
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Prompt-to-Metric: LLMs and Graph Algorithms for
Platform Ecosystem Health Monitoring

Shady Hegazy, Muhammad Ammar, Christoph Elsner
Siemens Foundational Technologies

Siemens AG
Munich, Germany

Firstname.lastname@siemens.com

Jan Bosch
Department of Computer Science and Engineering

Chalmers University of Technology
Göteborg, Sweden

Jan.bosch@chalmers.se

Helena Holmström-Olsson
Department of Computer Science and Media Technology

Malmö University
Malmö, Sweden

Helena.holmstrom.olsson@mau.se

remain fragmented, tool-specific, and often inaccessible to non-
technical stakeholders due to lack of attention to ecosystems
unique complexities in standard analytics and performance
monitoring solutions [3]. As a result, platform orchestrators and
decision-makers struggle to gain actionable insights into
ecosystem health. This paper presents Prompt-to-Metric, a
work-in-progress system designed to address these challenges
by enabling natural language access to platform ecosystem
health analytics. The system integrates a hierarchical KPI
network of approximately 400 health metrics, derived from a
systematic literature review, and organizes them across four
abstraction levels. By leveraging graph algorithms, Prompt-to-
Metric retrieves relevant metrics in response to user queries and
uncovers relationships among KPIs to support deeper analytical
insights.

An initial prototype has been developed and deployed in a
real-world platform ecosystem to evaluate its feasibility.
Preliminary findings suggest that Prompt-to-Metric can bridge
the gap between complex platform ecosystem health analytics
and brevity and accessibility requirements of non-technical
stakeholders. The contributions of this study are three-fold. First,
it presents a four-tier network-based data model for ecosystem
health evaluation metrics. Second, it presents a pipeline for
natural language-based platform ecosystem health monitoring.
Third, it presents preliminary findings from evaluations in real-
world settings. The remainder of this paper is structured as
follows. Section II presents details on the KPI network used
within the system. Section III presents details on the Prompt-to-
Metric pipeline. Section IV presents discussion of the findings
from the preliminary evaluation of the system.

II. KPI NETWORK FOR PLATFORM ECOSYSTEM HEALTH
EVALUATION

A. Health Metrics Elicitation
To elicit the health metrics to be integrated in the system, we

conducted a systematic literature review with a focus on data-

Abstract—Platform ecosystems are networks of interconnected
actors co-creating value through a shared technological platform.
Such socio-technical systems require unique key performance
indicators and health evaluation metrics to address the unique
characteristics and value-creation modes they entail. Several
platform ecosystems health evaluation models have been suggested
in literature, along with a plethora of metrics. This study presents
Prompt-to-Metric, a system that allows users, mainly platform
orchestrators and decision-makers, to monitor the health of a
platform ecosystem through natural language queries. The system
relies on a KPI network of approximately 400 health metrics
classified across four levels of hierarchy according to a model
developed through a systematic literature review on the topic. In
addition, the pipeline uses graph algorithms to enhance the
relevancy of the responses and uncover insights regarding metrics
relatedness. The system was implemented as a prototype and is
being evaluated for feasibility in real-world application scenarios
using data from an operational platform ecosystem. Future work
includes expanding the set of calculable metrics, improving
response relevance, and further evaluation in real-world settings.

Keywords-platform ecosystem; software ecosystem; performance
evaluation; analytics; graph algorithms; large language models

I. INTRODUCTION

Platform ecosystems are socio-technical networks in which
diverse actors such as developers, users, and organizations
collaborate and co-create value around a shared technological
platform [1]. Examples of such ecosystems include open-source
software communities, cloud service marketplaces, and mobile
app stores. Assessing and monitoring the health of platform
ecosystems presents significant challenges. Unlike traditional
software systems, platform ecosystems involve complex
interdependencies among actors, diverse contribution patterns,
and evolving value-creation models. These characteristics
require specialized key performance indicators (KPIs) and
health evaluation metrics that capture both technical and socio-
economic dimensions [2]. Although several health evaluation
models and metrics have been proposed in the literature, they

Manuscript received July 16, 2025; revised July 26, 2025; accepted July
25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i1.97

52

https://doi.org/10.64552/wipiec.v11i1.97

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

driven quantitative metrics and performance indicators of
platform ecosystems [4]. The search was executed on three
major scientific databases: IEEE Xplore; ACM Digital Library;
and Scopus. Application of the inclusion and exclusion criteria,
followed by a thorough quality appraisal, resulted in the
inclusion of 52 primary studies in the review process after full-
text screening and analysis. The reviewed studies presented a
mix of empirical analyses, metric proposals, and framework
developments targeting ecosystem robustness, resilience,
productivity, niche-creation, and evolution. Our review distilled
416 health metrics ranging from low-level activity indicators to
abstract ecosystem-level constructs, and varying significantly in
abstraction, measurability, and scope. In addition to cataloguing
these metrics, we inferred, from the overall approach of the
reviewed studies, a structuring of the extracted metrics into a
formal, hierarchical graph, serving as both an ontology and a
computable model for automated health assessment which was
integrated and operationalized through the Prompt-to-Metric
system. Figure 1 shows the distribution of extracted metrics
across the inferred four levels of abstraction hierarchy
elaborated below.

• Level 1: Metrics at this level represent broad strategic
categories that constitute a major distinct domain of
performance for the ecosystem and frames a different
perspective on its health. Examples include technical
health; productivity; niche-creation; and network health.

• Level 2: Metrics at this level represent conceptual
characteristics and qualities that indicate performance
regarding specific goals or capabilities within a domain
of performance. While not directly measurable, they
guide the formulation of composite indicators.
Examples include visibility; scalability; and robustness.

• Level 3: Metrics at this level represent tangible qualities
and quantifiable indicators which indicate specific
modular performance aspects. These metrics are neither
abstract nor directly quantifiable but can rather be
estimated by aggregating lower-level directly
quantifiable metrics. Examples include developer
activeness; communities’ growth; contribution
satisfaction; and profit focus.

• Level 4: Metrics at this level represent directly
measurable and quantifiable performance indicators.
Examples include bug fix time; active projects count;
cash flow; and network transitivity.

B. Metric Graph Representation
Each metric was modeled as a node in a directed property

graph stored in a Neo4j graph database. Edges encode parent-
child relationships that reflect conceptual aggregation,
dependency, or influence between metrics as suggested by their
origin studies. Nodes represent individual metrics, and store
metric-specific attributes such as desired direction,
quantifiability, measurement unit, among others. Figure 2
illustrates a subsection of this graph with each color representing
a different abstraction level. The hierarchical layout allows
traversing from abstract ecosystem performance aspects the
tangible metrics that quantify them. The graph structure serves
both analytical and operational purposes. Within the Prompt-to-
Metric pipeline, this graph also acts as the lookup structure for
matching user prompts to valid health metrics and their
associated computation logic. For example, it enables queries
such as “find all measurable indicators that contribute to
developer engagement” or “identify all financial metrics
associated with ecosystem maturity.”

C. Metric Operationalization and Data Mapping

Prompt2Metric draws on three categories of complementary
data sources. Each category is ingested or queried in a way that
supports real-time calculation of its associated metrics. Each
metric is associated with a calculation script that executed on
different data sources according to the metric genre.

• Network health metrics: Data from the platform’s
services and interfaces are periodically collected,
transformed and loaded into a Neo4j graph database
according to an integrative schema. This enables the
execution of graph algorithms necessary for computing
network metrics such as degree centrality, eigenvector
centrality, community evolution, among others.

• Technical health metrics: Data from DevOps, version
control, bug and issue tracking, and collaborative
coding systems of the platform are fetched on-demand

Figure 2. Visualization of a sub-graph of the KPI network.

Figure 1. Distribution of health metrics per hierarchy level.

53

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

to estimate metrics such as developer activeness, bug-
fix time, and similar metrics. Additionally, analytics
data of the user-facing interfaces of the platform are
utilized for calculating relevant technical metrics such
as crash-related metrics.

• Financial health metrics: Indicators related to financial
health of the ecosystem are computed from figures
extracted out of periodic financial statements.

III. PROMPT2METRIC SYSTEM

A. System Architecture
The Prompt-to-Metric system comprises five main

components:

1) Metrics graph database: As described in Section II.

2) Query-to-Metric mapping engine: A language model-
based component that serves as the technical bridge
between natural language user inquiries and ecosystem
health metrics. This component achieves the following
functions.
• Receiving the user’s query from the interface.
• Accessing the comprehensive list of available

metrics.
• Semantically analyzing the query to identify intent

and required metrics.
• Selecting the most relevant metrics from the

metrics database.
• Executing node centrality and community

detection analyses on the metrics database to
identify strongly relevant or closely related metrics
to the initial list of relevant metrics.

• Generating the corresponding code for the selected
metrics.

3) Metric execution pipeline: A service that achieves the
following functions.
• Generates the concrete data request for the chosen

metric, either as a Cypher query (for network data)
a GitLab REST call (for technical data), or for
other data sources, according to the calculation
scripts associated with the selected metrics.

• Retrieves and executes that request against the
corresponding data source.

• Invokes Neo4j Graph Data Science algorithms
when network metrics require centrality or
community detection.

• Post-processes raw results into user-friendly tables
or charts and attaches a textual interpretation

• Logs the prompt, query, runtime and output to our
MLflow instance for traceability and evaluation.

• Streams the formatted response to the Streamlit
chat interface.

• Optionally persists snapshots for longitudinal
analysis.

4) User interface: Prompt-to-Metric is delivered through a
single-page Streamlit chat application that runs entirely
in the browser. All conversational context is kept inside
the session state containing the alternating user-
assistant message list, the identifier of the last metric
served, and a small cache of recently generated Cypher
and REST queries. Because this state object is scoped
to the browser session, no external store is needed to
preserve the context between prompts. UI components
include data visualizations widgets, in addition to
feedback elicitation buttons. Figure 3 presents a
screenshot of the interface after returning metric
statistics in response to a query.

5) Evaluation and logging: Every user interaction is
tracked by a two–stage feedback pipeline with two
components.
• Automatic run logging: As soon as a workflow is

completed, a background thread generates a new
MLflow run, which is hosted inside the team’s
GitLab instance, that records: the raw prompt and
timestamp; the selected metric ID and definition;
the generated calculation script; execution time;
success flag; results row count; and the LLM model
version that served the request.

• Explicit user feedback: If the pipeline completes
successfully, the interface displays thumbs-up and
thumbs- down buttons. A thumbs-up is logged as
feedback = 2, a thumbs-down as feedback = 1. If
the pipeline fails before a result is shown, feedback
= 0 is logged automatically. The feedback value is
appended to the same MLflow run ID in a separate
thread so that user experience remains unaffected.
This three-point Likert-style scale provides a
lightweight but actionable quality signal for
longitudinal analysis, regression testing, and future
fine-tuning of the LLM components.

Figure 3. Prompt-to-Metric Streamlit Chatbot UI interface.

54

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

B. Workflow
Figure 4 visualizes the end-to-end flow, which unfolds in

six steps:

• User prompt: The user submits a natural-language
inquiry through the Streamlit chat interface.

• Intent router: An LLM classifier decides whether the
prompt requests a health metric or general conversation.
Non-metric prompts are handled conversationally;
metric prompts advance to Step 3.

• Metric mapper: A second LLM request compares the
prompt with all metric descriptions in the unified graph
and selects the best-matching metric node. The metric is
then analyzed using graph algorithms to suggest closely
related or strongly relevant metrics.

• Code generator: The selected metrics calculation scripts
are retrieved and adapted to the prompt context. The
generated code is executed on the targeted data sources,
and the responses are fetched and passed forward for
post-processing.

• Result delivery: Raw results are post-processed and
displayed in the Streamlit UI and optionally persisted as
CSV snapshots.

• MLflow logging: The prompt, chosen metric, generated
query, execution metadata, output summary, and user
feedback are logged to MLflow for traceability and
future evaluation.

IV. DISCUSSION

The preliminary evaluation of the Prompt-to-Metric
prototype in a real-world platform ecosystem has provided
valuable insights into its feasibility and potential impact. Early
deployments with platform orchestrators and technical managers
suggest that natural language access to ecosystem health metrics
can significantly lower the barrier to understanding complex
platform dynamics. Users were able to formulate high-level
queries about ecosystem performance and receive actionable
responses without requiring prior knowledge of underlying data
structures or query languages. The hierarchical KPI network,
comprising over 400 metrics organized across four abstraction
levels, proved effective in structuring a wide range of health
indicators. The integration of graph algorithms enabled the
system to identify related metrics and suggest complementary
indicators, which was perceived as particularly helpful for
exploring unfamiliar dimensions of ecosystem health. However,
the evaluation also surfaced key challenges. In particular,
financial metrics were found to be difficult to estimate due to
data clearance issues, which limited the system’s ability to
provide a complete view of ecosystem health in some scenarios.
Furthermore, certain queries involving large-scale network
computations introduced noticeable response latency, and
ambiguous prompts sometimes led the language model to select
metrics that were technically relevant but not fully aligned
withthe user’s intent. Despite these challenges, the evaluation

confirmed the system’s potential to bridge complex health
analytics with the accessibility needs of non-technical
stakeholders. Future work will involve expanding the evaluation
to additional real-world application scenarios to assess the
system’s generalizability across diverse ecosystem types. We
also plan to incorporate longitudinal analysis of metric time-
series data by extending the system’s storage to maintain
historical values, enabling temporal trend analysis and proactive
ecosystem governance. Additionally, an extended usefulness
study [5] is planned to be carried out in collaboration with
stakeholders and orchestrators of two different platform
ecosystems.

REFERENCES
[1] J. Bosch, “From software product lines to software ecosystems,” in

Proceedings of the 13th International Software Product Line Conference,
in SPLC ’09. USA: Carnegie Mellon University, Aug. 2009, pp. 111–119.

[2] C. Alves, J. Oliveira, and S. Jansen, Understanding Governance
Mechanisms and Health in Software Ecosystems: A Systematic Literature
Review. 2018. doi: 10.1007/978-3-319-93375-7_24.

[3] F. Fotrousi, S. A. Fricker, M. Fiedler, and F. Le-Gall, “KPIs for Software
Ecosystems: A Systematic Mapping Study,” in Software Business.
Towards Continuous Value Delivery, C. Lassenius and K. Smolander,
Eds., in Lecture Notes in Business Information Processing. Cham:
Springer International Publishing, 2014, pp. 194–211. doi: 10.1007/978-
3-319-08738-2_14.

[4] B. A. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele University and Durham
University Joint Report / Keele University, EBSE 2007-001, Jul. 2007.

[5] F. Davis and F. Davis, “Perceived Usefulness, Perceived Ease of Use, and
User Acceptance of Information Technology,” MIS Quarterly, vol. 13, p.
319, Sep. 1989, doi: 10.2307/249008.

Figure 4. Overview of the Prompt-to-Metric system workflow.

55

