
WiPiEC Journal

Works in Progress

in Embedded Computing

Journal

Contents

Fateh Boutekkouk ...1
C Software Formal Verification

Luka Mićović ..5
MATLAB Interface for Blood Pressure Determination from Oscillometric Data

Andrei Vladimirovich Anisimov ..8
Implementation of the Project Approach

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

C Software Formal Verification
Review, challenges and future directions

Fateh Boutekkouk
ReLaCS2 laboratory, University of Oum El Bouaghi

Oum El Bouaghi, Algeria

Abstract—This paper reviews briefly the literature on formal
verification of C software. Most existing C software model
checkers and automatic theorem provers deal well only with small
size code C software. Furthermore, full mechanization of
conventional techniques to reduce the verification process
complexity as code summation and abstract interpretation is
merely impossible. Another challenge is how to choose the most
suitable tool(s) among a panoply of available tools. We think that
Artificial Intelligence can mitigate the above problems. For
instance, by applying machine learning algorithms, the
verification tool can automatically infer properties to be checked
and synthesize proofs.

Keywords-C software; formal verification; Artificial Intelligence

I. INTRODUCTION

The debut of research works on mathematical reasoning
about imperative programs goes mainly back to the works of
Floyd [13] and Hoare on the logics of axioms (Hoare logic) [17],
the works of Dijkstra on weakest preconditions calculus [8, 9]
and abstract interpretation [6]. In the same context, we find other
former works that tried to formalize and check imperative
programs using type systems [11] and algebraic semantics [14].
Since that, many extensions and logics have been developed to
reason about arrays, complex and dynamic typed data structures,
unbounded loops, floating-point arithmetic, recursive functions,
and concurrency. Separation logic [28], matching logic [35],
dependent type theory [36], and refinement types [15] are among
such extensions. Remarkable advances in SMT solvers
technology have enhanced the automation level of both theorem
provers and model checkers. Actual theorem provers and model
checkers use SMT solvers as backend helpers and other frontend
tools to reduce and simplify the verification process. Recent
works indicate that the verification of low-level systems code as
OS kernel has become tractable.

As it is known, the C language is still very popular
programing language due to its great flexibility in terms of data
representation and pointers arithmetic. C has been used to
implement operating systems kernels and embedded systems.
The majority of software in embedded systems is still written in
C. C code can also be used to automatically generate a HDL
(Hardware Description Language) code, which will be used later
in embedded system hardware part synthesis. However, C is
weak-typed (i.e. C’s types provide no invariants about data
values) and sometimes ambiguous. C standard [19] defines the

C memory model as a sequence of bytes (i.e. untyped memory
model) and underspecifies the semantics of the C language.
Furthermore, the uncontrolled use of I/O library functions can
easily create security vulnerabilities. In order to minimize the
number of bugs in C code, some solutions emphasize what we
call standards-based development. These standards (example
MISRA) impose a set of obligations and constraints on coding.
For instance, the non-use of side effect statements or pointers
[29]. Despite, this solution seems useful, it constraints the
programmer creativity and minimizes optimization
opportunities of the C code. In addition, most of these
obligations are just guidelines that lack systematization and
automatization. Producing correct imperative code can be the
fruit of the correct-by-construction design approach. In this
approach, code can be automatically synthesized through a
sequence of refinements of an abstract formal specification.
Each refinement must be proved correct with respect to the
previous one. Consequently, the generated code implements
correctly its specification. The method B follows this approach.
In contrast to functional programs, imperative programs proving
is more challenging. Indeed, it is not obvious, whether the well-
known Curry-Howard correspondence [16] which links a
functional program to its equivalent logical proof system can be
naturally applied for imperative programs. Imperative languages
include some uncommon constructors for mathematical logics
as pointers, global variables, and so on. This makes reasoning
about imperative programs in general a non-trivial task.

On the other side, Artificial Intelligence (AI) is becoming
more attractive since it can offer some powerful tools to boost
the formal verification process. Our aim through this paper is
first to review shortly the literature, then to define the main
challenges and finally to shine the spotlight on some promising
future directions in particular the synergy between software
formal verification and AI. This paper is structured as follows:
Section 2 is devoted to the state of the art on C software formal
verification. In this context, we present a set of criteria to
compare between existing approaches and tools. In section 3, we
pass quickly on the main challenges and in section 4 we discuss
some possible future directions before concluding.

II. LITERATURE REVIEW

The first initiative in the C language formalization returned
back to the work of Sethi [31] where a denotational semantics of
a subset of the ANSI C language was proposed. Despite, this

1

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

work was incomplete with respect to the ANSI standard, it gave
a big push to subsequent researchers to investigate more in this
topic. The literature on formal verification of C software is very
rich, however, we can cite some pertinent works as in [1, 3, 5, 7,
18, 21, 26, 27, 30, 34, 35], and some interesting PhD and master
thesis on the same topic as in [10, 20, 22, 25, 33]. Many code C
formal verification tools exist. For a fair evaluation of such tools,
Competition on Software Verification (SV-COMP) has been
established [4]. The first edition was in 2012 and the last one in
2023. The competition includes 23 805 verification tasks for C
programs to check four properties that are reachability, memory
safety, overflows, and termination. The evaluation is performed
based on a scoring schema that assigns points in function of the
type of the reported result (unknown, false correct, false
incorrect, true correct, true incorrect) for the given property. We
can however classify these works according to a set of pertinent
criteria. In this context, we propose a taxonomy based on ten
criteria. These criteria include the application domain, the
orientation of the software, the supported C language, the C
memory model used, the intermediate representation, the
formalization method, the logics used in the proofs, the
verification method, the reduction technique, and the type of
checked properties.

• The application domain, which can be general-purpose,
compilers, cryptography, OS kernels, device drivers,
hypervisors, embedded systems and robotics. It is
important to recognize the application domain in order
to choose the more appropriate formalism and
verification technique. For example, device drivers and
operating systems code uses pointers as first class and
the code usually contain some fragments written in
assembly code. In this case, the mathematical proofs
have to formalize in addition to C code, the assembly
code too. The type of properties to be proved may also
dependent on the domain of application. For instance,
C code that implement multi-tasks OS kernels have to
guarantee the mutual exclusion and isolation properties
and so on.

• The orientation of the software, which can be control-
oriented, data-oriented or mixt. A typical control-
oriented C software is composed of control statements
(e.g. if else, or switch) operating on very small-sized
data. On the other hand, data-oriented C software is
composed of complex operations or treatments on
large-sized data. Model checking is more suitable for
control-oriented software with simple properties and
theorem proving for data-oriented software with
complex properties.

• The supported C language which can be the full ANSI
standard, a subset of the standard (i.e. the full standard
excluding some constructors or features), or a specific
C sublanguage such as C0 and CoreC*.

• The C memory model (i.e. the heap model) which, can
be un-typed (i.e. raw arrays of bytes), typed or hybrid.
The untyped model adds significant annotation burden,
and render the reasoning computationally expensive.

The typed model however, offers a reasonable
abstraction level for verification.

• The intermediate representation of C code, which can
be a restricted subset of the C language itself as CIL,
LLVM-IR, an abstract model as the CFA (Control
Flow Automaton), or an intermediate formal language
as Simpl and Boogie. Compared to the original C code,
the intermediate representation generally has fewer
constructs and unambiguous syntax, which make
formal verification easier.

• The formalization approach, which can be annotation-
based approach, semantics-based approach,
transformational approach, reverse engineering
approach and the cooperation approach.

In the annotation-based approach, the original C source
code is annotated by specification constructs. These logical
annotations may specify functions pre-conditions and post-
conditions, loop and type invariants, assertions and so on.
From these annotations, verification conditions (VC) or
obligations proofs are generated automatically using Hoare-
style weakest precondition method and checked using an
automatic or interactive theorem prover. Annotations can be
burdensome for programmers especially if these
annotations are expressed in an unfamiliar formal
specification language. In order to overcome this issue, the
C language was extended to support Design-by-contract
paradigm giving the birth to ACSL (The ANSI/ISO C
Specification Language). In the semantics-based approach,
the semantics (i.e. operational or denotational semantics
with possibly categories definition) of the C language or a
substantial subset of it is explicitly defined in some formal
specification language. The properties to be checked are
also expressed in the same formal language. In the
transformational approach, the source code is transformed
either directly to another formal specification written in a
certain formal language (e.g. transformation of C
imperative code to a purely functional code in ML as done
by the Why tool into the Coq assistant prover) or to an
abstraction (i.e. predicate abstraction) of the original code
in the same language (i.e. C). In the reverse engineering
approach, the C source code is usually reversed
automatically to a formal or a semi-formal model using
UML. Then some formal checking is applied on this UML
model to prove or refute the desired properties. The
cooperation approach is any feasible sequential or
concurrent combination of the above approaches.

• The logics and theories of the formal system and
proofs. Those include Hoare, separation, rewriting and
temporal logics, dependent and refinement types and
category theory.

• The verification method that can be symbolic execution
with its variants (static, dynamic), theorem proving
with its variants (fully automatic, interactive proof
assistants), model-checking with its variants to verify
larger programs (with complex loops) or programs with
infinite states (i.e. symbolic model checking, abstract

2

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

model checking, bounded model checking), SAT/SMT
solving, or any feasible combination of them. For
instance, symbolic execution often calls SAT/SMT
solvers. Theorem provers, even model checkers may
call SAT/SMT solvers to increase the automation level.
A combination of model checkers and theorem provers
is also possible. For example, in the Counter Example
Guided Refinement approach, first the source program
is abstracted away using predicate abstraction
technique. A model checker working on this
abstraction may check a certain property. If the
property is not true, the model checker gives a counter
example. In this case, a refinement step will be
triggered during which a theorem prover can be called
to check whether this counterexample reflects a true
error in the program or just a spurious one due to
abstraction. The theorem prover can call in turn a SAT
or SMT solver to prove the satisfiability of a certain
condition.

• The reduction technique used to reduce the complexity
of the formal verification. Among these techniques, we
find abstraction and program slicing. Abstract
interpretation and predicate abstraction are the two
common techniques used.

• The checked properties can be simple or complex
including the functional correctness, the termination,
reachability properties, safety and security properties.
Safety may include static safety (i.e. type safety) or
dynamic safety (i.e. memory safety). Security includes
mainly confidentiality, integrity, and availability
properties.

III. CHALLENGES
Despite the big efforts spent in boosting software formal

verification process (e.g. exploring parallel and distributed
formal verification, abstraction, modular and verification reuse),
one can state that software formal verification in its current form
cannot meet the needs of industrial sized C software in terms of
performance, accuracy and scalability. With the ever increasing
in the complexity of software functionalities and non-functional
requirements, most state of the art and practice tools fail to
formally prove the functional correctness in addition to non-
functional properties as safety and security. Most users are
unfamiliar with formal techniques and often find them hard to
write formal specifications or proofs and even to use tools in
particular theorem provers. Furthermore, the majority of
available tools do not provide explanations in the case of proof
failure and in the presence of a panoply of tools; the user is not
able to choose the most suitable verification approaches and
tools. The choice is a tradeoff between a set of conflictual criteria
such as the amount of annotation effort, the automation level, the
performance, the accuracy of results but more interestingly the
soundness and the completeness of the proofs system.

IV. FUTURE DIRECTIONS
In order to increase the credibility of existing formal

verification tools for large C software, researchers tend to

integrate some powerful promising technologies in particular
AI, data mining, and quantum computing.

A. Artificial Intelligence and data mining
The idea of leveraging AI and data mining in formal

verification has been attracted many researchers [2, 12, 24, 32].
In the context of software formal verification, we can apply AI
with many flavors:

1. Automatic synthesis of formal proofs using machine
learning algorithms.

2. Automatic inference of theorems and assertions as loop
invariants and discovering pertinent properties for verification
automatically.

3. Interactive aid of users to select the most suitable
abstraction technique and the abstraction level.

4. Interactive assistance of users to choose the most
appropriate formal approaches and tools using MCDM methods
and tools integration.

5. Interactive support of users to select the most important
parts in the software requiring formal verification and properties
for checking since it is not feasible to formally verify the entire
large software against all properties.

6. Using AI optimization meta-heuristics as genetic
algorithms for example to guide the search process in model
checking.

7. Integration of explication in the formal verification
process and automatic repair of software vulnerabilities.

8. If the software code is supported with some informal
specification expressed in natural language, NLP methods can
be used to automatically or semi-automatically generate a formal
specification and test cases. The latter can be used to
complement the formal verification. Testing remains an efficient
technique to discover compiler and hardware bugs.

9. AI can be used to automatically restructure the code
software following the standards-based development approach
to simplify the formal verification.

10. Benchmarking the C software formal verification
processes, reuse and sharing the knowledge.

B. Quantum computing
Quantum computing emerged as a very powerful technology
inspired from mechanics quantum theory. Due to the
superposition and entanglement principles, researchers expect
super polynomial speedup for big algorithms including formal
verification algorithms. This paradigm however, still needs
special algorithms to reduce noise because they do not have
enough qubits to execute quantum error correction [23].

V. CONCLUSION
C software formal verification is hot research topic and a

grand practical challenge. We can observe that C software
formal verification has evolved over decades starting from
former works focusing on the definition of a formal semantic of

3

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

the C language, the use of Hoare logic and automatic theorem
provers ending by the use of more expressive logics and
mathematical theories such as separation logic and refined
types and the usage of model checkers and SMT solvers.
Unfortunately, most existing approaches and tools suffer from
many obstacles prevent them from being widespread in the
industry. Finally, most researchers and experts have
emphasized on formal verification process rethinking by
making it AI-powered to boost the performance and the
accuracy and enables tools integration and scalability. As short-
term perspective, we plan to apply machine learning and in
particular deep learning to automatically infer loops invariants
and properties to be checked in a C program with nested loops
and recursive functions.

REFERENCES
[1] J. Amilon, C. Lidström, and D. Gurov, “Deductive Verification Based

Abstraction for Software Model Checking,” Leveraging Applications of
Formal Methods, Verification and Validation. Verification Principles,
11th International Symposium, ISoLA 2022, Rhodes, Greece, October
22–30, 2022.

[2] M. Amrani, L. Lucio, and A. Bibal, “ML + FV = \heartsuit? A Survey
on the Application of Machine Learning to Formal Verification,” arXiv:
Software Engineering, 2018.

[3] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani, “Automatic
Predicate Abstraction of C Programs,” in PLDI '01: Proceedings of the
ACM SIGPLAN 2001 conference on Programming language design and
implementation, pp. 203–213, 2001.

[4] D. Beyer, “Competition on Software Verification and Witness Validation:
SV-COMP 2023,” in: Sankaranarayanan, S., Sharygina, N. (eds) Tools
and Algorithms for the Construction and Analysis of Systems. TACAS
2023. Lecture Notes in Computer Science, vol 13994, 2023.

[5] F. Boutekkouk, “Towards Automatic Maude Specifications Generation
From C Functions,” Journal of Innovation Information Technology and
Application (JINITA), vol. 5(1), pp. 83–96, 2023.

[6] P. Cousot, and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp.
238—252, 1977.

[7] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.
Yakobowski, “Frama-C A Software Analysis Perspective,” Formal
Aspects of Computing, 2012.

[8] E. W. Dijkstra, “A constructive approach to the problem of program
correctness,” BIT Numerical Mathematics, vol. 8(3), pp.174-186, 1968.

[9] E.W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, pp. 453–457, 1975.

[10] C.M. Ellison, “A Formal Semantics of C with Applications,” PhD. thesis,
University of Illinois, 2012.

[11] J.-C. Filliatre, “Preuve de programmes impératifs en théorie des types,”
Thèse de doctorat, Université Paris-Sud, 1999.

[12] E. First and Y. Brun, “Diversity-Driven Automated Formal Verification,”
2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022.

[13] R.W. Floyd, “Assigning meanings to programs,” Proceedings of the
American Mathematical Society Symposia on Applied Mathematics, vol.
19, pp. 19–31, 1967.

[14] J.A. Goguen and G. Malcolm, Algebraic Semantics of Imperative
Programs (Book), MIT Press, ISBN: 9780262071727, 1996.

[15] S. Hayashi, “Logic of refinement types,” in Proceedings of the Workshop
on Types for Proofs and Programs, pp. 157–172, 1993.

[16] W. A Howard, “The formulae-as-types notion of construction,” in Seldin,
Jonathan P.; Hindley, J. Roger (eds.), To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, Academic Press,
pp. 479–490, ISBN 978-0-12-349050-6, 1980.

[17] C.A.R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12(10), pp. 576–580, 1969.

[18] F. Ivancic, I. Shlyakhter, A. Gupta, M.K. Ganai, V. Kahlon, C. Wang, and
Z. Yang, “Model Checking C Programs Using F-SOFT,” International
Conference on Computer Design 31 October, San Jose, CA, USA, 2005.

[19] ISO/IEC 9899:2018, Information technology — Programming languages
— C, https://www.iso.org/standard/74528.html

[20] K. Jiang, “Model Checking C Programs by Translating C to Promela,”
Master. thesis, Linkoping University, Sweden, 2009.

[21] E. Kamburjan and N. Wasser, “The Right Kind of Non-Determinism:
Using Concurrency to Verify C Programs with Underspecified
Semantics,” in 15th Interaction and Concurrency Experience (ICE 2022),
EPTCS 365, pp. 1–16, 2022.

[22] R.J. Krebbers, “The C standard formalized in Coq,” PhD. thesis, Radboud
University Nijmegen, 2015.

[23] J. Larkin and D. Justice, “Achieving the Quantum Advantage in
Software,” Carnegie Mellon University, Software Engineering Institute's
Insights (blog), Accessed November 8, 2023,
https://insights.sei.cmu.edu/blog/achieving-the-quantum-advantage-in-
software/.

[24] N. Ge, M. Pantel, and X. Crégut, “Automated Failure Analysis in Model
Checking based on Data Mining,” 4th International Conference On Model
and Data Engineering, Larnaca, Cyprus, pp.13-28, ⟨10.1007/978-3-319-
11587-0_4⟩. ⟨hal-03252269⟩, 2014.

[25] M. Norrish, “C Formalised in HOL,” PhD. thesis, University of
Cambridge, 1998.

[26] S.H. Park, R. Pai, and T. Melham, “A Formal CHERI-C Semantics for
Verification,” in: Sankaranarayanan, S., Sharygina, N. (eds) Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2023.
Lecture Notes in Computer Science, vol. 13993. Springer, Cham, 2023.

[27] C. Pulte, D.C. Makwana, T. Sewell, K. Memarian, P. Sewell, and N.
Krishnaswami, “CN: Verifying systems C code with separation-logic
refinement types,” Proceedings of the ACM on Programming Languages,
7(POPL), pp.1-32, 2023.

[28] J. C. Reynolds, “Separation Logic: A Logic for Shared Mutable Data
Structures,” in Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science 22-25 July, 2022.

[29] M. Richardson, “Why you should use standards-based development
practices (even if you don’t have to),” https://www.embedded.com/ June
8, 2020.

[30] M. Sammler, R. Lepigre, and R. Krebbers, “RefjnedC: Automating the
Foundational Verifjcation of C Code with Refjned Ownership Types,” in
PLDI ’21, Canada, 2021.

[31] R. Sethi, “A Case Study in Specifying the Semantics of a Programming
Language,” Proceedings of the 7th Annual ACM Symposium on
Principles of Programming Languages, pp.117–130, 1980.

[32] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, and F. Sarro, “A Survey
on Machine Learning Techniques for Source Code Analysis,” ArXiv,
abs/2110.09610, 2021.

[33] N. Schirmer, “Verification of Sequential Imperative Programs in
Isabelle/HOL,” PhD. thesis, Technische Universitat Munchen, 2005.

[34] S. Sriya, L. Lavanya, M.M. Aditi, and N.S. Kumar, “Verification of C
Programs using Annotations,” in 2019 IEEE Tenth International
Conference on Technology for Education (T4E), Goa, India, 2019.

[35] A. Stefanescu, “MatchC: A Matching Logic Reachability Verifier Using
the K Framework,” in Electronic Notes in Theoretical Computer Science
vol. 304, pp. 183–198, 2014.

[36] H. Xi, “Dependent types in practical programming,” PhD. thesis,
Department Computer Science, Carnegie-Mellon University, 1998.

4

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

MATLAB Interface for Blood Pressure
Determination from Oscillometric Data

Luka Mićović

University of Montenegro, Faculty of Electrical Engineering,

Podgorica, Montenegro
lukamicovic22@gmail.com

Abstract—The accurate measurement of blood pressure is a
fundamental aspect of healthcare, serving as a vital diagnostic tool
for assessing an individual's cardiovascular health and overall
well-being. Traditional methods of blood pressure measurement
involve the use of cuff-based devices, such as
sphygmomanometers, which rely on the auscultatory technique.
While this method has been the gold standard for decades, recent
advancements in technology have paved the way for more
sophisticated and convenient approaches to blood pressure
determination. Blood pressure determination involves several
steps to extract meaningful information from the acquired signals.
From the detected systolic and diastolic peaks, we calculated
several key blood pressure-related parameters. This included
determining the maximum value of the diastolic valleys and its
associated time point, which provided essential information for
calculating the Mean Arterial Pressure. Utilizing the computed
thresholds and peak indices, we identified the cuff pressure values
corresponding to the systolic and diastolic peaks. These values
represented the Systolic Blood Pressure and Diastolic Blood
Pressure, respectively.

Keywords-blood pressure determination; sphygmomanometer;
LabQuest Mini; MATLAB;

I. INTRODUCTION

The accurate measurement of blood pressure is a fundamental
aspect of healthcare, serving as a vital diagnostic tool for
assessing an individual's cardiovascular health and overall well-
being. Traditional methods of blood pressure measurement
involve the use of cuff-based devices, such as
sphygmomanometers, which rely on the auscultatory technique.
While this method has been the gold standard for decades, recent
advancements in technology have paved the way for more
sophisticated and convenient approaches to blood pressure
determination.

One such innovative approach is the utilization of
MATLAB, a powerful computational software environment
widely employed in various scientific and engineering
disciplines. In recent years, MATLAB has emerged as a versatile
platform for processing and analyzing medical data, including

the interpretation of oscillometric data for blood pressure
estimation. This paper explores the development and
implementation of a MATLAB interface tailored to blood
pressure determination from oscillometric data, showcasing the
potential for enhanced accuracy and efficiency.

The oscillometric method, which relies on the measurement
of pressure fluctuations in an inflatable cuff, presents a non-
invasive and user-friendly alternative to the traditional
auscultatory technique. However, accurate blood pressure
estimation from oscillometric data involves complex signal
processing, calibration, and interpretation, often necessitating
the use of specialized software tools. MATLAB's extensive
computational capabilities, coupled with its user-friendly
interface, make it an ideal candidate for creating an accessible
and customizable solution for blood pressure determination.

This paper begins by providing a comprehensive overview
of the oscillometric method, its principles, and we delve into the
development of a MATLAB-based interface designed to process
oscillometric data efficiently and accurately. The interface's
functionality includes data acquisition, signal processing,
calibration, and the generation of clinically relevant blood
pressure readings.

Furthermore, this paper aims to demonstrate the potential
applications and benefits of our MATLAB interface in both
clinical and research settings. By facilitating the automation of
blood pressure determination and improving the accuracy of
results, this technology has the potential to enhance the quality
of healthcare delivery and advance our understanding of
cardiovascular health.

II. METHOD

The system consists of hardware and software, Fig. 1. The
sensor is in fact Vernier Blood Pressure Sensor used to measure
systemic arterial blood pressure (non-invasively). LabQuest
Mini, manufactured by Vernier, was used for data logging. It is
possible to use any newer LabQuest Mini data-collection
interface.

The principal architecture of the system is shown in Fig. 1.

5

mailto:lukamicovic22@gmail.com

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

Figure 1. The principal architecture of Blood Pressure Measurement, based
on Sphygmomanometer, LabQuest Mini sensor interface and MATLAB

A. Blood pressure determination from accelerometric data
Blood pressure determination from oscillometric data

involves several steps to extract meaningful information from
the acquired signals.

In the proposed algorithm, data acquisition and
preprocessing starts with the importation of the raw data from a
CSV file containing time values and cuff pressure
measurements. These data were read into MATLAB.

 To identify relevant features in the oscillometric cuff
pressure signal, we employed peak detection algorithms. The
primary objective was to locate the systolic and diastolic peaks
within the signal. This involved finding points in the signal
where the cuff pressure exhibited significant variations
indicative of the cardiac cycle.

Initially, we detected the systolic peak, which corresponds to
the maximum cuff pressure value during systole, representing
the peak of the cardiac cycle. The exact time at which the
systolic peak occurred was recorded.

Similarly, the end of the cardiac cycle was determined by
finding the last recorded time point in the dataset. Subsequently,
we calculated the indices within the dataset corresponding to the
duration of a complete cardiac cycle. The cuff pressure values
within this interval represented one full cardiac cycle.

To enhance the quality of the cuff pressure signal, we applied
a high-pass Butterworth filter. This filtering process involved
removing lower-frequency components, leaving only the
relevant high-frequency variations.

Following the signal filtering step, we proceeded to detect
both systolic and diastolic peaks within the positive filtered cuff
pressure signal. Diastolic valleys, representing the lowest points
in the cuff pressure signal during diastole, were detected by
inverting the positive filtered signal and applying the same peak
detection algorithm.

From the detected systolic and diastolic peaks, we calculated
several key blood pressure-related parameters. This included
determining the maximum value of the diastolic valleys and its
associated time point, which provided essential information for
calculating the Mean Arterial Pressure. Utilizing the computed
thresholds and peak indices, we identified the cuff pressure
values corresponding to the systolic and diastolic peaks. These
values represented the Systolic Blood Pressure and Diastolic
Blood Pressure, respectively.

The visual representation of the algorithm is shown in Fig.
2.

Figure 2. Cuff pressure waveform of oscillometric method [3]

III. EXPERIMENT AND RESULTS

To evaluate the effectiveness of the MATLAB-based
interface for blood pressure determination from oscillometric
data, we conducted experiments involving four individuals. The
study aimed to assess the accuracy and reliability of the
algorithm in estimating blood pressure parameters, including
Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP),
and Mean Arterial Pressure (MAP). To validate the algorithm's
performance, we will simultaneously compare the results with
the ones obtained using Vernier Logger Lite software.

The algorithm successfully processed the oscillometric data
and provided estimations of blood pressure parameters for each
participant. To facilitate a comprehensive comparison, Table 1

below presents the algorithm's results alongside measurements
obtained using the Vernier blood pressure measuring software:

6

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

Figure 3

Figure 4

All the relevant information and graphs can be found in Fig.
2, which we obtained from MATLAB, and from there, we can
read the relevant values.

IV. CONCLUSIONS

This paper presents an examination of the effectiveness of
our MATLAB-based interface for blood pressure determination
from oscillometric data. The noteworthy alignment between the
algorithm's estimations and measurements obtained using the
Vernier blood pressure measuring device serves as compelling
evidence of its accuracy and reliability. Our interface emerges
as a promising tool for blood pressure assessment in clinical and
research contexts, offering the advantages of automation and
efficiency while maintaining a high level of precision and
consistency in blood pressure parameter estimation.

The complete MATLAB code, as well as the images used in the
display, can be found at the following link:

https://github.com/UsernamekaLu/BPSAnalysis.git

ACKNOWLEDGMENT
I would like to express my gratitude to prof. dr Radovan

Stojanović for his guidance and mentorship throughout this
research project.

REFERENCES
[1] Verrij, E, van Montfrans, G., Bos, J-W. (2008, December) Reintroduction

of Riva-Rocci measurements to determine systolic blood pressure?
[2] https://www.vernier.com/files/manuals/bps-bta/bps-bta.pdf
[3] Kuo, C. H. et al. “Development of a Blood Pressure Measurement

Instrument with Active Cuff Pressure Control Schemes.” Journal of
Healthcare Engineering 2017 (2017)

Person Blood pressure in mmHg

MAP-
Vernier

MAP-
Matlab

SBP-
Vernier

SBP-
Matlab

DBP-
Vernier

DBP-
Matlab

#1 98 97.83 124 128.74 71 76.75

#2 87 96.88 119 119.26 69 71.63

#3 79 97.76 110 111.68 66 74.77

#4 88 88.14 119 117 62 66.51

Table 1

7

https://github.com/UsernamekaLu/BPSAnalysis.git
https://www.vernier.com/files/manuals/bps-bta/bps-bta.pdf

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

Implementation of the Project Approach

Anisimov Andrei Vladimirovich
Electrotechnical University "LETI" SPGETU "LETI"

Saint Petersburg, Russia
e-mail address: avanisimov@yandex.ru

Abstract—Automation is based on a structural approach. An
overview of modern approaches used in the implementation of
tasks, including modeling tasks. Modeling business processes using
CASE tools. Formation of skills to solve professional problems.
Methodology and technology of canonical design. Standardization
and professional consortia. Design based on notation standards.
Working with resources in conditions of heterogeneity of formats
and interpretation of meaning in accordance with the
characteristics of resources.

Keywords-automation of design; design methods and tools;
modeling of business processes; CASE-funds; pre-project survey;
engineering of the design object; system analysis; standardization;
professional consortia.

I. INTRODUCTION

Design automation in the framework of training provides for
the development of methods of process analysis necessary for
design; obtaining knowledge about processes. Acquisition of
special knowledge and skills necessary to participate in the
design, according to the composition, content and principles of
the organization of information support used in design tasks.
Using the acquired knowledge and skills to participate in
specific practical development activities. The proposed material
contains an overview of modern approaches used in the
implementation of the tasks set, including modeling tasks. The
field of application of modeling relates to knowledge
management. The tools are based on the fundamental
approaches of the subject area.

II. DESIGN METHODS AND TOOLS

Training from the perspective of design automation tools [1]
should include the development of business process analysis
methods. The acquisition of knowledge about information
processes is based on the acquisition of special knowledge and
skills necessary to participate in the design. As a result, the use
of acquired knowledge and skills ensures participation in
specific practical activities. It is essential to study the technology
of project management. Technical means that ensure constant
monitoring of the progress of organizational activities, the
concentration of resources on solving specific tasks by the main
existing ones in terms of composition, content and principles of
organizing information support. The design is based on the
choice of methods for modeling systems, structuring and
analyzing the purpose and function of systems, and conducting
a system analysis of the applied field. At the same time, it is
necessary to study effective algorithms using modern
technologies. During the training, it is necessary to formulate

and formalize design tasks, conduct modeling of business
processes and data using CASE tools. As well as choosing
methods for modeling systems, structuring and analyzing the
goals and functions of systems, and conducting a system
analysis. Solving design problems using formulated technical
and economic requirements. Design and technological activities
are assumed to be the main type of professional activity. At the
same time, knowledge and skills should also be linked to design
and research activities.

III. TRAINING AND OBJECTS OF PROFESSIONAL ACTIVITY

Design automation as methods and methods of designing,
debugging, production and operation of information
technologies and systems is used in the fields of mechanical
engineering, instrumentation, science, education, administrative
management, business, management, etc., and is implemented
in relation to enterprises of various profiles and all types of
activities in the context of the information society economy. In
relation to design and technological activity, the knowledge and
skills acquired by students are oriented towards individual tasks
within the framework of design and engineering activities.

The content of the discipline is focused on the formation of
skills to solve the following professional tasks in accordance
with the chosen main type of professional activity. The design
of basic and applied design technologies involves the
development of implementation tools. In particular, the
development of computer-aided design tools provides for a pre-
design inspection (engineering) of the design object, a system
analysis of relationships. After that, technical design
(reengineering), operational design, selection of source data for
design, modeling of processes and systems are possible. A
special role in the design is played by the calculation of ensuring
safety conditions. The result is accompanied by the calculation
of economic efficiency and the development, approval and
release of all types of project documentation.

IV. METHODOLOGY AND TECHNOLOGY OF CANONICAL
DESIGN

The concept of canonical design includes the composition of
the stages and stages of canonical system design. The
composition and content of the work at the pre-project stage.
Survey methods have a formalized classification based on the
classification of methods for collecting survey materials. This
also applies to the forms of documents for the formalization of
survey materials and the composition and content of work at the
design stage, as well as the composition and content of work at
the stages of implementation, operation and maintenance of the

8

mailto:avanisimov@yandex.ru

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

project. The methodology and technology of the documentation
system design allows planning and organizing project activities
based on project management standards. The training provides
the acquisition of project planning skills using standards in
project management. These include organizations for
standardization: ISO, IEC, ITU-T. Standardization in the field
of information technology is provided by professional consortia
such as IEEE, IAB, PMI, IPMA, Regional WOS, OG, ECMA,
OMG, X/Open, NMF, OSF, Joint Technical Committee
(JointTechnicalCommittee). Although, of course, in modern
conditions, the most important source of standards is
Rosstandart.

V. THE ROLE OF THE PROJECT MANAGER

The project manager carries out planning, scheduling,
analysis of their implementation, evaluates results, provides
information, manages various organizations, solves complex
tasks and allocates resources in order to achieve a predetermined
goal. The situation in which the project manager operates
requires constant attention from him, since a significant part of
his functions differs significantly from traditional ones. The
project manager tries to complete difficult work by a certain
deadline with limited resources and with the help of people
whose main work may not be related to the implementation of
this project. In addition, the project manager must have all the
knowledge and information necessary to complete the project.

VI. PREPARATION OF THE PROJECT BASED ON MODELING
In modeling, there is a division of entities into classes and

objects. The standard notation for modeling real-world objects
is UML (Unified Modeling Language).as a first step in the
development of an object-oriented program. It describes a
single consistent language for defining, visualizing,
constructing, and documenting artifacts. Developing a system
model is creating a plan. The design is based on UML notation
standards. The modeling language allows you to model
concepts and underlies the development [2].

VII. RESOURCE APPROACH
Interaction with resources is based on a semantic

description. The modern approach to access to resources is
based on a semantic description. The task of data mining [3] is
based on the annotation of knowledge specific to the selected
field. The standard used in the implementation of data access is
based on software metadata models. The scope of the model
relates to knowledge management. The means of describing the
data structure are based on the fundamental approaches of the
subject area. Access to resources is based on models. To
analyze resources, you need a way to describe their interaction.

The heterogeneity of formats makes it relevant to interpret
the meaning of information in accordance with the resource
under study. This approach is based on the organization of
management, which facilitates the understanding of the
description of resources. Technical capabilities for working
with knowledge are necessary [4], first of all, for artificial
intelligence tasks. Objects containing various types of
knowledge are the intellectual space of an organization. From

the point of view of the approach to modeling such objects, an
approach based on the ontology of the subject area is used. This
approach allows us to describe the available knowledge using
the advanced mathematical apparatus of artificial intelligence.

Description of knowledge is the main task of this discipline.
The methods of representing and describing knowledge in this
subject area can be divided into production models and
semantic networks. The production model is based on rules for
presenting knowledge based on conditions. At the same time,
an exemplary suggestion is made for searching the knowledge
base. The field of use of such models is industrial expert
systems. The semantic network is built on the basis of an
oriented graph with vertices representing concepts and arcs
establishing relationships. In relation to the task of accessing
resources, the semantic description of data sets is based on
ontology dictionaries. First of all, we note dictionaries for the
annotation of information about the origin. These dictionaries
include information about licenses. Dictionaries describing the
actual data provide data mining. It is in these dictionaries that
data types and data set specifications are presented. In addition,
there are ontology dictionaries for the annotation of knowledge.

VIII. CONCLUSION
The construction of a training system from the perspective of

design automation tools is linked to the task of creating and
distributing corporate knowledge, and is a continuation of the
work [5] and [6]. Model construction and formalization are
described using the concept of ontology. The tasks of accessing
resources used to work in corporate information systems should
be solved taking into account security when organizing remote
access [7]. The training is based on regulatory documents and
standards in the field of information technology.

REFERENCES
[1] V.N. Gridin, V.I. Anisimov, S.A. Vasiliev Fault tolerance of fault-tolerant

CAD systems based on methods of diacoptics and automation of control
of multitenate components, Journal of Radioelectronics ISSN 1684-1719,
No11, 2023.

[2] Software engineering. Paradigms, technologies, and case tools.
Lavrishcheva E.M., M. Yurait Publishing House, 2017. 280 P.

[3] Data and process analysis: studies. the manual / A. A. Barseghyan, M. S.
Kupriyanov, I. I. Kholod, M. D. Tess, S. I. Elizarov. —3rd ed., reprint.
and additional — St. Petersburg: BHV-Petersburg,2009. -512 p.: il.

[4] Context-oriented data collection systems focused on use as part of cyber-
physical systems / A. Vodiakho [et al.] // International Conference on Soft
Computing and Measurements. — 2021.-pp. 248-250.

[5] V.N. Gridin, A.V. Anisimov Compatibility of operating systems //
Information technologies and mathematical modeling of systems 2020.
Proceedings of the International Scientific and Technical conference. -
M.: Federal State Budgetary Institution of Science Center for Information
Technologies in Design of the Russian Academy of Sciences. - 2020.-p.-
12-14.

[6] A.V. Anisimov Technology of working with educational resources//
Modern education: content, technology, quality. – Proceedings of the
International Scientific and Technical conference. – St. Petersburg: St.
Petersburg State Electrotechnical University "LETI" — 2021 -pp.39-42.

[7] A.V. Anisimov, A.A. Kuzmitsky Information security in distance
learning "Telecommunications" Publishing House: Science and
Technology (Moscow) - 2018 No.7 ISSN:1684-2588 pp.41-4.

9

Works in Progress in Embedded Computing Journal (WiPiEC journal)

Supported by:

mant
•••

ISSN 2980-7298

I 111 1
9 772980 72900LJ

http:s//wipiec.digitalheritage.me

	Contents
	C Software Formal Verification
	I. Introduction
	II. Literature review
	III. Challenges
	IV. Future directions
	A. Artificial Intelligence and data mining
	B. Quantum computing
	Quantum computing emerged as a very powerful technology inspired from mechanics quantum theory. Due to the superposition and entanglement principles, researchers expect super polynomial speedup for big algorithms including formal verification algorith...

	V. Conclusion
	References

	MATLAB Interface for Blood Pressure
Determination from Oscillometric Data
	I. Introduction
	II. Method
	A. Blood pressure determination from accelerometric data

	III. Experiment and results
	All the relevant information and graphs can be found in Fig. 2, which we obtained from MATLAB, and from there, we can read the relevant values.
	IV. Conclusions
	Acknowledgment
	References

	Implementation of the Project Approach
	I. Introduction
	II. Design methods and tools
	III. Training and objects of professional activity
	IV. Methodology and technology of canonical design
	V. The role of the project manager
	The project manager carries out planning, scheduling, analysis of their implementation, evaluates results, provides information, manages various organizations, solves complex tasks and allocates resources in order to achieve a predetermined goal. The ...

	VI. Preparation of the project based on modeling
	VII. Resource approach
	VIII. Conclusion
	References

