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Abstract—While reservoir computing (RC) networks offer 
advantages over traditional recurrent neural net- works in 
terms of training time and operational cost for time-series 
applications, deploying them on edge devices still presents 
significant challenges due to re- source constraints. Network 
compression, i.e., pruning and quantization, are thus of 
utmost importance. We propose a Compressed Reservoir 
Computing (CRC) framework that integrates advanced 
pruning and quantization techniques to optimize throughput, 
latency, energy efficiency, and resource utilization for FPGA- 
based RC accelerators. 

 We describe the framework with a focus on HSIC LASSO 
as a novel pruning method that can capture non-linear 
dependencies between neurons. We validate our framework 
with time series classification and regression tasks, for which 
we generate FPGA accelerators. The accelerators achieve a 
very high throughput of up to 188 Megasamples/s with a 
latency of 5.32 ns, while reducing resource utilization by 12× 
and lowering the energy by 10× compared to a baseline 
hardware implementation, without compromising accuracy 

Keywords—Dataflow accelerator, Echo state network, 
Pruning, Quantization, Time-series application. 

I. INTRODUCTION  AND BACKGROUND

Reservoir computing (RC) has emerged as a promising 
alternative to traditional recurrent neural network (RNNs), 
offering a simpler and more efficient approach to time-
series analysis. The most common variant of RC is the 
Echo State Network (ESN), which consists of an input 
layer, a reservoir layer, and an output layer as illustrated in 
Figure 1. The input layer is connected to the neurons in the 
reservoir layer through randomly generated synaptic 
connections with weights, modeled as a matrix 𝑾𝑾𝒊𝒊𝒊𝒊. The 
reservoir layer contains neurons with randomly initialized 
sparse interconnections, represented by the matrix 𝑾𝑾𝒓𝒓. The 
reservoir is the core of an ESN, where the feedback 
connections of neurons together with the non-linearity of 
their activation functions form a high- dimensional 
dynamical and non-linear system. The output layer is 
connected to the reservoir via weighted connections, 
denoted as 𝑾𝑾𝒐𝒐𝒐𝒐𝒐𝒐. Unlike standard RNNs, where all layers 
are trained, an ESN simplifies the training process by 
randomly initializing and fixing the input and reservoir 
layers. Only the output layer is trained using basic 
regression techniques, significantly reducing the 
computational cost and complexity of training [1]. The 
reduced effort for training and the rather simple layer 
structure make RC approaches well suited for time-series 
tasks on edge devices, particularly for non-linear time 
series forecasting and time-series classification [2]. This 
increased network size results in significant computational 
effort and energy requirements during inference. Thus, 
effective network compression techniques are studied to 
reduce the network size and the computational load without 
compromising performance [3], [4].  

For example, network pruning techniques to reduce the 
number of neurons and connections are discussed in [4]–
[6], and quantization for RC models is studied in [2], [7], 
[8]. In our previous work [9], we presented an approach to 
map ESN to FPGA hardware as a fully unrolled and 

quantized dataflow streaming architecture that achieves 
ultra-low latency and extreme throughput. 

In this work-in-progress paper, we propose the feature 
selection technique HSIC LASSO to be used as a novel 
pruning algorithm for RC models. HSIC LASSO identifies 
and removes less important neurons by considering 
nonlinear correlations within the network, which is a 
novelty over related work. We present a Compressed 
Reservoir Computing (CRC) framework for the efficient 
mapping of RC models to FPGAs, combining pruning and 
quantization as compression techniques. We 
experimentally study the effects of pruning and 
quantization and show that we can reduce the hardware 
resource requirements up to 12× and decrease the energy 
by 10× compared to a 32-bit fixed- point baseline hardware 
implementation. 

II. PROPOSED CRC FRAMEWORK
Figure 2 depicts the overall flow of our proposed framework 
for Compressed Reservoir Computing (CRC) on FPGAs. The 
flow includes four main steps. The first step is Network 
Initialization, where we construct and train an RC model for 
a given dataset. This step leverages the ReservoirPy 
framework [10] and includes hyperparameter optimization to 
achieve the required accuracy. The second step is HSIC 
LASSO Pruning, where we eliminate less significant neurons 
from the model by considering their non-linear correlations. 
The third step is Quantization and Streamlining, which uses 
a hardware-friendly streamlining approach to quantize all 
layers of the RC using the Brevitas framework [11]. The final 
step is Direct Logic Implementation, where we convert the 
compressed RC model into an FPGA design by mapping all 
RC layers onto LUT-based structures and creating an RTL 
(Register Transfer Level) description for the overall design. 
Subsequently, we synthesize the design into hardware using 
Xilinx Vivado and evaluate parameters such as the finally 
achieved accuracy, hardware resource usage, throughput, 
latency, and power. The remainder of this section details the 
novel HSIC LASSO-based pruning for RC, followed by an  
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Fig. 1. Layer model of echo state networks (ESN).
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overview of the streamlining quantization approach. The last 
two steps of our flow were elaborated in more detail in [9]. 

A. Pruning Echo State Networks via HSIC LASSO

Traditional methods to identify and prune less contributing 
neurons in an ESN include Spearman [12], PCA [13] and
LASSO [13]. Spearman directly assesses a neuron's
contribution to accuracy by measuring how well its
activity predicts the final output. Keeping a neuron with
high correlation helps minimize the prediction error. PCA
work indirectly as it ranks neurons based on their
contribution to the reservoir's internal dynamic "richness,"
not to the final output. Hence, PCA provides a superior
feature space for the output layer to learn from, thereby
reducing the error. LASSO directly ranks neurons by their 
importance in minimizing prediction errors within a
simplified linear model. By forcing the weights of
nonessential neurons to zero, it explicitly identifies and
removes the neurons that can be ignored with the least
impact on accuracy. All this methods are iterative
removing neuron by neuron and retraining the network as
long as the desired accuracy is retained.

None of the traditional methods, however, captures
the nonlinear correlation that exist between the neurons of
the reservoir and the reservoir and the neurons of the
output layer. HSIC LASSO leverages the Hilbert-Schmidt
Independence Criterion (HSIC) to measure nonlinear
dependencies, making it particularly suitable for pruning
ESNs. In contrast to traditional methods, it provides an
efficient alternative by enabling the selection and removal
of redundant neurons in a single step, once the
hyperparameters are selected. After removal of redundant
neurons, the network is retrained.

HSIC LASSO [14] is an extension of the traditional
LASSO method, which replaces the mean squared error
component of the objective function with a nonlinear
dependency measure. The objective function of HSIC
LASSO is formulated as:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (1
2

 ||𝑅𝑅𝐶𝐶 −∑ 𝑊𝑊𝑖𝑖𝑈𝑈𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ||𝐹𝐹2𝐴𝐴 = 𝜋𝜋𝑟𝑟2 +  𝜆𝜆||𝑤𝑤||1) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑤𝑤𝑖𝑖  ≥ 0 ∀𝑖𝑖        (1) 

Where |. |𝐹𝐹  denotes the Frobenius norm, and 𝑤𝑤 ∈ 𝑅𝑅𝑛𝑛 in 
is the weight vector that determines the contribution of each 
neuron. The matrices 𝑅𝑅𝑐𝑐 ∈  𝑅𝑅𝑑𝑑×𝑑𝑑 and 𝑈𝑈𝑐𝑐

(𝑖𝑖) ∈  𝑅𝑅𝑑𝑑×𝑑𝑑  are 
centered Gram matrices of 𝑅𝑅𝑗𝑗,𝑘𝑘 =  𝑅𝑅(𝑦𝑦𝑖𝑖,𝑗𝑗 ,𝑦𝑦𝑖𝑖,𝑘𝑘) and 𝑈𝑈𝑗𝑗,𝑘𝑘

(𝑖𝑖) =
𝑈𝑈(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑥𝑥𝑖𝑖,𝑘𝑘), respectively. In this context, the Gram matrix 
𝑅𝑅 captures the pairwise similarities between the states of 
neurons in the reservoir layer. Each element 𝑈𝑈𝑗𝑗,𝑘𝑘   

(𝑖𝑖) is computed 
using a kernel function 𝑈𝑈(. , . ), such as the Gaussian kernel, 
which measures the similarity between the states of the 𝑗𝑗-th 
and 𝑘𝑘 -th neurons at time step 𝑖𝑖 . Similarly, the Gram 
matrix 𝑅𝑅 captures the pairwise similarities between the 
network outputs. 

B. Quantization Based on Streamlining Approach.
We introduce a hardware-friendly quantization approach

with the so-called streamline deployment for quantized RC 
networks. In this method, floating point (FP) operations (e.g., 
scale and bias parameters) extracted from quantization are 
absorbed into the activation function for an efficient hardware 
implementation according to streamline algorithm described 
in [9], [15]. The quantized activation layer (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ 
(𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ) is converted into a successive multi-threshold 
(MT) layer by dividing the range of the activation function 
into 2𝐾𝐾 − 1 discrete levels, where 𝐾𝐾  is the bit-width of the 
quantized activation function. The difference between these 
levels, referred to as the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐rresponds to the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of the 
activation function. The input is then compared to these 
threshold values, and the closest threshold index is selected 
as the nearest integer. However, the floating-point 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
persists in the process. To eliminate this as well, we divide 
each threshold by the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, round it to the nearest integer, 
and then multiply by the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. This method, called absorbing 
multi-threshold (𝐴𝐴𝐴𝐴𝐴𝐴), absorbs all FP calculations into the 
successive multi-threshold process. 

Fig. 2. Overview of our proposed CRC framework for FPGA-based implementation.
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  To implement the streamlined approach in our framework, 
we replace the original state update and output equations 
presented in literature [1] with the updated equations given in 
Eq. 1 and Eq. 2. In these modified equations, 𝑄𝑄𝑢𝑢(𝑡𝑡) , 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊  , 
𝑄𝑄𝑥𝑥(𝑡𝑡) , 𝑄𝑄𝑊𝑊𝑊𝑊 , and 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  denote the integer forms of quantized 
input, input weight, state and reservoir weight, and output 
weight, respectively. 

𝑥𝑥(𝑡𝑡) = �𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊  × 𝑄𝑄𝑢𝑢(𝑡𝑡) �+

 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑄𝑄𝑥𝑥(𝑡𝑡−1)  × 𝑄𝑄𝑊𝑊𝑊𝑊 ��× 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    (1) 
𝑦𝑦(𝑡𝑡) =  𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 × 𝑄𝑄𝑥𝑥(𝑡𝑡) × 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)   (2) 

TABEL I: Hardware results for the CRC framework on FPGA (worst‐case regression/classification, after pruning).

TABEL II: PERFORMANCE OF ORIGINAL VS. COMPRESSED 200-NEURON  
RC MODELS WITH COMPRESSION RATIO

III. EXPERIMENTAL EVALUATION

A. EVALUATION OF CRC FRAMEWORKE
We evaluate our framework on two widely used RC

benchmarks: The HandsOutlines dataset as a time-series 
classification task, and the Henon Map dataset as a regression 
task for time-series forecasting. Figure3 presents a 
comprehensive comparative analysis of the ESN model 
performance, measured as accuracy for HandsOutlines and 
RMSE (root-mean square error) for Henon Map for the 
original un-pruned model, models pruned with Spearman, 
PCA, LASSO, and with our proposed HSIC LASSO-based 
technique for varying reservoir sizes.  

To get a meaningful and fair comparison, we have varied 
the reservoir size from 50 to 350 and determined the pruned 
network sizes using the HSIC LASSO technique. Then, we 
have used the related pruning techniques to reduce the 
networks to the same sizes. Hence, we compare the pruning 
techniques at the same compression ratios. The compression 
ratio is defined in Eq.3, where 𝑁𝑁𝑅𝑅𝑅𝑅  and 𝑁𝑁′𝑅𝑅𝑅𝑅  depict the 

reservoir size in the numbers of neurons for the original and 
pruned networks.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁′𝑅𝑅𝑅𝑅

   (3) 

Figure [3] shows that HSIC LASSO performs better than 
related pruning methods for both classification and regression 
tasks, the exception being PCA which achieves a slightly 
better accuracy for HandOutlines with reservoir size 200. For 
the regression task, our proposed pruning method even 
achieves lower error than the original un-pruned model, which 
points to overfitting. As depicted in Table II, HSIC-LASSO 
can reduce the number of neurons by almost 1.8X and 3.8X 
for the reservoir layer in the datasets HandsOutlines and 
Henon Map System with negligible performance losses. 

B. Hardware Implementation for Compressed RC
Our CRC framework maps the pruned and quantized

ESN models to FPGA in the form of a direct logic  
implementation. All computations are fully unrolled, and 
weights are hardwired into look-up tables (LUTs) to 
eliminate memory accesses [16], [17]. Such an approach 
promises ultra-low latency and extreme- throughput. Since 
the available logic resources limit the size of the ESN that 
can be mapped to an FPGA, the approach is targeted towards 
small and medium sized ESN typically found in edge 

Fig.3. Performance (accuracy, RSME) of the original and pruned networks across reservoir sizes. 

Accelerator Network Size Bit-width (K) LUTs FFs Throughput [Msps] Latency [ns] PDP 
[µWs] 

Baseline RC 𝑁𝑁𝑅𝑅𝑅𝑅= 200 32-bit fixed-
point 1,629.2K 923.7K 120 8.34 3.31 

Quantized RC 𝑁𝑁𝑅𝑅𝑅𝑅  = 200 8-bit quantized 21.9K 14.0K 185 5.40 0.65 

Pruned RC 𝑁𝑁′𝑅𝑅𝑅𝑅 = 149 32-bit fixed-
point 228.8K 134.5K 125 7.97 2.34 

Compressed RC 𝑁𝑁′𝑅𝑅𝑅𝑅 = 149 8-bit quantized 4.6K 2.7K 188 5.32 0.31 
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applications. Further, compression techniques as discussed 
in this paper are not only vital to achieve efficient hardware 
resource usage and reduced energy consumption, but also to 
improve scalability. Our framework generates ESN designs 
in Verilog, which are then synthesized with Xilinx Vivado 
2022.2 to the Virtex Ultra-Scale xcvu19p-fsvb3824-1-e 
device. 

Table I compares the impact of quantization, pruning, and 
the combination of them (compressed RC) relative to a 
baseline RC on the metrics hardware utilization, throughput, 
latency, and Power Delay Product (PDP). The baseline RC 
is without any pruning, but also a fully unrolled streamlined 
design with 32-bit fixed-point quantization, and piecewise 
linear approximation for the activation function. The other 
quantized designs use 8- bit quantization and the successive 
multi-threshold approach to realize the activation function. 
The reported results for latency and PDP are for running a 
regression/classification on one input vector. 

Table I shows that the baseline RC achieves a high 
throughput of 120 Msps and a latency of 8.34 ns, at rather high 
hardware costs. By applying the proposed streamline 
quantization for the same size network, the resource usage 
drops significantly. By leveraging quantization and pruning 
(compressed model), it is possible to further reduce hardware 
costs down to 12× and 8× in LUTs and FFs, respectively, 
with maximum throughput and minimum latency. The 
compressed model also achieves the lowest PDP, with 10× 
improvement over the baseline RC. 

IV. CONCLUSION
We have presented a CRC framework that leverages HSIC 
LASSO-based pruning and hardware-friendly quantization to 
compress an RC model for efficient FPGA implementation. 
The compressed direct logic implementation achieves high 
throughput and ultra-low latency, up to 188 Megasamples/s 
and 5.32 ns, respectively, and reduce resource utilization by 
12× and energy by 10× compared to a baseline hardware 
implementation. 
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