and complexity of 
these documents render information retrieval a time- and effort-
intensive task. To address this challenge, we propose a framework 
for constructing a queryable knowledge base on microarchitecture 
documentation, leveraging Retrieval-Augmented Generation 
(RAG) and Large Language Models (LLMs). As a proof of 
concept, we implement a knowledge base on AURIX TriCore 
TC27x documentation and evaluate this knowledge base by 
querying it with a curated set of questions. The generated 
responses are evaluated by measuring their semantic similarity to 
reference answers. In our evaluation, we assess the performance 
of six LLMs with different model architectures and sizes. The 
results show that the smaller models (with 8 billion and 3 billion 
parameters) achieve similarity scores comparable to those of the 
larger model (with 72 billion parameters). These initial findings 
demonstrate the robustness of our framework for creating 
queryable knowledge bases and the potential of smaller LLMs for 
efficient information retrieval in this context.  

Keywords-Embedded systems, information extraction, retrieval-
augmented generation 

I.  INTRODUCTION

Embedded software development relies on microarchitecture 
documentation, including datasheets and user manuals, to 
implement device drivers and various software functionalities. 
These documents contain information on, e.g., peripheral 
configuration, memory management, and internal 
microcontroller behavior. However, finding relevant 
information is a time-consuming and effort-intensive task since 
these documents are often hundreds or even thousands of pages 
long. Moreover, the required information may be dispersed 
across various sections within a single document or distributed 
across multiple documents, making it challenging to obtain 
comprehensive information efficiently. For instance, peripheral 
configuration information is often fragmented across the 
datasheet, application notes, and errata documents. 

To retrieve information quickly and efficiently, we propose 
a framework to build a queryable knowledge base on 
microarchitecture documentation. The main idea is to transform 
the target microarchitecture documentation into a structured 

knowledge base, which is subsequently integrated with an 
information retrieval process involving Retrieval-Augmented 
Generation (RAG) [1] and a Large Language Model (LLM) [2]. 
By integrating the knowledge base with the information retrieval 
process, the framework facilitates querying for Open-Domain 
Question Answering (ODQA) tasks. In addition, we implement 
a filtering concept to support document-specific information 
retrieval.  

As a proof of concept and demonstration of our framework, 
we build a queryable knowledge base on AURIX TriCore 
TC27x [3] documentation. We evaluate the knowledge base 
using a set of questions and reference answers. First, we query 
the knowledge base with the questions and record the generated 
responses. Next, we compute the semantic similarity between 
generated responses and their corresponding reference answers. 
This similarity score reflects the quality of the responses in terms 
of their relevance and alignment with the reference answers. 

The primary focus of this paper is on the development of the 
proposed framework and a preliminary evaluation to assess the 
performance of the framework. The framework currently uses a 
simple naive RAG pipeline with a single retriever to retrieve 
information from the knowledge base. Further refinement of the 
RAG pipeline and extensive evaluation of the approach are 
currently a work-in-progress and are out of scope for this paper. 

The rest of the paper is organized as follows: Section II 
describes the methodology of the proposed framework. Section 
III presents the current evaluation approach and the preliminary 
results. Section IV discusses the related work, and Section V 
concludes the paper with a brief outlook on future work. 

II. METHODOLOGY

The naive RAG pipeline in our framework consists of two 
primary components: a retriever, which is responsible for 
identifying and extracting the most relevant information from 
the knowledge base, and a generator (an LLM), which 
formulates a coherent and contextually appropriate response to 
a given user query based on the extracted information. In this 
section, we first explain the process of creating a structured 
knowledge base using the target microarchitecture 
documentation, followed by the process of information retrieval 
and response generation.  
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A. Knowledge Base Creation
Microarchitecture documents are typically PDF files from

hardware vendors. In general, these PDFs have complex table 
structures, images, and non-pertinent information, such as 
headers and footers. To make the information in the PDFs 
suitable for processing by an LLM, we first convert these PDFs 
into Markdown format using the PyPDF2 [4] Python library. 
Next, we remove non-pertinent information, translate figures 
into corresponding textual descriptions, and format complex 
table structures. Subsequently, we add metadata to every 
document, including details such as titles, versions, and tags. 

Depending on the input PDFs, these Markdown files can be 
lengthy and may exceed the context length (i.e., the amount of 
text, in tokens, the model can process) of an LLM. Hence, we 
split the Markdown files into equally sized chunks based on 
word count. Next, we link each chunk with its corresponding 
document metadata and encode these chunks into dense vector 
representations (referred to as ‘embeddings’) using an 
embedding model (e.g., all-MiniLM-L6-v2 [5]). Lastly, we 
build and associate indexes for these embeddings using the 
FAISS library [6] to facilitate faster retrieval of document 
chunks relevant to a user query. The indexing step completes the 
creation of the knowledge base. 

B. Information Retrieval and Response Generation
The information retrieval and response generation process

begins with a user query and optional filter criteria and involves 
the sequence of steps (denoted by       ) illustrated in Figure 1.  

In steps ① and ②, we filter the knowledge base and extract 
the embeddings corresponding to the document tag(s) specified 
by the user filter criteria. The resulting filtered knowledge base 
is then used to retrieve information relevant to the user query. If 
no filter criteria are specified, then the information is retrieved 
from the entire knowledge base.  

In step ③, we encode the user query using the embedding 
model and then use the FAISS library to perform a similarity 
search on the knowledge base in step ④. The similarity search 
retrieves indexes of the most similar embeddings from the 
knowledge base, and these retrieved indexes are used to obtain 
the corresponding document chunks in step ⑤. Steps ③ through 
⑤ represent the information retrieval process.

In step ⑥, the retrieved document chunks are concatenated
as context. The context is then integrated with the user query and 
the rules for generation as a prompt in step ⑦. The rules instruct 
the LLM to generate a response based only on the provided 

context. The LLM uses the information contained in the prompt 
to generate the final response to the user query in step ⑧. Steps 
⑥ through ⑧ correspond to the response generation process.

III. PROOF OF CONCEPT AND EVALUATION

A. Evaluation Setup
To demonstrate and evaluate our framework, we implement

a queryable knowledge base on a set of documents specific to 
the AURIX TriCore TC27x architecture. These documents 
include the core architecture user manuals, Instruction Set 
Architecture (ISA) description, and errata. We convert these 
documents into Markdown format and split them into chunks of 
100 words each. Next, we encode these chunks into embeddings 
and then build and associate indexes with these embeddings. The 
resulting knowledge base is evaluated through semantic 
similarity analysis.  

In our evaluation, we use Copilot and Nemotron [7] LLMs 
to generate a test dataset using the TC27x documents. The 
generated test dataset comprises 326 question-answer pairs, and 
we reviewed 25% of them to check their factual correctness. The 
answers in the test dataset serve as reference answers for 
evaluating the quality of the generated responses. Next, we 
integrate the TC27x knowledge base with the RAG pipeline and 
use the test dataset to benchmark six LLMs with different model 
architectures and sizes. Table 1 lists the LLMs under evaluation, 
and their short names represent the LLM family and the number 
of model parameters. 

We conduct our evaluation by querying the LLM with the 
test questions and recording the generated responses. This 
evaluation is systematically repeated for all the LLMs under 
evaluation, and their responses are recorded. The evaluation is 
performed on a system equipped with three NVIDIA A100 
80GB GPUs [10].  

In addition to the response quality, we also measure the mean 
inference time for each LLM to assess its computational 
efficiency. As shown in Table 1, larger models exhibit higher 
inference times (e.g., Nemotron-70B at 28.25 s), while smaller 
models respond significantly faster (e.g., Llama3.2-1B at 
1.70 s), illustrating the trade-off between model size and 
computational cost. In contrast, R1_DQwen_7B, although 
smaller than Nemotron_70B, exhibits a comparable inference 
time (27.34 s). This extended processing time is likely attributed 
to its chain-of-thought reasoning approach, which requires 
longer reasoning chains and tracking multiple logical branches, 
thereby increasing the computational effort required. 

Figure 1: Information retrieval and response generation process. 

Nr. 

44



Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025 

TABLE 1: LLMS UNDER EVALUATION. 

LLM short name Number of model 
parameters 

Model size 
(GiB) 

Mean inference 
time (seconds) 

Llama3.2_1B [9] 1.23 billion 2.31 1.70 

Llama3.2_3B [9] 3.21 billion 5.98 7.42 

Qwen2.5_3B [8] 3.09 billion 5.76 5.66 

R1_DQwen_7B [13] 7.62 billion 14.19 27.34 

Llama3.1_8B [9] 8.03 billion 14.96 6.24 

Nemotron_70B [7] 70.60 billion 131.5 28.25 

B. Semantic Similarity Score Computation
In Natural Language Processing (NLP), semantic similarity

scores are used to measure how closely two texts are aligned in 
meaning and context. In our work, we use an ensemble approach 
to compute the similarity score between the responses generated 
by different LLMs and their respective reference answers. The 
ensemble approach leverages two popular NLP metrics: 
BERTScore-F1 [11] and SBERT similarity score [12].  

BERTScore-F1 measures how similar individual tokens are 
between two sentences by considering their meaning and 
context, while the SBERT similarity score compares the overall 
meaning of two sentences by transforming them into vector 
representations and measuring their closeness. Both scores range 
from -1 to +1, with values closer to +1 indicating a higher degree 
of similarity. 

For each response generated by the LLMs under evaluation, 
we calculate the corresponding similarity scores, compute their 
means, and present the results in Table 2. The results indicate 
that the mean similarity scores remain consistent across both 
evaluation metrics. The model R1_DQwen_7B achieves the 
lowest mean similarity scores of all the LLMs under evaluation. 
This lower performance can be primarily due to two factors: (1) 
the inclusion of chain-of-thought reasoning in its responses, 
which introduces additional content, and (2) deviations in final 
answers, thereby reducing alignment with the expected outputs.  

In contrast, most of the other smaller models achieve 
similarity scores closely aligned with those of the larger 
Nemotron_70B model. In particular, the smaller Llama3.1_8B 
model slightly outperforms the larger Nemotron_70B model, 
achieving the highest similarity score of 0.67 (highlighted using 
bold text in Table 2). This finding demonstrates the potential of 
smaller LLMs for effective information retrieval.  

TABLE 2: MEAN SIMILARITY SCORE. 

LLM short name Mean BERT 
score-F1 

Mean SBERT 
similarity score 

Llama3.2_1B 0.57 0.61 

Llama3.2_3B  0.65 0.65 

Qwen2.5_3B  0.64 0.66 

R1_DQwen_7B 0.50 0.49 

Llama3.1_8B  0.67 0.67 

Nemotron_70B  0.63 0.65 

The similarity scores across models remain moderately close 
to +1, indicating a relatively high degree of similarity between 
the generated responses and their corresponding reference 
answers. This consistency highlights the robustness of our 
knowledge base framework and the computational efficiency of 
some smaller models, which are capable of generating 
contextually relevant outputs while significantly reducing GPU 
memory consumption and computational overhead compared to 
the larger Nemotron_70B model. 

IV. RELATED WORK

In recent years, several approaches have leveraged various 
RAG architectures to address a broad range of tasks. Surveys 
such as [14-16] provide comprehensive overviews of RAG-
based methods across multiple domains and applications, 
including domain-specific information retrieval, software safety 
analysis, and code generation. This section focuses specifically 
on existing approaches that employ RAG for domain-specific 
information retrieval.  

Similar to our work, AeroQuery [17] and IDAS [18] use a 
naive RAG pipeline with vector similarity search to extract 
information from aerospace standards (e.g., DO-178C) and 
vehicle user manuals, respectively. In contrast, Kieu et al. [19] 
employ a hybrid retrieval approach that combines keyword-
based and vector-based search results to enhance the 
explainability of AUTOSAR specifications. However, these 
approaches are evaluated on relatively small-scale datasets, 
typically involving only around 20 queries, which limits the 
generalizability and robustness of their findings. 

Simoni et al. [20] introduce a multi-retriever RAG system 
that retrieves both textual information and code to answer 
cybersecurity-related queries. Similarly, Balu et al. [21] use 
multiple retrievers (one per document) to extract information 
from automotive standards. While both approaches reduce 
redundancy and summarize outputs from individual retrievers, 
the aggregated information can exceed the LLM’s context 
length, potentially hindering response quality. 

Some approaches [22–25] involve Graph-RAG, which 
retrieves relevant information from graph structures rather than 
isolated textual chunks. CyKG-RAG [22] applies this to 
cybersecurity by leveraging domain-specific knowledge graphs 
for multi-hop Q&A tasks. HSG-RAG [23] constructs 
hierarchical semantic knowledge graphs to improve retrieval 
from embedded systems documentation (such as API reference 
manuals). Liu et al. [24] use Graph-RAG to retrieve information 
from automotive software specifications, and Ojima et al. [25] 
extract information from event graphs representing automotive 
failure incidents. Although these methods demonstrate 
improved contextual retrieval, they often encounter challenges 
related to traceability and the limited context length of LLMs, 
particularly when aggregating information from numerous graph 
nodes or documents. 

In contrast, our approach adopts a naive RAG pipeline 
augmented with a pre-retrieval filtering mechanism, which helps 
mitigate the context length limitations commonly encountered 
in graph-based or multi-retriever RAG systems. This filtering 
strategy enhances retrieval quality by selecting document 
chunks based on the user filter criteria, thereby improving the 
relevance of the retrieved information with respect to the user 
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query. Furthermore, our preliminary evaluation results indicate 
that smaller LLMs can achieve performance levels comparable 
to their larger counterparts, thereby highlighting the feasibility 
of resource-efficient deployments without significant loss in 
retrieval quality. 

V. CONCLUSION AND FUTURE WORK

In this work, we presented a framework for building a 
queryable knowledge base on microarchitecture documentation 
using RAG with an LLM. Our proof-of-concept based on TC27x 
documentation demonstrates the feasibility of this approach for 
quick and efficient information retrieval in embedded software 
development. As a preliminary evaluation, we used semantic 
similarity metrics to assess the performance of six LLMs with 
different model architectures and sizes. The results show that 
smaller models, including those with 8 billion and 3 billion 
parameters, can achieve similarity scores comparable to those of 
a significantly larger model with 72 billion parameters. These 
findings highlight the robustness of our framework and the 
potential of smaller LLMs as resource-efficient alternatives for 
domain-specific information retrieval tasks. 

While the preliminary evaluation demonstrates the 
feasibility of our approach, further work is required to enhance 
both the evaluation methodology and the underlying system. As 
future work, we plan to evaluate the factual correctness of the 
generated responses. This will involve developing or integrating 
more rigorous evaluation metrics and possibly including human-
in-the-loop assessments.  

In addition, we intend to refine the current naive RAG 
pipeline to improve retrieval quality. This includes optimizing 
document chunking strategies, enhancing query formulation, 
and exploring more advanced search and ranking strategies. 
These improvements are expected to increase the precision and 
relevance of retrieved content, thereby improving the robustness 
of our knowledge base framework. 

Another important step in our future work is the 
implementation of an explicit traceability mechanism. Although 
naive RAG inherently allows tracking of generated responses 
back to the retrieved chunks, we intend to formalize this process 
by extracting and verifying the relevance of each chunk with 
respect to the final answer. This will enable more explainable 
and reliable responses, thereby increasing user trust in the 
knowledge base framework. 

Finally, we plan to fully automate the conversion of source 
PDFs into structured markdown files. This includes extracting 
key elements like text, headings, and tables to streamline content 
preparation. Automating this step will significantly reduce 
manual preprocessing effort and ensure consistency and 
scalability in building and updating knowledge bases. 
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targeted, online trace-based analysis with minimal impact on 
system behavior, identifying irregularities as they manifest on 
the IVN. 

Figure 1.  Diagnosis Unit deployment in a IVN. 

Implemented on a ZCU102 platform and interfaced with 
Aurix ECUs, our prototype demonstrates the feasibility of 
detecting and correlating communication and ECU-internal 
processing anomalies. 

The rest of this paper covers related work (II), the DU 
concept (III), system architecture and demonstration setup (IV), 
detection results and system performance (V), and conclusions 
with future directions (VI). 

II. RELATED  WORK

Traditional diagnostic systems such as On-Board 
Diagnostics (OBD-II) are effective for hardware-level faults, but 
they are not designed to address dynamic, software-induced 
anomalies in modern vehicles [2]. As software complexity in in-
vehicle systems increases, researchers have explored 
complementary diagnostic approaches. 

Cloud-centric systems enhance diagnostic coverage by 
offloading data to backend processors for deeper analysis [3]. 
However, this approach incurs high bandwidth costs and cannot 

Abstract—The increasing software complexity in modern vehicles 
necessitates diagnostic capabilities beyond traditional systems. 
This paper presents a Diagnosis Unit (DU) that supports runtime 
detection and analysis of anomalies by correlating irregularities in 
Ethernet communication with ECU-internal processing behavior. 
The DU captures execution traces upon detecting anomalous 
communication and performs localized analysis to assist in 
uncovering potential root causes. Implemented on a ZCU102 
platform and interfaced with Aurix ECUs, the prototype 
effectively detects both communication and processing anomalies 
with minimal impact on in-vehicle network bandwidth, supporting 
scalable, adaptive, and non-intrusive in-vehicle diagnostics. 

Keywords- Automotive, Diagnostics, Health Monitoring, 
Anomaly Detection, Trace Analysis 

I. INTRODUCTION

Modern vehicles are evolving into software-defined systems, 
built on complex architectures with hundred of interconnected 
Electronic Control Units (ECUs) [1]. As vehicle functionality—
from driver assistance to autonomous operation—relies heavily 
on software, the associated computational demands introduce 
significant challenges for software reliability and, consequently, 
for fault diagnosis. Traditional On-Board Diagnostics (OBD) 
systems [2], though effective for hardware faults, are not 
designed to detect transient, software-induced anomalies in real-
world operation. 

Recent diagnostic methods have begun addressing these 
limitations, yet they often fall short in correlating anomalies 
between network-level symptoms and ECU-internal behaviors. 
This gap is critical, as many communication irregularities may 
reflect deeper malfunctions within individual ECUs or their 
subsystem interactions. 

We present a Diagnosis Unit (DU) that supports correlation-
based fault analysis by monitoring in-vehicle Ethernet 
communication and retrieving execution traces from the 
responsible ECU. Integrated in a non-intrusive manner at a 
gateway or central service node (Fig. 1), the DU performs 
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provide timely responses within the vehicle. Similarly, 
automated trace preprocessing frameworks, as shown in [4], 
offer rich analysis capabilities but are typically designed for 
offline use during system validation and lack feasibility for 
deployment in online scenarios within operational vehicles. 

Vehicle Health Monitoring Systems (VHMSs) incorporate 
predictive diagnostics through sensor analytics and machine 
learning [5][6]. However, they often focus on individual 
subsystems and struggle to correlate behavior across 
architectural domains. Similarly, advanced anomaly detection 
models [7][8] emphasize pattern recognition in communication 
or control flows but fall short in identifying causal relationships 
between network anomalies and ECU processing behavior. 

In contrast, the proposed Diagnosis Unit (DU) operates 
locally and autonomously within the vehicle. It monitors 
Ethernet communication for anomalies and retrieves ECU 
execution traces to analyze them for potential correlations. 
Rather than replacing existing diagnostics, the DU complements 
them by delivering runtime insights that support the 
identification of potential root causes. 

III. DESIGN AND OPERATING PRINCIPLES

A. Diagnosis Unit Subsystems
The DU comprises three tightly integrated components:
• Gateway Snooping: Passively monitors mirrored

Ethernet traffic to detect timing or behavioral anomalies 
without disrupting normal operation.

• Trace Control System: Upon detecting an anomaly,
the DU identifies the affected ECU and initiates trace
recording via its Tool Access Socket (TAS) server. This 
requires ECUs to support hardware tracing and tooling
for remote trace configuration and retrieval.

• Trace Analyzer: Retrieved traces are analyzed during
runtime to identify irregularities such as delayed
functions, excessive execution time, or control-flow
deviations potentially linked to the observed
communication anomaly.

This modular structure supports localized, event-driven 
diagnostics without requiring continuous cloud connectivity. 
The current prototype operates autonomously, with all core logic 
implemented on a ZCU102 platform. 

B. Timing Requirements for Effective Trace Capture
Effective diagnosis depends on capturing the relevant

processing history in the trace buffer corresponding to the 
observed anomaly. This observable history depends on the size 
of the trace buffer and on the tracing granularity—i.e., how 
many trace events are recorded per time unit. To ensure the trace 
includes the necessary context, the Recording Window (TRW) 
must satisfy: 

TRW ≥ ∆tAProp + ∆tDU     (1) 

Here, ∆tAProp represents the internal propagation delay before 
a processing anomaly manifests on the network. ∆tDU includes 
anomaly detection, identification of the source ECU, and the 
time to stop tracing and initiate trace retrieval. Given the limited 
size of the trace buffer and the risk of overwriting older entries, 
this constraint ensures the capture of causally relevant events. 

Additionally, ∆tTT denotes the time required to transfer the trace 
from the ECU to the DU, though it does not impact the critical 
timing path for trace preservation. Fig. 2 illustrates the timing 
relationship between these components. 

Figure 2.  Timing coordination between anomaly detection and trace 
recording. 

C. Diagnostic Advantages
The DU enables localized correlation between

communication symptoms and processing anomalies during 
vehicle operation, eliminating the need for continuous cloud 
uploads or offline trace post-processing. It operates non-
intrusively—without ECU software instrumentation—and 
integrated via gateway snooping and standard debug interfaces, 
assuming an existing ECU tracing subsystem. These features 
support future extensions such as cloud-assisted reconfiguration 
and adaptive anomaly classification for scalable, fleet-wide 
diagnosis. 

IV. SYSTEM ARCHITECTURE & DEMONSTRATION SETUP

A. Diagnosis Unit Implementation
The Diagnosis Unit (DU) is prototyped on a Xilinx ZCU102

board, which integrates a Zynq UltraScale+ MPSoC featuring 
programmable logic and a quad-core ARM Cortex-A53 
processing system [9]. This heterogeneous architecture enables 
a clear separation between time-critical data-plane functions and 
flexible control-plane logic. The programmable logic (PL) hosts 
a custom hardware module for Ethernet traffic monitoring, 
anomaly detection, and timestamping with cycle-level precision. 
The processing system (PS) runs embedded Linux and hosts the 
DU Manager, which coordinates the Tool Access Socket (TAS) 
server [10], manages trace configurations and retrieval, and 
performs local analysis of ECU traces. 

As shown in Fig. 3, the DU connects its monitoring port to a 
mirroring port on the in-vehicle Ethernet switch, ensuring non-
intrusive monitoring of communication traffic. Upon detecting a 
communication anomaly, it identifies the affected ECU and 
configures trace capture via a Tool Access Socket (TAS) server. 
Retrieved traces are analyzed locally on the DU without relying 
on external computation resources during runtime. After 
analysis, the DU generates a compacted report summarizing the 
detected communication and processing anomalies. 
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Figure 3.  Modular Architecture of the Diagnosis Unit Prototype. 

B. Demonstration Setup
To validate the DU’s diagnostic capabilities, we developed a

demonstration platform that combines real automotive hardware 
with simulation. The setup features three Infineon Aurix TC397 
microcontroller boards, each equipped with a Multi-Core Debug 
Solution (MCDS) for trace recording [11]. These boards 
simulate different ECUs making up a distributed lane-keeping 
assistant application. The ECUs are connected to the CARLA 
simulator, which supplies real-time vehicle sensor inputs from a 
dynamic driving environment and receives steering commands. 

The DU monitors Ethernet traffic for communication 
anomalies, including timing irregularities, missing messages, 
and burst structure deviations. When such anomalies are 
detected, the DU triggers trace collection to analyze processing-
level anomalies such as delayed functions, task overruns, or 
atypical execution sequences. Fig. 4 shows the demonstration 
setup with integrated hardware components.  

Figure 4.  Demonstration Setup with Aurix ECUs and ZCU102-based 
Diagnosis Unit. 

C. Anomaly Detection Criteria
To evaluate cross-domain detection capabilities, both

communication and processing anomalies were deliberately 
introduced. Communication-level anomalies included timing 
deviations, altered periodicity, and packet drop patterns, as 
formally defined in Table I. Each anomaly type was detected 
based on predefined inequality-based thresholds for timing or 
packet count deviations. 

TABLE I. COMM. ANOMALY TYPES MONITORED IN PROTOTYPE 

Anomaly Detection Rule 
Timing Deviation 
Between Bursts 

TB < TPB − ∆TB   or   TPB + ∆TB < TB 1 

Timing Deviation 
Between Packets 

TP < TPP − ∆TP    or   TPP + ∆TP < TP 2 

Packet Count De- 
viation in Bursts 

Prec < Pexp − ∆P   or   Pexp + ∆P < Prec 3 

1. TPB : Expected inter-burst interval, TB : Observed inter-burst interval, ∆TB : Burst corridor 
width threshold. 
2. TPP  : Expected inter-packet interval, TP : Observed inter-packet interval, ∆TP : Packet
corridor width threshold. 
3. Pexp : Expected number of packets per burst, Prec : Observed number of packets, ∆P: Burst
size toleranc. 

V. RESULTS AND OBSERVATIONS

A. Demonstration of Cross-Domain Anomaly Localization
Upon detecting a communication anomaly, the DU

identified the source ECU and triggered trace retrieval via the 
TAS server. These traces enabled the analysis of related 
processing anomalies, such as prolonged execution delays, 
misordered instruction/function sequences, and irregular task 
load distribution. By linking anomalies in the communication 
domain with internal ECU behaviors, the DU demonstrated 
correlated, runtime insights across system domains. 

Fig. 5 illustrates a trace excerpt highlighting instruction-level 
delays identified after a detected communication anomaly, 
confirming a processing deviation within the implicated ECU. 
Fig. 6 shows the physical prototype setup used for 
demonstration, featuring the ZCU102-based DU and connected 
Aurix ECUs with the Carla simulator as an environment for 
automotive application. 

Figure 5.  Trace Analysis and Configuration Tree Output from the DU 
Prototype. 
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Figure 6.  Physical demonstration of the Diagnosis Unit. 

B. Detection Performance and Timing Behavior
To evaluate the responsiveness of the Diagnosis Unit, we

measured its reaction time—defined here as the interval between 
the appearance of a communication anomaly on the Ethernet 
interface and the moment trace recording is halted. This time is 
critical to ensure that the trace buffer still retains the relevant 
processing history preceding the anomaly. While the 
propagation time from processing anomaly to their network 
manifestation is application-dependent, our measurement 
focuses on the DU's ability to respond quickly once a network-
level deviation is observed. 

Across multiple runs and under the configured trace buffer 
size, the DU required between 100 and 500 milliseconds to 
respond—depending on the recording granularity and the 
number of ECUs being traced concurrently. These values align 
with the buffer timing constraints outlined in Section III-B, 
ensuring adequate preservation of pre-anomaly trace context. 

Trace retrieval occurred at approximately 6 MBps via the 
debug interface per ECU, indicating low bandwidth 
requirements on the IVN—an important factor in maintaining 
system non-intrusiveness. The subsequent local analysis of the 
retrieved trace typically completed within 300 milliseconds on 
average per anomaly case, depending on the trace length and 
granularity of recorded events. These results suggest that the DU 
is capable of real-time diagnosis while introducing low 
processing or communication overhead, supporting scalable in-
vehicle deployment. 

C. System Constraints and Prototype Limitations
The current prototype implementation presents practical

constraints affecting diagnostic coverage and flexibility. A 
primary limitation is the 2~MB trace buffer per ECU, which 
restricts the retained processing history—particularly under 
fine-grained trace configurations where verbose logging can 
saturate the buffer. This bounds the diagnostic window and 
necessitates precise coordination between anomaly detection 
and trace retrieval. 

While the DU performs local analysis independently of 
backend connectivity, its current evaluation logic is limited to 
predefined rule-based models. Planned backend integration—
for dynamic rule updates and multi-vehicle correlation—was not 
included in the evaluated prototype. Similarly, advanced 
diagnostic methods, such as statistical learning or adaptive 
behavioral profiling, remain future work. 

VI. CONCLUSION AND OUTLOOK

This work presents a cross-domain diagnostic approach—
embodied in our Diagnosis Unit (DU)—that enables runtime 
anomaly detection in automotive systems by correlating 
communication anomalies with internal ECU processing 
behavior. Implemented on a ZCU102 platform and validated 
through a distributed lane-keeping assistant setup, the DU 
demonstrated its ability to localize anomalies efficiently and 
with low bandwidth overhead. 

The DU is integrated via a mirrored switch port and debug 
interfaces, enabling non-intrusive deployment without requiring 
software modifications. Its modular design supports local, on-
demand trace analysis, enhancing in-vehicle observability while 
minimizing reliance on backend infrastructure. 

For fleet-scale deployment, distributed DUs autonomously 
detect and correlate anomalous events, forwarding concise 
reports to the backend. This low-bandwidth setup reduces 
network load, preserves privacy, and enables scalable 
diagnostics. Future versions will support cloud connectivity for 
remote control of diagnosis policies, result aggregation, and 
dynamic detection model updates. 

Several enhancements are envisioned to improve the DU’s 
precision and adaptability: (i) Semantic-level anomaly 
detection, such as recognizing out-of-range signals (e.g., sensor 
or actuator values); (ii) Learning-based classification to handle 
evolving or sporadic faults; (iii) Secure trace handling and 
integration with IVN security mechanisms to support encrypted 
communication monitoring. 

Finally, for cost-effective deployment in production 
vehicles, we propose embedding DU functionalities directly into 
gateway Network Interface Controllers (NICs). Together, these 
improvements aim to deliver a scalable, resilient, and secure 
diagnostic infrastructure suited for the growing complexity of 
modern automotive systems. 
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remain fragmented, tool-specific, and often inaccessible to non-
technical stakeholders due to lack of attention to ecosystems 
unique complexities in standard analytics and performance 
monitoring solutions [3]. As a result, platform orchestrators and 
decision-makers struggle to gain actionable insights into 
ecosystem health. This paper presents Prompt-to-Metric, a 
work-in-progress system designed to address these challenges 
by enabling natural language access to platform ecosystem 
health analytics. The system integrates a hierarchical KPI 
network of approximately 400 health metrics, derived from a 
systematic literature review, and organizes them across four 
abstraction levels. By leveraging graph algorithms, Prompt-to-
Metric retrieves relevant metrics in response to user queries and 
uncovers relationships among KPIs to support deeper analytical 
insights. 

An initial prototype has been developed and deployed in a 
real-world platform ecosystem to evaluate its feasibility. 
Preliminary findings suggest that Prompt-to-Metric can bridge 
the gap between complex platform ecosystem health analytics 
and brevity and accessibility requirements of non-technical 
stakeholders. The contributions of this study are three-fold. First, 
it presents a four-tier network-based data model for ecosystem 
health evaluation metrics. Second, it presents a pipeline for 
natural language-based platform ecosystem health monitoring. 
Third, it presents preliminary findings from evaluations in real-
world settings. The remainder of this paper is structured as 
follows. Section II presents details on the KPI network used 
within the system. Section III presents details on the Prompt-to-
Metric pipeline. Section IV presents discussion of the findings 
from the preliminary evaluation of the system. 

II. KPI NETWORK FOR PLATFORM ECOSYSTEM HEALTH
EVALUATION

A. Health Metrics Elicitation
To elicit the health metrics to be integrated in the system, we

conducted a systematic literature review with a focus on data-

Abstract—Platform ecosystems are networks of interconnected 
actors co-creating value through a shared technological platform. 
Such socio-technical systems require unique key performance 
indicators and health evaluation metrics to address the unique 
characteristics and value-creation modes they entail. Several 
platform ecosystems health evaluation models have been suggested 
in literature, along with a plethora of metrics. This study presents 
Prompt-to-Metric, a system that allows users, mainly platform 
orchestrators and decision-makers, to monitor the health of a 
platform ecosystem through natural language queries. The system 
relies on a KPI network of approximately 400 health metrics 
classified across four levels of hierarchy according to a model 
developed through a systematic literature review on the topic. In 
addition, the pipeline uses graph algorithms to enhance the 
relevancy of the responses and uncover insights regarding metrics 
relatedness. The system was implemented as a prototype and is 
being evaluated for feasibility in real-world application scenarios 
using data from an operational platform ecosystem. Future work 
includes expanding the set of calculable metrics, improving 
response relevance, and further evaluation in real-world settings. 

Keywords-platform ecosystem; software ecosystem; performance 
evaluation; analytics; graph algorithms; large language models 

I. INTRODUCTION

Platform ecosystems are socio-technical networks in which 
diverse actors such as developers, users, and organizations 
collaborate and co-create value around a shared technological 
platform [1]. Examples of such ecosystems include open-source 
software communities, cloud service marketplaces, and mobile 
app stores. Assessing and monitoring the health of platform 
ecosystems presents significant challenges. Unlike traditional 
software systems, platform ecosystems involve complex 
interdependencies among actors, diverse contribution patterns, 
and evolving value-creation models. These characteristics 
require specialized key performance indicators (KPIs) and 
health evaluation metrics that capture both technical and socio-
economic dimensions [2]. Although several health evaluation 
models and metrics have been proposed in the literature, they 
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driven quantitative metrics and performance indicators of 
platform ecosystems [4]. The search was executed on three 
major scientific databases: IEEE Xplore; ACM Digital Library; 
and Scopus. Application of the inclusion and exclusion criteria, 
followed by a thorough quality appraisal, resulted in the 
inclusion of 52 primary studies in the review process after full-
text screening and analysis. The reviewed studies presented a 
mix of empirical analyses, metric proposals, and framework 
developments targeting ecosystem robustness, resilience, 
productivity, niche-creation, and evolution. Our review distilled 
416 health metrics ranging from low-level activity indicators to 
abstract ecosystem-level constructs, and varying significantly in 
abstraction, measurability, and scope. In addition to cataloguing 
these metrics, we inferred, from the overall approach of the 
reviewed studies, a structuring of the extracted metrics into a 
formal, hierarchical graph, serving as both an ontology and a 
computable model for automated health assessment which was 
integrated and operationalized through the Prompt-to-Metric 
system.  Figure 1 shows the distribution of extracted metrics 
across the inferred four levels of abstraction hierarchy 
elaborated below. 

• Level 1: Metrics at this level represent broad strategic
categories that constitute a major distinct domain of
performance for the ecosystem and frames a different
perspective on its health. Examples include technical
health; productivity; niche-creation; and network health.

• Level 2: Metrics at this level represent conceptual
characteristics and qualities that indicate performance
regarding specific goals or capabilities within a domain
of performance. While not directly measurable, they
guide the formulation of composite indicators.
Examples include visibility; scalability; and robustness.

• Level 3: Metrics at this level represent tangible qualities
and quantifiable indicators which indicate specific
modular performance aspects. These metrics are neither
abstract nor directly quantifiable but can rather be
estimated by aggregating lower-level directly
quantifiable metrics. Examples include developer
activeness; communities’ growth; contribution
satisfaction; and profit focus.

• Level 4: Metrics at this level represent directly
measurable and quantifiable performance indicators.
Examples include bug fix time; active projects count;
cash flow; and network transitivity.

B. Metric Graph Representation
Each metric was modeled as a node in a directed property

graph stored in a Neo4j graph database. Edges encode parent-
child relationships that reflect conceptual aggregation, 
dependency, or influence between metrics as suggested by their 
origin studies. Nodes represent individual metrics, and store 
metric-specific attributes such as desired direction, 
quantifiability, measurement unit, among others. Figure 2 
illustrates a subsection of this graph with each color representing 
a different abstraction level. The hierarchical layout allows 
traversing from abstract ecosystem performance aspects the 
tangible metrics that quantify them. The graph structure serves 
both analytical and operational purposes. Within the Prompt-to-
Metric pipeline, this graph also acts as the lookup structure for 
matching user prompts to valid health metrics and their 
associated computation logic. For example, it enables queries 
such as “find all measurable indicators that contribute to 
developer engagement” or “identify all financial metrics 
associated with ecosystem maturity.” 

C. Metric Operationalization and Data Mapping

Prompt2Metric draws on three categories of complementary
data sources. Each category is ingested or queried in a way that 
supports real-time calculation of its associated metrics. Each 
metric is associated with a calculation script that executed on 
different data sources according to the metric genre. 

• Network health metrics: Data from the platform’s
services and interfaces are periodically collected,
transformed and loaded into a Neo4j graph database
according to an integrative schema. This enables the
execution of graph algorithms necessary for computing
network metrics such as degree centrality, eigenvector
centrality, community evolution, among others.

• Technical health metrics: Data from DevOps, version
control, bug and issue tracking, and collaborative
coding systems of the platform are fetched on-demand

Figure 2. Visualization of a sub-graph of the KPI network. 

Figure 1.  Distribution of health metrics per hierarchy level.  
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to estimate metrics such as developer activeness, bug-
fix time, and similar metrics. Additionally, analytics 
data of the user-facing interfaces of the platform are 
utilized for calculating relevant technical metrics such 
as crash-related metrics. 

• Financial health metrics: Indicators related to financial
health of the ecosystem are computed from figures
extracted out of periodic financial statements.

III. PROMPT2METRIC SYSTEM

A. System Architecture
The Prompt-to-Metric system comprises five main

components: 

1) Metrics graph database: As described in Section II.

2) Query-to-Metric mapping engine: A language model-
based component that serves as the technical bridge
between natural language user inquiries and ecosystem
health metrics. This component achieves the following
functions.
• Receiving the user’s query from the interface.
• Accessing the comprehensive list of available

metrics.
• Semantically analyzing the query to identify intent

and required metrics.
• Selecting the most relevant metrics from the

metrics database.
• Executing node centrality and community

detection analyses on the metrics database to
identify strongly relevant or closely related metrics 
to the initial list of relevant metrics.

• Generating the corresponding code for the selected
metrics.

3) Metric execution pipeline: A service that achieves the
following functions.
• Generates the concrete data request for the chosen

metric, either as a Cypher query (for network data)
a GitLab REST call (for technical data), or for
other data sources, according to the calculation
scripts associated with the selected metrics.

• Retrieves and executes that request against the
corresponding data source.

• Invokes Neo4j Graph Data Science algorithms
when network metrics require centrality or
community detection.

• Post-processes raw results into user-friendly tables
or charts and attaches a textual interpretation

• Logs the prompt, query, runtime and output to our
MLflow instance for traceability and evaluation.

• Streams the formatted response to the Streamlit
chat interface.

• Optionally persists snapshots for longitudinal
analysis.

4) User interface: Prompt-to-Metric is delivered through a
single-page Streamlit chat application that runs entirely
in the browser. All conversational context is kept inside 
the session state containing the alternating user-
assistant message list, the identifier of the last metric
served, and a small cache of recently generated Cypher
and REST queries. Because this state object is scoped
to the browser session, no external store is needed to
preserve the context between prompts. UI components
include data visualizations widgets, in addition to
feedback elicitation buttons. Figure 3 presents a
screenshot of the interface after returning metric
statistics in response to a query.

5) Evaluation and logging: Every user interaction is
tracked by a two–stage feedback pipeline with two
components.
• Automatic run logging: As soon as a workflow is

completed, a background thread generates a new
MLflow run, which is hosted inside the team’s
GitLab instance, that records: the raw prompt and
timestamp; the selected metric ID and definition;
the generated calculation script; execution time;
success flag; results row count; and the LLM model 
version that served the request.

• Explicit user feedback: If the pipeline completes
successfully, the interface displays thumbs-up and
thumbs- down buttons. A thumbs-up is logged as
feedback = 2, a thumbs-down as feedback = 1. If
the pipeline fails before a result is shown, feedback
= 0 is logged automatically. The feedback value is
appended to the same MLflow run ID in a separate
thread so that user experience remains unaffected.
This three-point Likert-style scale provides a
lightweight but actionable quality signal for
longitudinal analysis, regression testing, and future
fine-tuning of the LLM components.

Figure 3. Prompt-to-Metric Streamlit Chatbot UI interface. 
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B. Workflow
Figure 4 visualizes the end-to-end flow, which unfolds in

six steps:

• User prompt: The user submits a natural-language
inquiry through the Streamlit chat interface.

• Intent router: An LLM classifier decides whether the
prompt requests a health metric or general conversation.
Non-metric prompts are handled conversationally;
metric prompts advance to Step 3.

• Metric mapper: A second LLM request compares the
prompt with all metric descriptions in the unified graph
and selects the best-matching metric node. The metric is 
then analyzed using graph algorithms to suggest closely
related or strongly relevant metrics.

• Code generator: The selected metrics calculation scripts
are retrieved and adapted to the prompt context. The
generated code is executed on the targeted data sources,
and the responses are fetched and passed forward for
post-processing.

• Result delivery: Raw results are post-processed and
displayed in the Streamlit UI and optionally persisted as
CSV snapshots.

• MLflow logging: The prompt, chosen metric, generated
query, execution metadata, output summary, and user
feedback are logged to MLflow for traceability and
future evaluation.

IV. DISCUSSION

The preliminary evaluation of the Prompt-to-Metric 
prototype in a real-world platform ecosystem has provided 
valuable insights into its feasibility and potential impact. Early 
deployments with platform orchestrators and technical managers 
suggest that natural language access to ecosystem health metrics 
can significantly lower the barrier to understanding complex 
platform dynamics. Users were able to formulate high-level 
queries about ecosystem performance and receive actionable 
responses without requiring prior knowledge of underlying data 
structures or query languages. The hierarchical KPI network, 
comprising over 400 metrics organized across four abstraction 
levels, proved effective in structuring a wide range of health 
indicators. The integration of graph algorithms enabled the 
system to identify related metrics and suggest complementary 
indicators, which was perceived as particularly helpful for 
exploring unfamiliar dimensions of ecosystem health. However, 
the evaluation also surfaced key challenges. In particular, 
financial metrics were found to be difficult to estimate due to 
data clearance issues, which limited the system’s ability to 
provide a complete view of ecosystem health in some scenarios. 
Furthermore, certain queries involving large-scale network 
computations introduced noticeable response latency, and 
ambiguous prompts sometimes led the language model to select 
metrics that were technically relevant but not fully aligned 
withthe user’s intent. Despite these challenges, the evaluation 

confirmed the system’s potential to bridge complex health 
analytics with the accessibility needs of non-technical 
stakeholders. Future work will involve expanding the evaluation 
to additional real-world application scenarios to assess the 
system’s generalizability across diverse ecosystem types. We 
also plan to incorporate longitudinal analysis of metric time-
series data by extending the system’s storage to maintain 
historical values, enabling temporal trend analysis and proactive 
ecosystem governance. Additionally, an extended usefulness 
study [5] is planned to be carried out in collaboration with 
stakeholders and orchestrators of two different platform 
ecosystems. 
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Abstract—While reservoir computing (RC) networks offer 
advantages over traditional recurrent neural net- works in 
terms of training time and operational cost for time-series 
applications, deploying them on edge devices still presents 
significant challenges due to re- source constraints. Network 
compression, i.e., pruning and quantization, are thus of 
utmost importance. We propose a Compressed Reservoir 
Computing (CRC) framework that integrates advanced 
pruning and quantization techniques to optimize throughput, 
latency, energy efficiency, and resource utilization for FPGA- 
based RC accelerators. 

 We describe the framework with a focus on HSIC LASSO 
as a novel pruning method that can capture non-linear 
dependencies between neurons. We validate our framework 
with time series classification and regression tasks, for which 
we generate FPGA accelerators. The accelerators achieve a 
very high throughput of up to 188 Megasamples/s with a 
latency of 5.32 ns, while reducing resource utilization by 12× 
and lowering the energy by 10× compared to a baseline 
hardware implementation, without compromising accuracy 

Keywords—Dataflow accelerator, Echo state network, 
Pruning, Quantization, Time-series application. 

I. INTRODUCTION  AND BACKGROUND

Reservoir computing (RC) has emerged as a promising 
alternative to traditional recurrent neural network (RNNs), 
offering a simpler and more efficient approach to time-
series analysis. The most common variant of RC is the 
Echo State Network (ESN), which consists of an input 
layer, a reservoir layer, and an output layer as illustrated in 
Figure 1. The input layer is connected to the neurons in the 
reservoir layer through randomly generated synaptic 
connections with weights, modeled as a matrix 𝑾𝑾𝒊𝒊𝒊𝒊. The 
reservoir layer contains neurons with randomly initialized 
sparse interconnections, represented by the matrix 𝑾𝑾𝒓𝒓. The 
reservoir is the core of an ESN, where the feedback 
connections of neurons together with the non-linearity of 
their activation functions form a high- dimensional 
dynamical and non-linear system. The output layer is 
connected to the reservoir via weighted connections, 
denoted as 𝑾𝑾𝒐𝒐𝒐𝒐𝒐𝒐. Unlike standard RNNs, where all layers 
are trained, an ESN simplifies the training process by 
randomly initializing and fixing the input and reservoir 
layers. Only the output layer is trained using basic 
regression techniques, significantly reducing the 
computational cost and complexity of training [1]. The 
reduced effort for training and the rather simple layer 
structure make RC approaches well suited for time-series 
tasks on edge devices, particularly for non-linear time 
series forecasting and time-series classification [2]. This 
increased network size results in significant computational 
effort and energy requirements during inference. Thus, 
effective network compression techniques are studied to 
reduce the network size and the computational load without 
compromising performance [3], [4].  

For example, network pruning techniques to reduce the 
number of neurons and connections are discussed in [4]–
[6], and quantization for RC models is studied in [2], [7], 
[8]. In our previous work [9], we presented an approach to 
map ESN to FPGA hardware as a fully unrolled and 

quantized dataflow streaming architecture that achieves 
ultra-low latency and extreme throughput. 

In this work-in-progress paper, we propose the feature 
selection technique HSIC LASSO to be used as a novel 
pruning algorithm for RC models. HSIC LASSO identifies 
and removes less important neurons by considering 
nonlinear correlations within the network, which is a 
novelty over related work. We present a Compressed 
Reservoir Computing (CRC) framework for the efficient 
mapping of RC models to FPGAs, combining pruning and 
quantization as compression techniques. We 
experimentally study the effects of pruning and 
quantization and show that we can reduce the hardware 
resource requirements up to 12× and decrease the energy 
by 10× compared to a 32-bit fixed- point baseline hardware 
implementation. 

II. PROPOSED CRC FRAMEWORK
Figure 2 depicts the overall flow of our proposed framework 
for Compressed Reservoir Computing (CRC) on FPGAs. The 
flow includes four main steps. The first step is Network 
Initialization, where we construct and train an RC model for 
a given dataset. This step leverages the ReservoirPy 
framework [10] and includes hyperparameter optimization to 
achieve the required accuracy. The second step is HSIC 
LASSO Pruning, where we eliminate less significant neurons 
from the model by considering their non-linear correlations. 
The third step is Quantization and Streamlining, which uses 
a hardware-friendly streamlining approach to quantize all 
layers of the RC using the Brevitas framework [11]. The final 
step is Direct Logic Implementation, where we convert the 
compressed RC model into an FPGA design by mapping all 
RC layers onto LUT-based structures and creating an RTL 
(Register Transfer Level) description for the overall design. 
Subsequently, we synthesize the design into hardware using 
Xilinx Vivado and evaluate parameters such as the finally 
achieved accuracy, hardware resource usage, throughput, 
latency, and power. The remainder of this section details the 
novel HSIC LASSO-based pruning for RC, followed by an  
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Fig. 1. Layer model of echo state networks (ESN).

56

mailto:ghasemzadeh@reno.de
https://doi.org/10.64552/wipiec.v11i1.99


Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025 

overview of the streamlining quantization approach. The last 
two steps of our flow were elaborated in more detail in [9]. 

A. Pruning Echo State Networks via HSIC LASSO

Traditional methods to identify and prune less contributing 
neurons in an ESN include Spearman [12], PCA [13] and
LASSO [13]. Spearman directly assesses a neuron's
contribution to accuracy by measuring how well its
activity predicts the final output. Keeping a neuron with
high correlation helps minimize the prediction error. PCA
work indirectly as it ranks neurons based on their
contribution to the reservoir's internal dynamic "richness,"
not to the final output. Hence, PCA provides a superior
feature space for the output layer to learn from, thereby
reducing the error. LASSO directly ranks neurons by their 
importance in minimizing prediction errors within a
simplified linear model. By forcing the weights of
nonessential neurons to zero, it explicitly identifies and
removes the neurons that can be ignored with the least
impact on accuracy. All this methods are iterative
removing neuron by neuron and retraining the network as
long as the desired accuracy is retained.

None of the traditional methods, however, captures
the nonlinear correlation that exist between the neurons of
the reservoir and the reservoir and the neurons of the
output layer. HSIC LASSO leverages the Hilbert-Schmidt
Independence Criterion (HSIC) to measure nonlinear
dependencies, making it particularly suitable for pruning
ESNs. In contrast to traditional methods, it provides an
efficient alternative by enabling the selection and removal
of redundant neurons in a single step, once the
hyperparameters are selected. After removal of redundant
neurons, the network is retrained.

HSIC LASSO [14] is an extension of the traditional
LASSO method, which replaces the mean squared error
component of the objective function with a nonlinear
dependency measure. The objective function of HSIC
LASSO is formulated as:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (1
2

 ||𝑅𝑅𝐶𝐶 −∑ 𝑊𝑊𝑖𝑖𝑈𝑈𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ||𝐹𝐹2𝐴𝐴 = 𝜋𝜋𝑟𝑟2 +  𝜆𝜆||𝑤𝑤||1) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑤𝑤𝑖𝑖  ≥ 0 ∀𝑖𝑖        (1) 

Where |. |𝐹𝐹  denotes the Frobenius norm, and 𝑤𝑤 ∈ 𝑅𝑅𝑛𝑛 in 
is the weight vector that determines the contribution of each 
neuron. The matrices 𝑅𝑅𝑐𝑐 ∈  𝑅𝑅𝑑𝑑×𝑑𝑑 and 𝑈𝑈𝑐𝑐

(𝑖𝑖) ∈  𝑅𝑅𝑑𝑑×𝑑𝑑  are 
centered Gram matrices of 𝑅𝑅𝑗𝑗,𝑘𝑘 =  𝑅𝑅(𝑦𝑦𝑖𝑖,𝑗𝑗 ,𝑦𝑦𝑖𝑖,𝑘𝑘) and 𝑈𝑈𝑗𝑗,𝑘𝑘

(𝑖𝑖) =
𝑈𝑈(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑥𝑥𝑖𝑖,𝑘𝑘), respectively. In this context, the Gram matrix 
𝑅𝑅 captures the pairwise similarities between the states of 
neurons in the reservoir layer. Each element 𝑈𝑈𝑗𝑗,𝑘𝑘   

(𝑖𝑖) is computed 
using a kernel function 𝑈𝑈(. , . ), such as the Gaussian kernel, 
which measures the similarity between the states of the 𝑗𝑗-th 
and 𝑘𝑘 -th neurons at time step 𝑖𝑖 . Similarly, the Gram 
matrix 𝑅𝑅 captures the pairwise similarities between the 
network outputs. 

B. Quantization Based on Streamlining Approach.
We introduce a hardware-friendly quantization approach

with the so-called streamline deployment for quantized RC 
networks. In this method, floating point (FP) operations (e.g., 
scale and bias parameters) extracted from quantization are 
absorbed into the activation function for an efficient hardware 
implementation according to streamline algorithm described 
in [9], [15]. The quantized activation layer (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ 
(𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ) is converted into a successive multi-threshold 
(MT) layer by dividing the range of the activation function 
into 2𝐾𝐾 − 1 discrete levels, where 𝐾𝐾  is the bit-width of the 
quantized activation function. The difference between these 
levels, referred to as the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐rresponds to the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of the 
activation function. The input is then compared to these 
threshold values, and the closest threshold index is selected 
as the nearest integer. However, the floating-point 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
persists in the process. To eliminate this as well, we divide 
each threshold by the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, round it to the nearest integer, 
and then multiply by the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. This method, called absorbing 
multi-threshold (𝐴𝐴𝐴𝐴𝐴𝐴), absorbs all FP calculations into the 
successive multi-threshold process. 

Fig. 2. Overview of our proposed CRC framework for FPGA-based implementation.
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  To implement the streamlined approach in our framework, 
we replace the original state update and output equations 
presented in literature [1] with the updated equations given in 
Eq. 1 and Eq. 2. In these modified equations, 𝑄𝑄𝑢𝑢(𝑡𝑡) , 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊  , 
𝑄𝑄𝑥𝑥(𝑡𝑡) , 𝑄𝑄𝑊𝑊𝑊𝑊 , and 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  denote the integer forms of quantized 
input, input weight, state and reservoir weight, and output 
weight, respectively. 

𝑥𝑥(𝑡𝑡) = �𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊  × 𝑄𝑄𝑢𝑢(𝑡𝑡) �+

 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑄𝑄𝑥𝑥(𝑡𝑡−1)  × 𝑄𝑄𝑊𝑊𝑊𝑊 ��× 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    (1) 
𝑦𝑦(𝑡𝑡) =  𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 × 𝑄𝑄𝑥𝑥(𝑡𝑡) × 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)   (2) 

TABEL I: Hardware results for the CRC framework on FPGA (worst‐case regression/classification, after pruning).

TABEL II: PERFORMANCE OF ORIGINAL VS. COMPRESSED 200-NEURON  
RC MODELS WITH COMPRESSION RATIO

III. EXPERIMENTAL EVALUATION

A. EVALUATION OF CRC FRAMEWORKE
We evaluate our framework on two widely used RC

benchmarks: The HandsOutlines dataset as a time-series 
classification task, and the Henon Map dataset as a regression 
task for time-series forecasting. Figure3 presents a 
comprehensive comparative analysis of the ESN model 
performance, measured as accuracy for HandsOutlines and 
RMSE (root-mean square error) for Henon Map for the 
original un-pruned model, models pruned with Spearman, 
PCA, LASSO, and with our proposed HSIC LASSO-based 
technique for varying reservoir sizes.  

To get a meaningful and fair comparison, we have varied 
the reservoir size from 50 to 350 and determined the pruned 
network sizes using the HSIC LASSO technique. Then, we 
have used the related pruning techniques to reduce the 
networks to the same sizes. Hence, we compare the pruning 
techniques at the same compression ratios. The compression 
ratio is defined in Eq.3, where 𝑁𝑁𝑅𝑅𝑅𝑅  and 𝑁𝑁′𝑅𝑅𝑅𝑅  depict the 

reservoir size in the numbers of neurons for the original and 
pruned networks.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁′𝑅𝑅𝑅𝑅

   (3) 

Figure [3] shows that HSIC LASSO performs better than 
related pruning methods for both classification and regression 
tasks, the exception being PCA which achieves a slightly 
better accuracy for HandOutlines with reservoir size 200. For 
the regression task, our proposed pruning method even 
achieves lower error than the original un-pruned model, which 
points to overfitting. As depicted in Table II, HSIC-LASSO 
can reduce the number of neurons by almost 1.8X and 3.8X 
for the reservoir layer in the datasets HandsOutlines and 
Henon Map System with negligible performance losses. 

B. Hardware Implementation for Compressed RC
Our CRC framework maps the pruned and quantized

ESN models to FPGA in the form of a direct logic  
implementation. All computations are fully unrolled, and 
weights are hardwired into look-up tables (LUTs) to 
eliminate memory accesses [16], [17]. Such an approach 
promises ultra-low latency and extreme- throughput. Since 
the available logic resources limit the size of the ESN that 
can be mapped to an FPGA, the approach is targeted towards 
small and medium sized ESN typically found in edge 

Fig.3. Performance (accuracy, RSME) of the original and pruned networks across reservoir sizes. 

Accelerator Network Size Bit-width (K) LUTs FFs Throughput [Msps] Latency [ns] PDP 
[µWs] 

Baseline RC 𝑁𝑁𝑅𝑅𝑅𝑅= 200 32-bit fixed-
point 1,629.2K 923.7K 120 8.34 3.31 

Quantized RC 𝑁𝑁𝑅𝑅𝑅𝑅  = 200 8-bit quantized 21.9K 14.0K 185 5.40 0.65 

Pruned RC 𝑁𝑁′𝑅𝑅𝑅𝑅 = 149 32-bit fixed-
point 228.8K 134.5K 125 7.97 2.34 

Compressed RC 𝑁𝑁′𝑅𝑅𝑅𝑅 = 149 8-bit quantized 4.6K 2.7K 188 5.32 0.31 
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applications. Further, compression techniques as discussed 
in this paper are not only vital to achieve efficient hardware 
resource usage and reduced energy consumption, but also to 
improve scalability. Our framework generates ESN designs 
in Verilog, which are then synthesized with Xilinx Vivado 
2022.2 to the Virtex Ultra-Scale xcvu19p-fsvb3824-1-e 
device. 

Table I compares the impact of quantization, pruning, and 
the combination of them (compressed RC) relative to a 
baseline RC on the metrics hardware utilization, throughput, 
latency, and Power Delay Product (PDP). The baseline RC 
is without any pruning, but also a fully unrolled streamlined 
design with 32-bit fixed-point quantization, and piecewise 
linear approximation for the activation function. The other 
quantized designs use 8- bit quantization and the successive 
multi-threshold approach to realize the activation function. 
The reported results for latency and PDP are for running a 
regression/classification on one input vector. 

Table I shows that the baseline RC achieves a high 
throughput of 120 Msps and a latency of 8.34 ns, at rather high 
hardware costs. By applying the proposed streamline 
quantization for the same size network, the resource usage 
drops significantly. By leveraging quantization and pruning 
(compressed model), it is possible to further reduce hardware 
costs down to 12× and 8× in LUTs and FFs, respectively, 
with maximum throughput and minimum latency. The 
compressed model also achieves the lowest PDP, with 10× 
improvement over the baseline RC. 

IV. CONCLUSION
We have presented a CRC framework that leverages HSIC 
LASSO-based pruning and hardware-friendly quantization to 
compress an RC model for efficient FPGA implementation. 
The compressed direct logic implementation achieves high 
throughput and ultra-low latency, up to 188 Megasamples/s 
and 5.32 ns, respectively, and reduce resource utilization by 
12× and energy by 10× compared to a baseline hardware 
implementation. 
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Abstract—Deep Neural Networks (DNNs) have experienced 
significant growth over the years, accompanied by a 
corresponding rise in energy consumption due to their escalating 
demand for computational resources. To mitigate the 
environmental impact of AI, and address growing concerns over 
data privacy, a growing trend is to process data locally at the edge 
rather than relying on large-scale data centers. FPGA-based 
systems are particularly suited for this kind of applications, with 
their low power consumption to high parallel computation ratio. 
The main drawback of commodity FPGAs is their limited 
hardware resources, constraining the size of the DNNs which can 
run efficiently on such targets. This paper presents a methodology 
for distributed DNNs on multiple commodity FPGAs to support 
models that are usually only suited for larger FPGAs. We are able 
to support the inference for a MobileNetV1 on six Zedboards with 
a peak throughput of 118.3 inferences per second for an estimated 
power consumption of 16.176 Watts. 

Keywords-Machine Learning, Deep Learning, CNN, FPGA, Edge 
Computing  

I.  INTRODUCTION

The inference of deep neural networks (DNNs) and 
particularly convolutional neural networks (CNNs) at the edge 
(through edge and fog nodes) has gained in popularity for its 
energy efficiency, data locality, and data privacy – all growing 
concerns [1]. This computation can be done by a variety of 
hardware, e.g.: smartphones [2], [3], microcontrollers [4] and 
FPGAs, leading to the rise Tiny Machine Learning (TinyML) 
[5], i.e., the deployment of machine learning models on ultra 
low-power, resource-constrained devices. Microcontrollers are 
a possible target, but while they fulfill the need for very low-
power consumption, they lack the efficient parallel computation 
capability of FPGAs, while suffering the same drawbacks of 
having too few resources to support larger models. Performing 
the inference of large scale DNNs and CNNs require a massive 
amount of floating-point operations.  

As data privacy is an important factor, implementing a 
system closer to the data source may help avoid resorting to 
cloud-based solutions. Yet, high-end FPGA are expensive and 
have a high absolute power consumption (can be over hundreds 
of watts). In the context of smart buildings, where heterogeneous 
low-power devices are abundant, commodity FPGAs offer a 
very promising trade-off: they yield a low power footprint while 
being able to take advantage of parallelism in a pre-trained 
neural network model, thus being able to deliver great 
performances in the context of edge computing. However, 

commodity FPGAs offer limited hardware resources, making 
the implementation of DNNs challenging for models larger than 
a few binarized layers.  

Multiple techniques have been developed in recent years to 
provide a flexible way to implement DNNs on FPGA, such as 
FINN [6], from weight compression using quantization, up to 
using only one or two bits for weights and bias [7]. Operations 
conversion has also been developed to leverage this level of 
compression [8], [9]. Few works have tackled distributed 
inference on FPGAs to support larger networks or to speed up 
computation. Alonso et al. [10] focused on resource partition and 
optimization for splitting a MobileNetV1 and a Resnet50 across 
two high-end FPGA boards. It is based on direct FPGA to FPGA 
communication with 100 Gbps Ethernet links, using VNx IP 
cores. While this setup yields very high throughput, it is not 
suited for low-power IoT devices. Some works have explored 
such hardware. Notably, Fiscaletti et al. [11] used FINN to split 
a network of binarized CNN on three Pynq boards, but their 
model splitting was done manually. Jiang et al. [12] have tackled 
the implementation of a framework for DNN distributed 
inference on multiple FPGAs. They use it on two boards to speed 
up DNN inference, but it does not implement the hardware 
optimizations used by FINN related to quantized neural 
networks.   

In this paper, we address the problem of how to fit DNNs 
onto several embedded devices on the same network while 
leveraging FPGAs suitability for hardware acceleration and their 
low power consumption. In addition, we are interested in the 
possibility to substitute a dedicated high-end FPGA for a 
multiple of networked low-power commodity FPGAs. We 
propose a way to distribute DNN models inference over several 
FPGAs when a single board is not sufficient to hold the whole 
DNN. Communications are handled by the CPU, while the 
actual inference is done by the FPGA.  

II. METHODOLOGY

Our approach enables the deployment of DNNs, typically 
suited for high-end FPGAs (e.g., Alveo U250) due to their size, 
onto commodity FPGAs by partitioning the model into multiple 
sub-models. These sub-models are distributed across a network 
of SoC-FPGAs.  

Our methodology provides a flexible and scalable approach 
to FPGA-based inference, enabling larger models to run on low-
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cost hardware. While it does not yet match the performance of 
high-end FPGAs, it represents a step toward more accessible and 
efficient distributed inference solutions. Our work uses FINN as 
a basis for hardware implementation to run inferences. FINN can 
convert a DNN model to target an FPGA. It will take an ONNX 
model representing the DNN architecture and its weights, 
convert it to multiple intermediate representations and output a 
bitstream file, including the model and custom Direct Memory 
Access (DMA) engines. However, the intended use is to take a 
complete model to produce a configuration that will fit in a 
single FPGA. Our goal is to partition the model into smaller sub-
models that can each fit into a commodity FPGA and 
communicate with each other to complete the overall model. To 
achieve this, we split the ONNX model representing the DNN, 
use FINN to generate a bitstream from each sub-model, use 
those bitstreams to configure each board, and establish 
communication with every board to run inferences.  

Network Splitting Strategy 
To allow medium size DNN models to fit on low-power 

FPGAs, it is necessary to split them to fit resource constraints. 
FINN [9] is used to automatically generate a preprocessed model 
and a per-layer resource estimation. The resulting split is based 
on those models. The objective of our automated splitter is to 
maximize resource occupancy to reduce the number of 
bitstreams. Fig. 1 provides an overview of our splitting process. 
Currently, only the network splitting is automatic. FINN’s 
preliminary and complementary steps are still launched 
manually.  

To find a suitable cut, the ONNX graph is traversed, starting 
from the first layer. For each node, the required resources 
estimate (i.e., LUTs, BRAMs, DSPs) are added, until they 
exceed available resources for a given board. For now, the only 
objective of our automated splitter is to maximize resource 
occupancy to reduce the number of bitstream files (in the future, 
other metrics and objectives may be targeted, such as the amount 
of data transmitted between layers to reduce network traffic). 
The original ONNX model is then split into several ONNX 
submodels. The resulting models are then fed to FINN to 
generate FPGA design as well as a bitstream for each sub-model. 
We modified FINN to support the Zedboard for bitstream 
generation (since we do not use the Pynq OS, we have no need 
for the Pynq overlay). For now we target identical boards, but in 
the future we will have different types of SoC-FPGA systems, 
and some submodel may only fit on specific boards, or 

alternatively, a given sub-model may be allocated differently 
resource-wise (to favor resource utilization, limit power 
consumption, etc.) depending on the target hardware for a given 
submodel. A more complex automatic solver will be required 
then.  

III. EXPERIMENTAL RESULTS

A. Experimental Testbed
The overall system is architected as a pipeline, with each

SoC-FPGA board running its own client/server software. The 
client part sends data to the next board while the server part waits 
and processes data from the previous board (see Fig. 2). 
Submodels are generated beforehand, as explained in Section II. 
Each board embeds all submodels (including Initial weights), 
stored locally as bitstreams. A client can distribute a DNN on-
the-fly by ordering a selected board to reconfigure its 
Programmable Logic (PL) into the desired submodel.  

Each board can be queried independently by the orchestrator. 
Communications are thus handled by a TCP server written in 
C++, and running on the Processing System (PS) side, as shown 
in Fig. 2. The server directly interacts with the PL part to trigger 
network inferences through the CPU.  

Fig. 2: Example of a full communication for a DNN divided into six bitstreams, 
from an image input to the model classification (Sub model 6 output), from 
right to left in a sequential manner. 

Fig. 1: DNN splitting process. Complete pipeline from quantified DNN to FPGA implementation. 
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DNNs are fully executed on the FPGA fabric, with no 
contribution from the CPU: the ARM processor is only used for 
data transfers: network communications, input data buffering, 
and moving data to and from the PL. It currently runs on two 
threads, one listening for incoming data and storing them in a 
queue, while the second pops data items from the queue, passes 
them to the PL and sends the output to the next board. For this 
study, our system is comprised of 6 Zedboards (using Zynq 
XC7Z020) connected to a 1 Gbps Ethernet switch. The Zynq is 
a heterogeneous system with a dual-core processor (ARM 
Cortex-A9) coupled with an FPGA (XC7Z020-CLG484-1). 
Each board is set up with an identical version of Petalinux 
v2024.1. A laptop acts as an orchestrator for initial configuration 
and as a client sending data to the first board and receiving model 
inference output from the last (see Fig. 2). Time measurement 
has been taken client-side to account for all network transit. 
Power estimations are given by Vivado after the bitstream 
synthesis stage. In our case, we take the sum of each PS and PL 
estimates for each board.  

B. MobileNetV1
MobileNetV1 [13] is a CNN with 3.22 million parameters.

The DNN is quantized to 4 bits for weights and activations. We 
are using the version made available by Xilinx on their FINN 
example git repository. It has been trained on the ImageNet 
dataset [14] using input images with a resolution of 224×224×3 
pixels. Using our splitting automation script, it resulted in 6 
bitstreams which can each fit in a single XC7Z020. In FINN, the 
folding configuration is the per-layer selection of processing-
element (PE) and SIMD-lane counts that affect the level of 
parallelization of each layer, trading resource use against 
throughput. Default folding configuration was used, except for 
the first and last layer of every submodel where, respectively, 
SIMD and PE were set to two. This is due to the 4 bits 
quantization of the MobileNetV1. This allows to pack multiple 
data words into a single byte at DMA level to avoid having half 
empty bytes at the sub-model output. This halves the network 
communication overhead. The number of layers in those six 
submodels is very disparate (31 layers for the first submodel, 
only 5 for the last submodel). This is due to the high variability 
in resource consumption between each layer, as shown in Fig. 3. 

Fig. 3: Resources per layer and layers per sub-model (separated by red dotted line), cumulative resources per sub-model in semi-transparency, layers not 
requiring DSP nor BRAM are not plotted (account for 57 layers out of 86 — 66.3% of the total). A small number of LUTs is used by each omitted layer in this 
case. The vertical limit represent the limit for each resource type. In transparency, the cumulative resources used by each layer on a submodel. 

TABLE 1 COMPARISON TO EXISTING WORKS ON TINY ML ACCELERATION 
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The disparity is also present in the type of resources used: For 
this model, using the default folding configuration, targeting a 
single Zedboard, the total estimated resources yield 126% of its 
LUTs, 340% of its DSPs and 378% of its BRAMs.  

Fig. 4 breaks down the computation and network cost in 
time. There we can observe that transfer times vary widely. It is 
due to the difference in input/output sizes of the submodels (up 
to 100 kb per inference between submodel 1 and 2). Submodels 
inferences time also widely vary from 6754 μs for submodel 1, 
to 3422 μs for submodel 6. This could be leveraged with 
submodels duplication and parallel processing using more 
boards.   

Using our pipelined architecture we are able to achieve 118.3 
peak FPS for a batch size of 1 using our neural network splitting 
technique. Hence, we achieve a throughput sufficient for real-
time video classification while maintaining reasonable power 
consumption.  

IV. CONCLUSION

In this paper, we have presented a methodology to partition 
neural networks across several commodity SoC-FPGA systems. 
This solution supports an arbitrary number of bitstreams and 
boards. Our first results are promising with a peak throughput of 
118.3 inferences per second for MobileNetV1. We stand at a 
compromise between throughput and power requirements. 

It is difficult to compare pure performances between works 
since most papers use different hardware, slightly different 
models, may use an object-detection head (SSD) in conjunction, 
and/or an altogether reworked MobileNet architecture. Our 
solution is suited to local processing of data with its fairly small 
power consumption, with a throughput allowing for real-time 
image processing. We believe it is suitable for environments 
seeking data privacy and that do not want to rely on cloud 
services. 

Future work includes partitioning larger neural networks to 
map onto FPGA chips, forming a heterogeneous system of 
FPGAs to accommodate particularly large layers. This will 
imply exploring the various tradeoffs to partition such networks, 
e.g., maximal resource usage per board, the type of resources
used (e.g., BRAM vs. LUT-RAM, etc.), as well as automatic
generation of folding configurations.
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Abstract—The literature on Microservices Architecture (MSA) 
outlines a range of design blueprints as well as certain detrimental 
practices, reflecting the diverse architectural considerations 
inherent in MSA design. However, it remains unclear whether and 
to what extent the practitioners actually adopt the good practices. 
The study aimed to explore how MSA practitioners apply 
established patterns and how they address various architectural 
drivers. The advantages and disadvantages of these approaches 
were also examined. To achieve this, we conducted a survey on 
patterns in microservice design among a group of 77 MSA 
practitioners from IT companies worldwide. The survey shows a 
need for more accessible and standardised the MSA solutions 
supporting MSA design phase. 

Keywords-Microservices architecture, MSA, Survey, Patterns, 
MSA design 

I.  INTRODUCTION

The ideal starting point for a project is to build it with a 
monolithic architecture, utilising a single database and a single 
executable that can be easily run on a developer machine [1]. 
This type of architecture is structured with three primary layers: 
the client-side user interface, the server-side application, and a 
database. As the system grows, the maintenance of its 
architecture is becoming a challenge for developers and 
architects - all requests must be handled by a single process, and 
even a minor change triggers the deployment process for the 
entire application [2]. To overcome these disadvantages, a new 
type of architecture was introduced - Service-Oriented 
Architecture (SOA) [3]. SOA is an architecture designed with 
multiple services that collaborate with each other to provide the 
final set of functionalities. Each service is using a separate 
system process and promotes the re-usability of the software. 
This architecture also gives the possibility of replacing a service 
with another implementation as long as it keeps the same set of 
functionalities and communication interface. SOA usually still 
relies on a single database for the entire system, which ultimately 
results in the deployment of the entire application, and often uses 
the SOAP protocol for communication [3].  

The Microservices Architecture (MSA) is an evolution of the 
SOA concept, offering greater independence through loosely 

coupled, small services that communicate via lightweight 
mechanisms such as: RESTful API or stream-based 
communication [4]. Microservices are designed for deployment 
in cloud environments, where their advantages simplify 
maintenance, enable autonomous scalability, and support 
independent deployment [5].  

During the design phase of a MSA application, several 
challenges can arise, which require careful attention to ensure 
successful implementation. A primary challenge lies in 
determining the appropriate set of patterns to be employed 
during the implementation phase. Wrong architecture can lead 
to tightly coupled services, unnecessary fragmentation, or 
raising of technical debt [6], [7]. One possible approach involves 
supporting, balancing, and optimizing the Microservices 
architecture through the application of an appropriate set of 
design patterns. The goal of using design patterns in 
microservices design is to create a solution that satisfies the 
business's diverse needs while considering the various technical, 
operational, and financial factors at play. 

The scientific literature provides a wealth of analyses and 
proposals for MSA design. However, it remains unclear to what 
extent these concepts are actually implemented by MSA 
practitioners in real world settings. This paper aims to address 
this gap by exploring the practices of a diverse group of MSA 
practitioners, primarily IT architects and software developers. 
We sought to understand the techniques they use for MSA 
design, the patterns and anti-patterns they apply. To achieve this, 
we designed and conducted a survey on MSA, involving 77 
relevant participants in total from MSA professionals from IT 
companies around the world. 

The rest of the paper is structured as follows. Section 
Background briefly outlines related literature and surveys on 
patterns and anti-patterns. Section Method introduces the MSA 
survey discussed in this publication, presenting the research 
questions, assumptions, detailing the groups of survey 
participants and examines potential threats to the validity of the 
survey. The following section presents results of the survey, 
categorised into areas: API Gateway, Circuit breaker, discovery 
mechanisms, transactional messaging, maintaining data 
consistency, querying and service observability. Section 

Manuscript received July 14, 2025; revised September 2, 2025; 
accepted July 25, 2025. Published September 2, 2025. 
Issue category: Special Issue on DSD/SEAA 2025 on Works in 
Progress (WiP) Session, Salerno, Italy, Sept. 2025 
Paper category: Regular 
DOI: doi.org/10.64552/wipiec.v11i1.101 

64

https://doi.org/10.64552/wipiec.v11i1.101


Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025 

Discussion interprets and discusses these findings and finally 
section Conclusions concludes the paper. 

II. RELATED WORKS

Distributed systems, such as microservices, require a new set 
of technologies that must be integrated alongside the 
architecture. To manage initial setup costs, the use of new 
libraries and design patterns should be kept to a minimum [8]. 
In [9] the author analyses and describes diversified MSA design 
patterns applied to different levels of architecture such as 
communication, database, decomposition, discovery, 
deployment testing, and observability. In [3] the author extends 
the previous set of patterns with categories: reliability, 
scalability and security. Also, [3] proposes patterns focused 
more on human interaction and UI architecture (e.g. Micro 
Frontends, Central Aggregating Gateway, Backend for Frontend 
- BFF). Those patterns promote flexibility and loose coupling to 
enhance the development of large-scale systems.

Choosing the right set of patterns can be challenging and 
publications that address this topic can be found in [10], [11]. 
Also, the research community is increasing its attention around 
quality attributes (e.g. performance, scalability, security) in 
Microservices Architecture [4], [12]-[15] and the dependencies 
between microservices [16].  

In [17], the authors also collect information about the usage 
of design patterns in MSA. They used the Likert scale to 
describe the use of patterns, and the comparison is discussed in 
the Discussion section. In [18], the authors propose queueing 
networks to obtain quantitative insights about seven 
performance-oriented patterns. Also in [11] the authors analyse 
the set of 14 design patterns on seven quality attributes during 9 
semi-structured interviews. The set of patterns was chosen from 
the Azure Architecture Center [19]. 

The industry uses the patterns and strategies to improve the 
process of implementing the MSA, but many practitioners tend 
to overlook a critical aspect, the existence of anti-patterns and 
how they may evolve throughout the various phases of the 
transition. In [20] the authors describe eight anti-patterns and 
divide them into two categories: design and implementation. In 
[21] 19 anti-patterns are described and the research is also
extended by adding visualization of these anti-patterns. In [22]
the quality model based on 11 anti-patterns is proposed. It shows
the need for solving this urgent issue in the form of a decision
model lowering the impact of anti-patterns on overall MSA
design.

III. METHODOLOGY

To guide the study, the research questions were formulated 
as follows. 

• RQ1 - What are the most commonly used design
patterns in MSA?

• RQ2 - What patterns are rarely used by
practitioners?

• RQ3 - Is data consistency across multiple
microservices maintained by design patterns?

To address these questions, we formulated a survey that was 
conducted among 77 participants from seven countries on three 
continents: Europe (Poland, Great Britain, Germany, Austria), 
North America (United States), and Asia (India, Afghanistan). 
The majority (82%) of the respondents work for companies with 
more than 1.000 employees. The participants work on the 
applications from sectors: IT (24%) followed by e-commerce 
(19%), finance (16%), engineering (11%) and others (30%). 

In the survey, 92% of the respondents declared a 
programming role - out of which 29% are architects, 9% 
technical leaders and 54% software developers. The other 8% of 
the respondents are consultants, delivery manager, team leader, 
engineering manager, software quality (tester), director and 
chief procurement officer (CPO). The seniority of the 
participants is as follows: 83% of the respondents declared the 
level of senior knowledge, 14% declared the regular level of 
knowledge. Only 3% said they are at the beginning of their 
professional path (junior). 

In the survey we focused on the design patterns commonly 
used side by side with MSA which can be found in the literature 
(Tab. 1). Patterns were divided into five groups related with their 
purpose: 

• Communication and reliability,

• Discovery mechanism of Microservices,

• Transactional messaging,

• Maintaining data consistency,

• Observability and monitoring.

The first part of the questions focused on reliability (Circuit 
Breaker), external API patterns (API gateway) and querying 
techniques (CQRS, API Composition). These patterns are 
configured to establish reliable and secure communication with 
a distributed architecture.  

The next part of the survey focused on the discovery 
mechanism of microservices. This mechanism is the most 
crucial topic for fault tolerance scenarios [23]. The services that 
are not working properly must be replaced by new instances and 
it is a typical action that improves the system's reliability. We 
asked our respondents if they are using the discovery mechanism 
in their applications, where the discovery of the services is 
placed (client-side or server-side), and if they use self- or third-
party registration systems.  

Transactional messaging was the subject of the next part. 
Each microservice maintains its own state and has its own 
database, if needed [3]. Several design patterns were introduced 
to overcome the problems with data consistency, distributed 
transactions, and eventual consistency. Transactional outbox 
(outbox pattern), message relay, and polling publisher are 
patterns that are responsible for establishing reliable 
communication between Microservices. Patterns were also 
added on the database layer where the transaction log miner uses 
the transaction log (transaction journal) and publishes each 
change as a message in message broker. We asked about usage 
of those patterns and which of them are used in the participants'  
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TABLE I. SYSTEMS. PATTERNS REFERENCE IN LITERATURE 

Data consistency in the distributed system is one of the most 
complex topics [24]. Maintaining distributed transactions when 
objects are constantly changing must be secure and consistent 
through all the databases involved in the process. We asked 
practitioners if they used any patterns to achieve this goal and 
which of these patterns are implemented in their applications. 

The last part of the design patterns section of the survey was 
focused on observability and monitoring. In huge systems with 
MSA we need to rely on automation that will bring back all 
components in the case of any unexpected or faulty behaviour 
[23]. On the other hand, logs and monitoring services should 
provide us with documentation of such troublesome behaviour 
to improve the reliability of the system in the future. Detailed 
results of the survey are described in the next chapters. 

We acknowledge the possible threats to validity related to 
the research method, the findings, and the strategies that were 
used to mitigate these threats. They are as follows: 

• responses collected can limit their findings - 77
responses were received, the number might be
increased if we redo the survey in future works;

• respondents may have different interpretations and
understandings of MSA and the design patterns -
graphics describing patterns were provided and open
option was added in most of the questions to give space 
also for other answers;

• lack of clarity of the questions - four pilot surveys were
conducted with system architects with extensive
experience in MSA, language of some of the questions
was improved;

• responses from those who were not involved in
designing the Microservices systems - by using
branching, we closed some of the questions to those
respondents without experience in MSA;

• some of the design patterns might have not been
mentioned in the survey - open answer was added for
any other pattern that was not mentioned.

IV. RESULTS OF THE SURVEY ON MSA PATTERNS AND ANTI-
PATTERNS

The study focuses on analysing design patterns commonly 
used in MSA. The main problems which can be encountered 
during work with Microservices are: distributed transaction, 
discovery and reconnection mechanisms, data consistency, and 
querying. 

Communication and reliability. In MSA large monolithic 
applications are divided into smaller modules (microservices). 
In this approach the potential points for a cyberattack is bigger, 
because each Microservice has its own interface for the 
communication. To mitigate some of the potential risks, the API 
Gateway pattern was introduced [15]. In addition, it solves 
problems with cross-platform compatibility and inconsistent 
issues with microservices call standards [25]. This pattern can 
also be extended into a Backend for Frontends approach (using 
multiple API Gateways), which further enhances its versatility. 
The API Gateway pattern is commonly used in the projects of 
the respondents (73%). More than a quarter (26%) is not using 
it in their projects. One participant decided to not answer this 
question. This pattern’s popularity is also evident when 
examining its usage broken down by project role (Fig. 1). 

Circuit breaker is used to improve the resiliency of the MSA. 
During communication between Microservices Circuit Breaker 
detects faults and protects the system from cascading failures 
[26]. It works like a fuse, and when failures consecutively cross 
the threshold, a circuit breaker will stop the downstream request 
(open state) for a certain period. After that period, the circuit 
breaker allows part of the test calls (half-open state) and resumes 
normal operation (close state) until these calls succeed [4]. The 
Circuit Breaker is not as commonly used in participant projects 

Pattern 
Referenced works 

Richardson[9] Newman[3] Newman[8] 
API Gateway 

   
Circuit breaker 

 
CQRS 

 
API Composition 



Server-side discovery 
 

Client-side discovery 
 

3rd party registration 
 

Self registration 
 

Transactional outbox 


Polling publisher 


Transaction log tailing 


Domain event 
   

Aggregate (DDD) 
   

Event sourcing 
 

Saga 
   

Log aggregation 
   

Application metrics 
   

Audit logging 


Distributed tracing 
   

Exception tracing 
 

Health checks API 


Log deployments and 
changes  
Correlation ID 

   
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in comparison to the API Gateway even though its complexity 
is compensated by already existing implementations within 
libraries (e.g. Polly, Resilence4j). It is used in 36% of the 
projects, 61% declares that they are not using it, and 3% (two 
participants) did not answer the question. 

In MSA the information is scattered between different 
databases belonging sometimes to hundreds of microservices. In 
the monolithic architecture, a single database can provide the 
dedicated views serving data that the user is looking for. One of 
the challenges in MSA is to handle querying the data across the 
whole system. One of the potential solutions to this problem is 
by using API Composition pattern. The pattern provides a 
simple method to query the data in MSA [17]. The API 
Composer is a central point of the querying system which knows 
which microservice endpoint should be called to get the data. 
Potentially a front-end client could be an API Composer, but due 
to firewall restrictions and network limitations, it is better to use 
API Gateway as an API Composer (API Gateway is an internal 
part of the server solution). This pattern is quite simple and 
intuitive for querying in MSA. However, it also has its 
drawbacks such as higher costs of the infrastructure (calling of 
multiple services each time when data is needed), risk of lower 
availability (API Composer and all involved microservices need 
to be available for a query), and potential inconsistencies in 
transactional data. A more detailed description of this pattern 
can be found in [9]. The second approach can be CQRS - a 
pattern that separates read from write operations by querying 
different databases and keeping them in sync using a dedicated 
strategy (e.g. Event Sourcing or Relational Database 
Management System trigger with a special flag to mark data as 
'dirty') [10]. This pattern can also be implemented as a single 
centralised service with dedicated views updated by changes in 
other databases. The advantages of using CQRS are as follows:  

Figure 1.  Resilience, communication and data maintenance patterns divided 
by role in the team among all particpants 

• efficient implementation of querying in MSA (one
single DB with dedicated views),

• efficient implementation of diverse queries (different
databases types can be easily handled),

• can be connected with Event Sourcing,

• improves separation of concerns.

Using CQRS can also have disadvantages related to that:

• system architecture is more complex,

• replication lag needs to be taken into consideration.

A detailed description of this pattern and its advantages and 
disadvantages can also be found in [9]. 

According to survey respondents, CQRS is the most popular 
approach for querying in the MSA (41%). API Composition is 
used in 32% participants' projects. There are also respondents 
who do not use any pattern (23%) and left the answer to this 
question blank (3%). There is also one other response: "The 
system uses the REST in communication with the user", which 
may indicate the usage of API Composition. 

Discovery mechanism. The Microservices' environment is 
very dynamic - virtual machine instances are started and stopped 
due to failures and scalability features of the MSA. The 
discovery mechanism uses the Service Registry to store all 
available instances in the system and helps routing application 
traffic [23]. The next question was obligatory for all participants 
and the following two were answered only if the answer was 
'Yes' to the first one. The service discovery mechanism is used 
by 38% of the participants, which is quite low number if we 
consider the dynamic nature of the MSA - new instances are 
added to the system when others are shut down within 
sometimes seconds. 

In service discovery, we can use two major approaches: 
client-side and server-side [9]. Client-side is using Service 
Registry to get all running instances and using load balancing 
algorithm (e.g. round-robin or random) is choosing the server 
which will be used. The main advantage of this approach is the 
possibility of using multiple platforms (e.g. Kubernetes and an 
in-house solution with local data centre servers). The 
disadvantages of this solution are: handling of service discovery 
mechanisms on client side (especially hard with different 
technological stack in each microservice), configuration, and 
maintenance of the service registry as part of MSA. The second 
approach is to use server-side (platform) discovery. In this 
approach, the client calls a router, which is load balancing the 
traffic to all registered services (after querying the service 
registry). The main advantages are: client code is simpler due to 
the fact that it does not need to deal with discovery and use one 
of the available solutions e.g. Azure Load Balancer, Amazon 
Elastic Load Balancer. The disadvantages are: maintenance of 
the router (if it is not cloud based), router needs to support the 
communication protocols (e.g. HTTP/S, gRPC) also more 
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network hops are required in comparison to client-side [27]. The 
server side is the most popular approach among service 
discovery users (66%) and the client-side implementation is 
declared by 34%. 

The second part of service discovery is the registration 
mechanism. It can be implemented in two forms: self-
registration and third-party registration [9]. In the self-
registration each instance should inform the service registry that 
it is up and running. The advantage is that each service knows 
its own state and can give more information than up or down, 
e.g., starting, available, warm-up [28]. As a disadvantage of this
approach we can point: coupling to service registry, each
instance needs to implement service registration logic, faulty
instance (running, but not able to handle requests) has problem
with unregistering from service registry. The second approach –
a 3rd party registration - is adding 3rd party registry which is
responsible for registering and unregistering a service.
Advantages of this approach are the following: the service code
is less complex than in self-registration. The registry can also
perform periodic health checks. The disadvantages are
simplified state knowledge (running or not running) and having
another component in the architecture (which sometimes must
be additionally installed) [29]. The majority of service discovery 
users (83%) prefer to use self-registration and other users declare 
using 3rd party registration (17%).

Service discovery does not appear to be widely adopted also 
when we analyse it by the different participant roles. While the 
mechanism is inherently complex to implement [9], its adoption 
can be significantly simplified by leveraging existing solutions 
such as Kubernetes, AWS Service Discovery, and Consul. 
Among those who do use it, self-registration and server-side 
approaches are the most common, with usage distributed fairly 
evenly across all three groups (Fig. 2). 

Figure 2.  Service discovery and transactional messaging patterns usage 
divided by role in the team among all participants 

Figure 3.  Transactional patterns used in participants' projects 

Transactional messaging. In MSA each microservice 
should maintain its own state, and microservices should avoid 
sharing the database and instead have a database per 
microservice [3]. This leads to possible problems with data 
consistency, ACID transactions, and supporting multiple 
denormalization [17]. Several design patterns were introduced 
to overcome these issues. One of them is a transactional outbox 
(outbox pattern) used in databases to store all messages in a table 
called OUTBOX. The atomicity of the operation is kept due to 
the fact that the transaction is local. Another pattern is message 
relay, where messages are read from the table and published to 
the message broker. The next design pattern is focused on the 
message moving from the database to the message broker. 
The polling publisher periodically searches the database for 
waiting messages and publishes them on the message broker. 
Finally, the messages are removed from the database. A more 
sophisticated approach assumes using the transaction log 
(transaction journal). Each database operation there is stored as 
an entry in the transaction log. The transaction log miner reads 
the transaction log and publishes each change as a message in 
the message broker. This approach can be implemented for 
relational databases or NoSQL databases. Detailed descriptions 
of these patterns can be found in [9]. 

Respondents were asked if they use any kind of transactional 
messaging pattern. Almost half of the participants (44%) declare 
that they use these patterns in their projects. 

The next question was only available for those participants 
who answered 'Yes' in the previous question. The respondents 
were asked which patterns are actually used in their projects, 
with the possibility of selecting multiple patterns. The most 
popular pattern is the transactional outbox (47% of 34 
responses), but was sometimes not marked together with the 
polling publisher or the transaction log tailing (47% of the 
answers), which transactional outbox relies on. The respondents 
prefer to use the polling publisher (38%) than the transaction log 
tailing (18%). Two respondents decided not to mark any answer 
even though there was some other option (6% out of 34 
answers). The results are visualised in Fig. 3. 

The transactional outbox is used most frequently by 
architects, which may indicate that it is primarily configured 
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during the initial stages of the project, and that developers may 
not be aware of its presence in the solution (Fig. 2). 

Figure 4.  Data consistency and transactional messaging patterns usage in 
participants' projects 

Maintaining data consistency is one of the most crucial 
challenges that can occur in distributed systems such as MSA. 
The additional difficulty is also to provide transactions in 
NoSQL databases that will work side by side with relational 
databases [30]. Also, eventual consistency - stabilisation of the 
system after distributed transaction, may cause problems with 
availability and scalability [24]. Due to these problems, design 
patterns maintaining data consistency should be introduced. 
Domain events are used in the Domain-Driven designed 
systems. They are published when the data is updated and can 
be consumed by other services. Domain events are often 
combined with aggregates (Aggregate pattern) that are modelled 
around one transaction in the system [31]. Aggregates emit 
domain events when they are created, updated, or deleted. When 
the process cannot be handled by one single microservice then 
the Saga pattern is used. Provides a mechanism that ensures the 
consistency of data between multiple microservices. One of the 
challenges related to Saga patterns is that they only provide 
ACD (Atomicity, Consistency, Durability), but without the 
isolation property [9]. The following pattern that can be used to 
maintain data consistency is Event Sourcing, in which changes 
in the application state are stored as sequences of state-changing 
operations [32]. In Domain-Driven Design (DDD) systems, this 
pattern can be easily adapted to store the changes of the 
aggregates, which may give the following benefits: 

• the domain events published reliably,

• the history of the aggregates kept,

• facilitated combining of relational and object
approaches,

• possibility to be combined with Saga pattern,

• providing access to "time machine" - travelling in
history using changes between objects.

From the other side Event Sourcing might be inconvenient 
due to: 

• steep learning curve,

• messaging-based approach which may result in higher
complexity,

• evolving and deleting of data more complex than in
traditional persistence,

• querying the event store is challenging.

A more detailed description of the advantages and
disadvantages of Event Sourcing can be found in [9]. 

The use of patterns to maintain data consistency by the 
survey participants' projects is similar to transactional 
messaging patterns - 44% of respondents (34 participants), but 
the answer was marked by other participants. After combining 
the two results, transactional messaging patterns alone are used 
by 21%, data consistency patterns alone are used also by 21%, 
23% are using both and 35% are not using either transactional 
messaging or data consistency patterns (Fig. 4). 

The next questions were only available to those users who 
answered yes in the question about patterns usage to maintain 
data consistency. The most common approach for this is to use 
domain events (59% out of 34 responses). Event Sourcing 
pattern is used in 44% of the projects of the users of data 
consistency patterns. Aggregates are used in 38% of the projects, 
and Saga patterns are used in 32%. Other answers (2 out of 34 
answers) are: 'Outbox' and 'Real models with consistency check 
run by serverless code'. 'Outbox' answer written by the 
participant is probably referring to the transactional outbox 
pattern described in the previous section. The results are 
visualized in Fig. 5. 

Observability and monitoring. Each application must 
provide its Service Level Agreement (SLA), which is the 
contract between the company and their customers and set forth 
the expected service parameters [33]. To measure the overall 
MSA parameters and provide Quality of Service (QoS) metrics, 
observability patterns were introduced. Observability is often 
defined as a combination of metrics, logging and tracing [34]. 
The patterns that can be used for microservice observability are 
the following: 
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• Health Check API - exposes the endpoint which
gives the information about health of the service
often represented as state,

Figure 5.  Data consistency patterns used in participants' projects 

Figure 6.   Service observability patterns used in participants' projects 

• Log aggregation - centralized logging server which
aggregates the information from log service activity 
and write logs and can provide alerting and
searching functionalities,

• Distributed tracking - tracking the flow of the
requests between services by assigning each
external request an unique ID,

• Exception tracking - each exception is reported to
exception tracking service which is de-duplicating
an exception, alerts developers and tracks the
resolution,

Figure 7.  Observability and monitoring patterns usage divided by role in the 
team among all participants 

• Applications metrics - metric server is aggregates
the metrics maintained by microservices, such as
counter and gauges, and prepare the visualization
and alerts,

• Audit logging - records user actions in a database
or file and enables searching, ensures compliance
and detection of suspicious behaviour,

• Correlation ID - is similar to the distributed
tracking, but is also used in queuing and in Saga
pattern implementations. [23], [35].

The patterns mentioned above are described in detail in [9]. 

The survey participants largely declare that they use the 
service observability patterns (71% in total). In the following 
question the number of users rise (all the participants could mark 
one of the patterns) to 92% (only six participants did not mark 
any of the patterns). The most popular patterns are: log 
aggregation (73%), health check API (68%) and application 
metrics (64%). In around half of the projects these patterns are 
used: exception tracking (42%), audit logging (39%) and 
correlation ID (36%). Less popular service observability 
patterns, but still used in one quarter of the projects, are: 
distributed tracking (27%) and log deployments and changes 
(27%). The participants declare that in 8% of the projects there 
are no observability patterns used at all (6 responses without any 
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pattern marked). There were no other patterns mentioned in the 
answers. The results are visualized in Fig. 6. 

An analysis by team role across all participants shows that 
the most commonly used patterns (Health check API, 
Application metrics and Log aggregation) are similarly popular 
among architects, developers, and other roles (Fig. 7). 

V. DISCUSSION

During the survey, participants were asked about the design 
patterns that are used in their projects. Patterns are commonly 
used to solve recurring types of problems in software 
architecture [17]. The patterns analysed in the survey can be 
divided into three main categories: communication patterns, data 
patterns, and observability patterns.  

Communication and reliability. The first two patterns 
analysed in the survey were API Gateway and Circuit Breaker. 
The API Gateway pattern is declared to be commonly used by 
the survey's participants. Implementation of this pattern gives 
the possibility to expose only a single layer of communication 
outside and hides the Microservices in the internal network. In 
contrast, Circuit Breaker is not as popular among participants 
(only twice as few as API gateway users). As a result, this can 
weaken the resiliency of the microservices architecture by 
impairing fault detection and leaving the system vulnerable to 
cascading failures [26]. 

The next set of patterns focused on querying the API topic. 
Participants declare that the CQRS (Command Query 
Responsibility Segregation) pattern is used more often than the 
API Composition pattern. CQRS separates read from write 
operations by querying different databases and keeping them in 
sync when any changes occur. One of the main benefits of 
CQRS is its clear separation of responsibilities between 
commands and queries, which contributes to cleaner, more 
straightforward, and easier-to-test code. It is a common practice 
to implement CQRS alongside API Composition, as combining 
these patterns can enhance system scalability and 
maintainability by clearly separating read and write concerns 
while efficiently aggregating data from multiple services. It is 
very surprising that only one third of the participants declared 
the usage of API Composition, but two third declared the usage 
of API gateway (which is one of possible implementations of 
API Composition). This may suggest a lack of understanding of 
this pattern among participants. 

Service discovery. The next set of patterns focused on the 
discovery mechanism. Service discovery is used only in less 
than half of the survey participants' projects. Without this 
mechanism, the registration must be done manually, which 
raises the complexity of the final solution. On the other hand, 
huge complexity of the mechanism implemented from the 
beginning may lead to problems with deployment of the final 
solution. The service discovery can be implemented on either the 
client-side or the server-side. The server-side approach is far 
more popular among participants. The disadvantages of the 
server side are: maintenance of the router (if it is not cloud-
based), problematic support of multiple protocols. It also 
generates more hops in the network compared to the client side. 

The last part of the service discovery is the registration 
mechanism. The most popular approach among participants is 
self-registration (each instance has the logic of how to register 
in a router), which gives them more control over the process. 

Transactional messaging. Distributed transaction handling 
is the problem that is solved by the next group of patterns. These 
patterns were introduced to overcome the problems with 
distributed databases (database per microservice) and provide 
ACID transactions in the Microservices. Only less than half of 
the participants declare the use of transactional messaging 
patterns. This may lead to the conclusion that other patterns (e.g. 
data patterns) may be in use instead. 

Maintaining data consistency patterns. The usage of data 
consistency patterns can be either an alternative or an extension 
for transactional patterns. Almost half of the survey's 
participants declared the usage of these patterns. The domain 
event pattern usage is declared by almost two-thirds of the 
participants, which may suggest the usage of Domain-Driven 
Design (DDD) in their projects. The aggregates are also defined 
in the DDD, but are used by only two thirds of the domain event 
users. This may lead to problems with the proper decomposition 
of MSA and maintaining the boundaries of microservices in the 
future.  

Event Sourcing is implemented in less than half of the 
projects that use data consistency patterns. This pattern has a 
great benefit of storing the complete story of data changes in the 
whole system, but it also comes with higher complexity and 
problems with missing events. Saga pattern is designed to be an 
alternative for distributed transaction. The implementation of 
this pattern is highly simplified by dedicated libraries, which 
expose easy-to-use API and are often free to use. The Saga 
pattern is declared to be used only in one-third of the data 
consistency patterns users. The missing implementation of the 
Saga pattern is not very severe because it can be replaced with, 
e.g. the outbox pattern, but this pattern also gives the possibility
to compensate (revert) the changes and orchestrate the
processes. For other patterns, compensation and orchestration
must be additionally implemented.

Observability and monitoring. The observability patterns 
are must-have in modern applications, which can also be found 
in the results of this survey. The large group (more than two 
thirds of the participants) declares the usage of these patterns. 
Log aggregation is declared to be the most popular pattern 
among the participants but is also often combined with the 
Health Check API. Health checks provide a quick way to detect 
when recovery mechanisms need to be triggered, while log 
aggregation allows for in-depth analysis of the issue and 
supports implementing improvements to prevent future 
occurrences. Application metrics are also a widely adopted 
pattern among participants and are essential for establishing a 
reliable Service Level Agreement (SLA) with future users. 

It is quite surprising that design patterns in general are not as 
frequently applied in practitioners' projects as we could expect. 
Thus, it is advisable to design and implement a decision model 
to support MSA architects in the effective application of these 
patterns.  
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Comparison with the other MSA survey. When 
comparing the results of our survey with the other MSA survey 
([17]), we can state that a similar set of design patterns is 
described as commonly used in Microservices. In [17], the 
authors used the Likert scale to describe the use of patterns, 
while in our survey, we simplified the answers to yes/no. In both 
surveys, the results are comparable; the most popular pattern is 
the API gateway. Sagas and Circuit breakers are used by one-
third of the participants. In our survey, we can find the increase 
in the use of the CQRS pattern compared to [17]. In that work 
CQRS usage was described as "sometimes and less", when in 
our research almost half of the participants declare to use it. In 
our survey, we also explored the observability patterns (e.g., 
health checks, exception tracking, correlation ID) and extended 
patterns found in [17] with application metrics and correlation 
ID. The usage of application metrics gives the possibility to 
calculate Quality of Service (QoS) metrics, and correlation ID 
improves the tracking of messages in the system. Both of those 
mechanisms are used in the participants' projects. In addition, 
health checks are declared to be more commonly used in MSA 
than in [17]. We can find in our results the decrease in the usage 
of exceptions, which was the second most used pattern in [17]. 
Throwing of the exceptions is computational consuming and 
patterns like the Result pattern were introduced to overcome this 
drawback.  

VI. CONCLUSIONS

Microservices-based architecture (MSA) provides great 
flexibility and scalability, making it an excellent choice for most 
modern, dynamic applications and systems. However, if not 
designed or implemented correctly, MSA can lead to significant 
performance bottlenecks, data consistency issues, and security 
vulnerabilities, among others. Thus, to fully harness the potential 
of MSA, architects must adhere to patterns that provide guidance 
on designing, implementing, and managing microservice-based 
systems effectively. MSA patterns cover a wide range of areas, 
including service decomposition, communication, resilience, 
observability, security, consistency, and more. 

This paper presents a survey and its findings that illustrate 
how architects and the IT community nowadays practically 
engage with MSA, its paradigms, and patterns. It provides an 
overview of the patterns and techniques defined for and 
commonly used with MSA. The survey results indicate that 
architects and developers express a strong demand for patterns 
that ensure the reliability and security of the system.  

The survey results show that the most commonly used 
pattern in microservices architecture (MSA) design is the API 
gateway, implemented in 73% of participants' projects. This 
pattern improves security by providing a single point of 
exposure to the public network. In contrast, a majority of 
respondents (62%) indicated that they do not employ service 
discovery patterns. While these patterns can be complex to 
implement independently, their adoption may be facilitated by 
the availability of established libraries and platforms. This 
omission can reduce the reliability of the system, as new 
instances must be added manually, increasing the overall 
complexity of the solution.  

The general findings presented may offer valuable insight to 
architects and developers, highlighting which design patterns are 
beneficial to adopt in MSA projects.  
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languages such as Cypher or Gremlin. Writing such queries is 
not only time-consuming but also requires significant technical 
expertise, which limits access for non-technical stakeholders 
such as platform managers and decision-makers. This barrier 
hampers the ability of organizations to derive timely and 
actionable insights from their ecosystem data. Recent advances 
in generative artificial intelligence, particularly large language 
models (LLMs), offer a promising opportunity to bridge this 
gap. LLMs have demonstrated remarkable capabilities in 
understanding natural language and generating structured 
outputs, enabling the development of no-code interfaces for 
complex systems. By translating natural language inquiries into 
graph database queries, LLMs have the potential to make graph-
based ecosystem analytics accessible to a broader range of users. 
However, enabling LLMs to generate accurate and relevant 
queries for graph databases presents unique challenges. 
Crucially, the model requires contextual information about the 
database schema and the underlying graph structure to formulate 
correct queries. Without this knowledge, even highly capable 
models often produce incomplete or invalid outputs. 

This paper presents a pipeline for evaluating techniques to 
inject database schema information into LLM prompts to 
improve their ability to generate correct graph queries. We 
describe our approach for schema representation and prompt 
construction, as well as a set of experiments comparing different 
injection techniques. Preliminary results from these experiments 
demonstrate the impact of schema injection on query accuracy 
and provide insights into the design of LLM-driven interfaces 
for graph databases. 

II. METHODOLOGY

This section presents the end-to-end workflow for trans- 
forming platform ecosystem data into a graph representation 
and enabling natural language to Cypher query translation 

Abstract—Platform ecosystems have transformed the way value is 
created in different industries. The data traces of such ecosystems 
are typically represented through graph models and databases. 
Retrieval of relevant data from such databases requires writing 
extensively complex queries to travers such complex networks to 
fetch and slice the correct sub-graphs corresponding to the 
original business inquiry. Advances in generative artificial 
intelligence, namely large language models (LLMs), can provide a 
no-code interface to such complex databases by generating and 
executing database queries that fetch the correct and relevant data 
in response to user prompts and inquiries. However, for the LLM 
to generate the right query, data about the schema of the database 
and the underlying graph model must be provided. In this study, 
we present a pipeline for evaluating different techniques for 
injecting the database schema in the LLM prompts, in addition to 
preliminary evaluation results.  

Keywords-graph database; software ecosystem; large language 
models; graph algorithms 

I. INTRODUCTION

Platform ecosystems have fundamentally transformed the 
way value is created and distributed across industries [1]. By 
enabling diverse actors such as developers, organizations, and 
users to co-create and exchange value around a shared 
technological platform, these ecosystems have become critical 
enablers of innovation and economic growth. The increasing 
digitization of platform activities has led to the generation of rich 
data traces, which are often represented using graph-based 
models and stored in graph databases [2]. These representations 
capture the intricate relationships among ecosystem participants, 
resources, and interactions, offering a powerful basis for 
analyzing ecosystem dynamics [3]. Despite the expressive 
power of graph databases, retrieving relevant data from them 
remains a technically challenging task. Business inquiries that 
require traversing complex networks and extracting specific 
sub-graphs often demand the formulation of sophisticated query 
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using a Large Language Model (LLM). Figure 1 outlines the 
architecture overview of the workflow for the 
experimentation and evaluation pipeline. 

A. Data Extraction and Graph Construction
Structured SECO data is collected from different data

sources. The data covers entities such as products, owners,
maintainers, visitors, devices, and usage logs. The sources
cover different types of data including DevOps, financial,
analytics data. An ETL pipeline was created and executed
daily. The pipeline consists of the following steps:

• Extract: Connects to APIs, scrapes relevant data, and
retrieves documentation and metadata.

• Transform: Drops irrelevant fields, merges multi-source
records, parses URLs, and validates entity relationships.

• Load: Loads cleaned data into a Neo4j property graph
model. Historical schema snapshots are stored for
reproducibility.

B. Generative AI Query Translation Pipeline
The Smart Assistant enables natural language interaction

for analytics. The system explores schema injection modes
varying along the following variables:

• Schema Source: Either a live schema fetched from Neo4j
via the APOC library, which pulls complete metadata of 
the graph, or the static JSON schema definition file.

• Prompt Placement: Schema injected into either the
system prompt or the user prompt.

For each query, the pipeline: Fetches or loads the schema; 
constructs system and user prompts accordingly; submits the 
prompt pair to the LLM; parses the LLM response to extract 
Cypher queries; and executes queries on the graph and returns 
results.  

C. Graph Schema Model
The SECO graph schema includes nodes for Visitors,

Devices, Departments, Companies, and APIs, connected
through relationships such as MADE, USED, PART_OF, and
ASSOCIATED_WITH.  Figure 2 shows a version of the graph 
data model schema.

D. Feedback and Evaluation Workflow

The entire experiment is tracked with MLflow for
prompt versions, model runs, and metrics, as shown in
Figure 3. GitLab CI/CD pipelines automate data
preparation, schema snapshotting, and test coverage for
each configuration. Additionally, A human-in-the-loop
workflow is integrated and comprises the following steps:

Figure 1.  Architecture overview of the experimentation and evaluation pipeline including graph database integration with the Smart Assistant for 
natural language to Cypher queries. 

Figure 2.  Graph database schema highlighting nodes and relationships.
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• Reviewers assess Cypher generation correctness and
logical validity.

• Each query is rated on a 5-point Likert scale, with
1 indicating incorrect/irrelevant output and 5 indicating
fully correct and usable queries, as shown in Table I.

TABLE I 
LIKERT SCALE FOR HUMAN EVALUATION 

Score Interpretation 
1 Incorrect or irrelevant Cypher 
2 Major logical errors 
3 Partially correct, needs edits 
4 Mostly correct, minor edits 
5 Perfectly correct and usable 

E. Chatbot User Interface
A user interface was developed based on Streamlit

Chatbot UI framework, as shown in Figure 4. It includes
the following aspects: 

• Session storage: Each session logs user prompts,
schema context, generated Cypher, execution results,
and feed- back.

• Results persistence: Users can iteratively refine queries
and view results in real-time. Previously generated
visualizations are also persisted for further refinements.

• Historical tracking: Sessions are stored for later review
and model improvement.

• Feedback elicitation: A widget is embedded in each
response to allow for feedback elicitation enabling
human-in-the-loop evaluation.

III. DISCUSSION

A preliminary evaluation of the different setups was carried out 
by executing a set of ten representative queries under the four 
experimental configurations. Human evaluation by domain 
experts were carried out for the 40 test cases. The 5-point Likert 
scale responses were aggregated so that it results in either a 
success or failure flag to facilitate comparison. The results 
suggest that including the database schema in the system prompt 
achieves higher consistency compared to embedding it in the 
user prompt. Additionally, using a well- defined static JSON 
schema generally performs better than fetching the schema live 
using the database own algorithmic functions. Simple entity-

relation queries, such as filtering visitors by device brand or 
counting unique users, achieved near-perfect success across all 
configurations. For instance, the query “List all Visitors who use 
a specific Device brand, like ’Apple’.” returned valid Cypher 
queries and expected record counts in all scenarios. In contrast, 
complex multi-hop or community-matching queries 
demonstrated higher variance. For example, the query “Show all 
Companies with Departments that belong to the same 
community as Visitor” succeeded when using the JSON schema 
but failed in all live schema scenarios. This indicates that more 
complicated traversal logic is sensitive to prompt placement and 
schema representation. Approximately 20% of test cases failed, 
primarily due to incomplete subgraph pattern matching or empty 
result sets when complex conditions were involved. Failures 
were more common in the JSON schema with user prompt 
scenario for temporal-spatial queries, such as “List all unique 
Visitors from Country X who made Visits in August 2024, along 
with the device types they used.” On average, the query 
generation time per NLQ remained under 5 seconds, while 
Cypher execution times were acceptable for interactive analytics 
workloads. All logs were stored in structured CSV files to enable 
further analysis and reproducibility. These findings highlight the 
need for prompt engineering and potential domain fine-tuning to 
handle edge cases more reliably. Future work will expand the 
query set, integrate additional LLM models, and explore 
retrieval-augmented generation. 
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Figure 3.  Performance logging of chatbot interactions in MLflow. 

Figure 4.  Snapshot of the user interface.
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