
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

CRC: Compressed Reservoir Computing on FPGA
via Joint HSIC LASSO-based Pruning and

Quantization
Atousa Jafari1, Hassan Ghasemzadeh Mohammadi2, and Marco Platzner1
1Department of Computer Engineering, Paderborn University, Germany

2Reneo Group GmbH, Hamburg, Germany
Email: 1{atousa.jafari , platzner}@uni-paderborn.de,2 ghasemzadeh@reno.de

Abstract—While reservoir computing (RC) networks offer
advantages over traditional recurrent neural net- works in
terms of training time and operational cost for time-series
applications, deploying them on edge devices still presents
significant challenges due to re- source constraints. Network
compression, i.e., pruning and quantization, are thus of
utmost importance. We propose a Compressed Reservoir
Computing (CRC) framework that integrates advanced
pruning and quantization techniques to optimize throughput,
latency, energy efficiency, and resource utilization for FPGA-
based RC accelerators.

 We describe the framework with a focus on HSIC LASSO
as a novel pruning method that can capture non-linear
dependencies between neurons. We validate our framework
with time series classification and regression tasks, for which
we generate FPGA accelerators. The accelerators achieve a
very high throughput of up to 188 Megasamples/s with a
latency of 5.32 ns, while reducing resource utilization by 12×
and lowering the energy by 10× compared to a baseline
hardware implementation, without compromising accuracy

Keywords—Dataflow accelerator, Echo state network,
Pruning, Quantization, Time-series application.

I. INTRODUCTION AND BACKGROUND

Reservoir computing (RC) has emerged as a promising
alternative to traditional recurrent neural network (RNNs),
offering a simpler and more efficient approach to time-
series analysis. The most common variant of RC is the
Echo State Network (ESN), which consists of an input
layer, a reservoir layer, and an output layer as illustrated in
Figure 1. The input layer is connected to the neurons in the
reservoir layer through randomly generated synaptic
connections with weights, modeled as a matrix 𝑾𝑾𝒊𝒊𝒊𝒊. The
reservoir layer contains neurons with randomly initialized
sparse interconnections, represented by the matrix 𝑾𝑾𝒓𝒓. The
reservoir is the core of an ESN, where the feedback
connections of neurons together with the non-linearity of
their activation functions form a high- dimensional
dynamical and non-linear system. The output layer is
connected to the reservoir via weighted connections,
denoted as 𝑾𝑾𝒐𝒐𝒐𝒐𝒐𝒐. Unlike standard RNNs, where all layers
are trained, an ESN simplifies the training process by
randomly initializing and fixing the input and reservoir
layers. Only the output layer is trained using basic
regression techniques, significantly reducing the
computational cost and complexity of training [1]. The
reduced effort for training and the rather simple layer
structure make RC approaches well suited for time-series
tasks on edge devices, particularly for non-linear time
series forecasting and time-series classification [2]. This
increased network size results in significant computational
effort and energy requirements during inference. Thus,
effective network compression techniques are studied to
reduce the network size and the computational load without
compromising performance [3], [4].

For example, network pruning techniques to reduce the
number of neurons and connections are discussed in [4]–
[6], and quantization for RC models is studied in [2], [7],
[8]. In our previous work [9], we presented an approach to
map ESN to FPGA hardware as a fully unrolled and

quantized dataflow streaming architecture that achieves
ultra-low latency and extreme throughput.

In this work-in-progress paper, we propose the feature
selection technique HSIC LASSO to be used as a novel
pruning algorithm for RC models. HSIC LASSO identifies
and removes less important neurons by considering
nonlinear correlations within the network, which is a
novelty over related work. We present a Compressed
Reservoir Computing (CRC) framework for the efficient
mapping of RC models to FPGAs, combining pruning and
quantization as compression techniques. We
experimentally study the effects of pruning and
quantization and show that we can reduce the hardware
resource requirements up to 12× and decrease the energy
by 10× compared to a 32-bit fixed- point baseline hardware
implementation.

II. PROPOSED CRC FRAMEWORK
Figure 2 depicts the overall flow of our proposed framework
for Compressed Reservoir Computing (CRC) on FPGAs. The
flow includes four main steps. The first step is Network
Initialization, where we construct and train an RC model for
a given dataset. This step leverages the ReservoirPy
framework [10] and includes hyperparameter optimization to
achieve the required accuracy. The second step is HSIC
LASSO Pruning, where we eliminate less significant neurons
from the model by considering their non-linear correlations.
The third step is Quantization and Streamlining, which uses
a hardware-friendly streamlining approach to quantize all
layers of the RC using the Brevitas framework [11]. The final
step is Direct Logic Implementation, where we convert the
compressed RC model into an FPGA design by mapping all
RC layers onto LUT-based structures and creating an RTL
(Register Transfer Level) description for the overall design.
Subsequently, we synthesize the design into hardware using
Xilinx Vivado and evaluate parameters such as the finally
achieved accuracy, hardware resource usage, throughput,
latency, and power. The remainder of this section details the
novel HSIC LASSO-based pruning for RC, followed by an

Manuscript received May 19, 2025; revised July 30, 2025;
accepted July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i1.99

Fig. 1. Layer model of echo state networks (ESN).

56

mailto:ghasemzadeh@reno.de
https://doi.org/10.64552/wipiec.v11i1.99

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

overview of the streamlining quantization approach. The last
two steps of our flow were elaborated in more detail in [9].

A. Pruning Echo State Networks via HSIC LASSO

Traditional methods to identify and prune less contributing
neurons in an ESN include Spearman [12], PCA [13] and
LASSO [13]. Spearman directly assesses a neuron's
contribution to accuracy by measuring how well its
activity predicts the final output. Keeping a neuron with
high correlation helps minimize the prediction error. PCA
work indirectly as it ranks neurons based on their
contribution to the reservoir's internal dynamic "richness,"
not to the final output. Hence, PCA provides a superior
feature space for the output layer to learn from, thereby
reducing the error. LASSO directly ranks neurons by their
importance in minimizing prediction errors within a
simplified linear model. By forcing the weights of
nonessential neurons to zero, it explicitly identifies and
removes the neurons that can be ignored with the least
impact on accuracy. All this methods are iterative
removing neuron by neuron and retraining the network as
long as the desired accuracy is retained.

None of the traditional methods, however, captures
the nonlinear correlation that exist between the neurons of
the reservoir and the reservoir and the neurons of the
output layer. HSIC LASSO leverages the Hilbert-Schmidt
Independence Criterion (HSIC) to measure nonlinear
dependencies, making it particularly suitable for pruning
ESNs. In contrast to traditional methods, it provides an
efficient alternative by enabling the selection and removal
of redundant neurons in a single step, once the
hyperparameters are selected. After removal of redundant
neurons, the network is retrained.

HSIC LASSO [14] is an extension of the traditional
LASSO method, which replaces the mean squared error
component of the objective function with a nonlinear
dependency measure. The objective function of HSIC
LASSO is formulated as:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (1
2

 ||𝑅𝑅𝐶𝐶 −∑ 𝑊𝑊𝑖𝑖𝑈𝑈𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ||𝐹𝐹2𝐴𝐴 = 𝜋𝜋𝑟𝑟2 + 𝜆𝜆||𝑤𝑤||1)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑤𝑤𝑖𝑖 ≥ 0 ∀𝑖𝑖 (1)

Where |. |𝐹𝐹 denotes the Frobenius norm, and 𝑤𝑤 ∈ 𝑅𝑅𝑛𝑛 in
is the weight vector that determines the contribution of each
neuron. The matrices 𝑅𝑅𝑐𝑐 ∈ 𝑅𝑅𝑑𝑑×𝑑𝑑 and 𝑈𝑈𝑐𝑐

(𝑖𝑖) ∈ 𝑅𝑅𝑑𝑑×𝑑𝑑 are
centered Gram matrices of 𝑅𝑅𝑗𝑗,𝑘𝑘 = 𝑅𝑅(𝑦𝑦𝑖𝑖,𝑗𝑗 ,𝑦𝑦𝑖𝑖,𝑘𝑘) and 𝑈𝑈𝑗𝑗,𝑘𝑘

(𝑖𝑖) =
𝑈𝑈(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑥𝑥𝑖𝑖,𝑘𝑘), respectively. In this context, the Gram matrix
𝑅𝑅 captures the pairwise similarities between the states of
neurons in the reservoir layer. Each element 𝑈𝑈𝑗𝑗,𝑘𝑘

(𝑖𝑖) is computed
using a kernel function 𝑈𝑈(. , .), such as the Gaussian kernel,
which measures the similarity between the states of the 𝑗𝑗-th
and 𝑘𝑘 -th neurons at time step 𝑖𝑖 . Similarly, the Gram
matrix 𝑅𝑅 captures the pairwise similarities between the
network outputs.

B. Quantization Based on Streamlining Approach.
We introduce a hardware-friendly quantization approach

with the so-called streamline deployment for quantized RC
networks. In this method, floating point (FP) operations (e.g.,
scale and bias parameters) extracted from quantization are
absorbed into the activation function for an efficient hardware
implementation according to streamline algorithm described
in [9], [15]. The quantized activation layer (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ
(𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ) is converted into a successive multi-threshold
(MT) layer by dividing the range of the activation function
into 2𝐾𝐾 − 1 discrete levels, where 𝐾𝐾 is the bit-width of the
quantized activation function. The difference between these
levels, referred to as the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐rresponds to the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of the
activation function. The input is then compared to these
threshold values, and the closest threshold index is selected
as the nearest integer. However, the floating-point 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
persists in the process. To eliminate this as well, we divide
each threshold by the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, round it to the nearest integer,
and then multiply by the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. This method, called absorbing
multi-threshold (𝐴𝐴𝐴𝐴𝐴𝐴), absorbs all FP calculations into the
successive multi-threshold process.

Fig. 2. Overview of our proposed CRC framework for FPGA-based implementation.

57

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

 To implement the streamlined approach in our framework,
we replace the original state update and output equations
presented in literature [1] with the updated equations given in
Eq. 1 and Eq. 2. In these modified equations, 𝑄𝑄𝑢𝑢(𝑡𝑡) , 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊 ,
𝑄𝑄𝑥𝑥(𝑡𝑡) , 𝑄𝑄𝑊𝑊𝑊𝑊 , and 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 denote the integer forms of quantized
input, input weight, state and reservoir weight, and output
weight, respectively.

𝑥𝑥(𝑡𝑡) = �𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊 × 𝑄𝑄𝑢𝑢(𝑡𝑡) �+

 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑄𝑄𝑥𝑥(𝑡𝑡−1) × 𝑄𝑄𝑊𝑊𝑊𝑊 ��× 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1)
𝑦𝑦(𝑡𝑡) = 𝑄𝑄𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 × 𝑄𝑄𝑥𝑥(𝑡𝑡) × 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) (2)

TABEL I: Hardware results for the CRC framework on FPGA (worst‐case regression/classification, after pruning).

TABEL II: PERFORMANCE OF ORIGINAL VS. COMPRESSED 200-NEURON
RC MODELS WITH COMPRESSION RATIO

III. EXPERIMENTAL EVALUATION

A. EVALUATION OF CRC FRAMEWORKE
We evaluate our framework on two widely used RC

benchmarks: The HandsOutlines dataset as a time-series
classification task, and the Henon Map dataset as a regression
task for time-series forecasting. Figure3 presents a
comprehensive comparative analysis of the ESN model
performance, measured as accuracy for HandsOutlines and
RMSE (root-mean square error) for Henon Map for the
original un-pruned model, models pruned with Spearman,
PCA, LASSO, and with our proposed HSIC LASSO-based
technique for varying reservoir sizes.

To get a meaningful and fair comparison, we have varied
the reservoir size from 50 to 350 and determined the pruned
network sizes using the HSIC LASSO technique. Then, we
have used the related pruning techniques to reduce the
networks to the same sizes. Hence, we compare the pruning
techniques at the same compression ratios. The compression
ratio is defined in Eq.3, where 𝑁𝑁𝑅𝑅𝑅𝑅 and 𝑁𝑁′𝑅𝑅𝑅𝑅 depict the

reservoir size in the numbers of neurons for the original and
pruned networks.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁′𝑅𝑅𝑅𝑅

 (3)

Figure [3] shows that HSIC LASSO performs better than
related pruning methods for both classification and regression
tasks, the exception being PCA which achieves a slightly
better accuracy for HandOutlines with reservoir size 200. For
the regression task, our proposed pruning method even
achieves lower error than the original un-pruned model, which
points to overfitting. As depicted in Table II, HSIC-LASSO
can reduce the number of neurons by almost 1.8X and 3.8X
for the reservoir layer in the datasets HandsOutlines and
Henon Map System with negligible performance losses.

B. Hardware Implementation for Compressed RC
Our CRC framework maps the pruned and quantized

ESN models to FPGA in the form of a direct logic
implementation. All computations are fully unrolled, and
weights are hardwired into look-up tables (LUTs) to
eliminate memory accesses [16], [17]. Such an approach
promises ultra-low latency and extreme- throughput. Since
the available logic resources limit the size of the ESN that
can be mapped to an FPGA, the approach is targeted towards
small and medium sized ESN typically found in edge

Fig.3. Performance (accuracy, RSME) of the original and pruned networks across reservoir sizes.

Accelerator Network Size Bit-width (K) LUTs FFs Throughput [Msps] Latency [ns] PDP
[µWs]

Baseline RC 𝑁𝑁𝑅𝑅𝑅𝑅= 200 32-bit fixed-
point 1,629.2K 923.7K 120 8.34 3.31

Quantized RC 𝑁𝑁𝑅𝑅𝑅𝑅 = 200 8-bit quantized 21.9K 14.0K 185 5.40 0.65

Pruned RC 𝑁𝑁′𝑅𝑅𝑅𝑅 = 149 32-bit fixed-
point 228.8K 134.5K 125 7.97 2.34

Compressed RC 𝑁𝑁′𝑅𝑅𝑅𝑅 = 149 8-bit quantized 4.6K 2.7K 188 5.32 0.31

58

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025
applications. Further, compression techniques as discussed
in this paper are not only vital to achieve efficient hardware
resource usage and reduced energy consumption, but also to
improve scalability. Our framework generates ESN designs
in Verilog, which are then synthesized with Xilinx Vivado
2022.2 to the Virtex Ultra-Scale xcvu19p-fsvb3824-1-e
device.

Table I compares the impact of quantization, pruning, and
the combination of them (compressed RC) relative to a
baseline RC on the metrics hardware utilization, throughput,
latency, and Power Delay Product (PDP). The baseline RC
is without any pruning, but also a fully unrolled streamlined
design with 32-bit fixed-point quantization, and piecewise
linear approximation for the activation function. The other
quantized designs use 8- bit quantization and the successive
multi-threshold approach to realize the activation function.
The reported results for latency and PDP are for running a
regression/classification on one input vector.

Table I shows that the baseline RC achieves a high
throughput of 120 Msps and a latency of 8.34 ns, at rather high
hardware costs. By applying the proposed streamline
quantization for the same size network, the resource usage
drops significantly. By leveraging quantization and pruning
(compressed model), it is possible to further reduce hardware
costs down to 12× and 8× in LUTs and FFs, respectively,
with maximum throughput and minimum latency. The
compressed model also achieves the lowest PDP, with 10×
improvement over the baseline RC.

IV. CONCLUSION
We have presented a CRC framework that leverages HSIC
LASSO-based pruning and hardware-friendly quantization to
compress an RC model for efficient FPGA implementation.
The compressed direct logic implementation achieves high
throughput and ultra-low latency, up to 188 Megasamples/s
and 5.32 ns, respectively, and reduce resource utilization by
12× and energy by 10× compared to a baseline hardware
implementation.

ACKNOWLEDGMENT

This work is supported by the German Federal Ministry for
the Environment, Nature Conservation, Nuclear Safety, and

Consumer Protection under grant no. 67KI32004A.

REFERENCES

[1] G. Tanaka et al., “Recent advances in physical reservoir computing: A
review,” Neural Networks, vol. 115, pp. 100–123, 2019.

[2] C. Lin et al., “Fpga-based reservoir computing with optimized reservoir
node architecture,” in 2022 23rd International Sympo- sium on Quality
Electronic Design (ISQED). IEEE, 2022, pp. 1–6.

[3] X. Zhang et al., “Appq-cnn: An adaptive cnns inference accel- erator
for synergistically exploiting pruning and quantization based on fpga,”
IEEE Transactions on Sustainable Computing, 2024.

[4] H. Wang et al., “Optimizing the echo state network based on mutual
information for modeling fed-batch bioprocesses,” Neurocomputing,
vol. 225, pp. 111–118, 2017.

[5] D. Li et al., “Structure optimization for echo state network based on
contribution,” Tsinghua Science and Technology, vol. 24, no. 1, pp.
97–105, 2018.

[6] J. Huang et al., “Semi-supervised echo state network with partial
correlation pruning for time-series variables prediction in industrial
processes,” Measurement Science and Technology, vol. 34, no. 9, p.
095106, 2023.

[7] S. Liu et al., “Quantized reservoir computing on edge devices for
communication applications,” in 2020 IEEE/ACM Symposium on
Edge Computing (SEC), 2020, pp. 445–449.

[8] Y. Abe et al., “Spctre: sparsity-constrained fully-digital reser- voir
computing architecture on fpga,” International Journal of Parallel,
Emergent and Distributed Systems, vol. 39, no. 2, pp. 197–213, 2024.

[9] A. Jafari et al., “Ultra-low latency and extreme-throughput echo state
neural networks on fpga,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications. Springer Nature Switzerland,
2025, pp. 179–195.

[10] N. Trouvain et al., “Reservoirpy: an efficient and user-friendly library
to design echo state networks,” in International Confer- ence on
Artificial Neural Networks. Springer, 2020, pp. 494– 505.

[11] A. Pappalardo, “Xilinx/brevitas,” 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.3333552

[12] Z. Huang et al., “Rethinking the pruning criteria for con- volutional
neural network,” Advances in Neural Information Processing Systems,
vol. 34, pp. 16 305–16 318, 2021.

[13] H. Ghasemzadeh Mohammadi et al., “Efficient statistical pa- rameter
selection for nonlinear modeling of process/performance variation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 12, pp. 1995–2007, 2016.

[14] M. Yamada et al., “High-dimensional feature selection by feature-wise
kernelized lasso,” Neural computation, vol. 26, no. 1, pp. 185–207,
2014.

[15] Y. Umuroglu et al., “Streamlined deployment for quantized neural
networks,” https://arxiv.org/abs/1709.04060, 2018.

[16] Logicnets: Co-designed neural networks and circuits for extreme-
throughput applications,” in 2020 30th Interna- tional
Conference on Field-Programmable Logic and Applica- tions
(FPL), 2020, pp. 291–297.

[17] A. H. Hadipour et al., “A two-stage approximation methodology for
efficient dnn hardware implementation,” in 2025 IEEE 28th
International Symposium on Design and Diagnostics of Elec-
tronic Circuits and Systems (DDECS), 2025, pp. 119–122

59

