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Queryable Microarchitecture Knowledge Base using 
Retrieval-Augmented Generation

 
 

Abstract—Microarchitecture documentation, such as datasheets 
and user manuals, is indispensable for embedded software 
development. However, the extensive volume and complexity of 
these documents render information retrieval a time- and effort-
intensive task. To address this challenge, we propose a framework 
for constructing a queryable knowledge base on microarchitecture 
documentation, leveraging Retrieval-Augmented Generation 
(RAG) and Large Language Models (LLMs). As a proof of 
concept, we implement a knowledge base on AURIX TriCore 
TC27x documentation and evaluate this knowledge base by 
querying it with a curated set of questions. The generated 
responses are evaluated by measuring their semantic similarity to 
reference answers. In our evaluation, we assess the performance 
of six LLMs with different model architectures and sizes. The 
results show that the smaller models (with 8 billion and 3 billion 
parameters) achieve similarity scores comparable to those of the 
larger model (with 72 billion parameters). These initial findings 
demonstrate the robustness of our framework for creating 
queryable knowledge bases and the potential of smaller LLMs for 
efficient information retrieval in this context.  

Keywords-Embedded systems, information extraction, retrieval-
augmented generation 

I.  INTRODUCTION

Embedded software development relies on microarchitecture 
documentation, including datasheets and user manuals, to 
implement device drivers and various software functionalities. 
These documents contain information on, e.g., peripheral 
configuration, memory management, and internal 
microcontroller behavior. However, finding relevant 
information is a time-consuming and effort-intensive task since 
these documents are often hundreds or even thousands of pages 
long. Moreover, the required information may be dispersed 
across various sections within a single document or distributed 
across multiple documents, making it challenging to obtain 
comprehensive information efficiently. For instance, peripheral 
configuration information is often fragmented across the 
datasheet, application notes, and errata documents. 

To retrieve information quickly and efficiently, we propose 
a framework to build a queryable knowledge base on 
microarchitecture documentation. The main idea is to transform 
the target microarchitecture documentation into a structured 

knowledge base, which is subsequently integrated with an 
information retrieval process involving Retrieval-Augmented 
Generation (RAG) [1] and a Large Language Model (LLM) [2]. 
By integrating the knowledge base with the information retrieval 
process, the framework facilitates querying for Open-Domain 
Question Answering (ODQA) tasks. In addition, we implement 
a filtering concept to support document-specific information 
retrieval.  

As a proof of concept and demonstration of our framework, 
we build a queryable knowledge base on AURIX TriCore 
TC27x [3] documentation. We evaluate the knowledge base 
using a set of questions and reference answers. First, we query 
the knowledge base with the questions and record the generated 
responses. Next, we compute the semantic similarity between 
generated responses and their corresponding reference answers. 
This similarity score reflects the quality of the responses in terms 
of their relevance and alignment with the reference answers. 

The primary focus of this paper is on the development of the 
proposed framework and a preliminary evaluation to assess the 
performance of the framework. The framework currently uses a 
simple naive RAG pipeline with a single retriever to retrieve 
information from the knowledge base. Further refinement of the 
RAG pipeline and extensive evaluation of the approach are 
currently a work-in-progress and are out of scope for this paper. 

The rest of the paper is organized as follows: Section II 
describes the methodology of the proposed framework. Section 
III presents the current evaluation approach and the preliminary 
results. Section IV discusses the related work, and Section V 
concludes the paper with a brief outlook on future work. 

II. METHODOLOGY

The naive RAG pipeline in our framework consists of two 
primary components: a retriever, which is responsible for 
identifying and extracting the most relevant information from 
the knowledge base, and a generator (an LLM), which 
formulates a coherent and contextually appropriate response to 
a given user query based on the extracted information. In this 
section, we first explain the process of creating a structured 
knowledge base using the target microarchitecture 
documentation, followed by the process of information retrieval 
and response generation.  
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A. Knowledge Base Creation
Microarchitecture documents are typically PDF files from

hardware vendors. In general, these PDFs have complex table 
structures, images, and non-pertinent information, such as 
headers and footers. To make the information in the PDFs 
suitable for processing by an LLM, we first convert these PDFs 
into Markdown format using the PyPDF2 [4] Python library. 
Next, we remove non-pertinent information, translate figures 
into corresponding textual descriptions, and format complex 
table structures. Subsequently, we add metadata to every 
document, including details such as titles, versions, and tags. 

Depending on the input PDFs, these Markdown files can be 
lengthy and may exceed the context length (i.e., the amount of 
text, in tokens, the model can process) of an LLM. Hence, we 
split the Markdown files into equally sized chunks based on 
word count. Next, we link each chunk with its corresponding 
document metadata and encode these chunks into dense vector 
representations (referred to as ‘embeddings’) using an 
embedding model (e.g., all-MiniLM-L6-v2 [5]). Lastly, we 
build and associate indexes for these embeddings using the 
FAISS library [6] to facilitate faster retrieval of document 
chunks relevant to a user query. The indexing step completes the 
creation of the knowledge base. 

B. Information Retrieval and Response Generation
The information retrieval and response generation process

begins with a user query and optional filter criteria and involves 
the sequence of steps (denoted by       ) illustrated in Figure 1.  

In steps ① and ②, we filter the knowledge base and extract 
the embeddings corresponding to the document tag(s) specified 
by the user filter criteria. The resulting filtered knowledge base 
is then used to retrieve information relevant to the user query. If 
no filter criteria are specified, then the information is retrieved 
from the entire knowledge base.  

In step ③, we encode the user query using the embedding 
model and then use the FAISS library to perform a similarity 
search on the knowledge base in step ④. The similarity search 
retrieves indexes of the most similar embeddings from the 
knowledge base, and these retrieved indexes are used to obtain 
the corresponding document chunks in step ⑤. Steps ③ through 
⑤ represent the information retrieval process.

In step ⑥, the retrieved document chunks are concatenated
as context. The context is then integrated with the user query and 
the rules for generation as a prompt in step ⑦. The rules instruct 
the LLM to generate a response based only on the provided 

context. The LLM uses the information contained in the prompt 
to generate the final response to the user query in step ⑧. Steps 
⑥ through ⑧ correspond to the response generation process.

III. PROOF OF CONCEPT AND EVALUATION

A. Evaluation Setup
To demonstrate and evaluate our framework, we implement

a queryable knowledge base on a set of documents specific to 
the AURIX TriCore TC27x architecture. These documents 
include the core architecture user manuals, Instruction Set 
Architecture (ISA) description, and errata. We convert these 
documents into Markdown format and split them into chunks of 
100 words each. Next, we encode these chunks into embeddings 
and then build and associate indexes with these embeddings. The 
resulting knowledge base is evaluated through semantic 
similarity analysis.  

In our evaluation, we use Copilot and Nemotron [7] LLMs 
to generate a test dataset using the TC27x documents. The 
generated test dataset comprises 326 question-answer pairs, and 
we reviewed 25% of them to check their factual correctness. The 
answers in the test dataset serve as reference answers for 
evaluating the quality of the generated responses. Next, we 
integrate the TC27x knowledge base with the RAG pipeline and 
use the test dataset to benchmark six LLMs with different model 
architectures and sizes. Table 1 lists the LLMs under evaluation, 
and their short names represent the LLM family and the number 
of model parameters. 

We conduct our evaluation by querying the LLM with the 
test questions and recording the generated responses. This 
evaluation is systematically repeated for all the LLMs under 
evaluation, and their responses are recorded. The evaluation is 
performed on a system equipped with three NVIDIA A100 
80GB GPUs [10].  

In addition to the response quality, we also measure the mean 
inference time for each LLM to assess its computational 
efficiency. As shown in Table 1, larger models exhibit higher 
inference times (e.g., Nemotron-70B at 28.25 s), while smaller 
models respond significantly faster (e.g., Llama3.2-1B at 
1.70 s), illustrating the trade-off between model size and 
computational cost. In contrast, R1_DQwen_7B, although 
smaller than Nemotron_70B, exhibits a comparable inference 
time (27.34 s). This extended processing time is likely attributed 
to its chain-of-thought reasoning approach, which requires 
longer reasoning chains and tracking multiple logical branches, 
thereby increasing the computational effort required. 

Figure 1: Information retrieval and response generation process. 

Nr. 
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TABLE 1: LLMS UNDER EVALUATION. 

LLM short name Number of model 
parameters 

Model size 
(GiB) 

Mean inference 
time (seconds) 

Llama3.2_1B [9] 1.23 billion 2.31 1.70 

Llama3.2_3B [9] 3.21 billion 5.98 7.42 

Qwen2.5_3B [8] 3.09 billion 5.76 5.66 

R1_DQwen_7B [13] 7.62 billion 14.19 27.34 

Llama3.1_8B [9] 8.03 billion 14.96 6.24 

Nemotron_70B [7] 70.60 billion 131.5 28.25 

B. Semantic Similarity Score Computation
In Natural Language Processing (NLP), semantic similarity

scores are used to measure how closely two texts are aligned in 
meaning and context. In our work, we use an ensemble approach 
to compute the similarity score between the responses generated 
by different LLMs and their respective reference answers. The 
ensemble approach leverages two popular NLP metrics: 
BERTScore-F1 [11] and SBERT similarity score [12].  

BERTScore-F1 measures how similar individual tokens are 
between two sentences by considering their meaning and 
context, while the SBERT similarity score compares the overall 
meaning of two sentences by transforming them into vector 
representations and measuring their closeness. Both scores range 
from -1 to +1, with values closer to +1 indicating a higher degree 
of similarity. 

For each response generated by the LLMs under evaluation, 
we calculate the corresponding similarity scores, compute their 
means, and present the results in Table 2. The results indicate 
that the mean similarity scores remain consistent across both 
evaluation metrics. The model R1_DQwen_7B achieves the 
lowest mean similarity scores of all the LLMs under evaluation. 
This lower performance can be primarily due to two factors: (1) 
the inclusion of chain-of-thought reasoning in its responses, 
which introduces additional content, and (2) deviations in final 
answers, thereby reducing alignment with the expected outputs.  

In contrast, most of the other smaller models achieve 
similarity scores closely aligned with those of the larger 
Nemotron_70B model. In particular, the smaller Llama3.1_8B 
model slightly outperforms the larger Nemotron_70B model, 
achieving the highest similarity score of 0.67 (highlighted using 
bold text in Table 2). This finding demonstrates the potential of 
smaller LLMs for effective information retrieval.  

TABLE 2: MEAN SIMILARITY SCORE. 

LLM short name Mean BERT 
score-F1 

Mean SBERT 
similarity score 

Llama3.2_1B 0.57 0.61 

Llama3.2_3B  0.65 0.65 

Qwen2.5_3B  0.64 0.66 

R1_DQwen_7B 0.50 0.49 

Llama3.1_8B  0.67 0.67 

Nemotron_70B  0.63 0.65 

The similarity scores across models remain moderately close 
to +1, indicating a relatively high degree of similarity between 
the generated responses and their corresponding reference 
answers. This consistency highlights the robustness of our 
knowledge base framework and the computational efficiency of 
some smaller models, which are capable of generating 
contextually relevant outputs while significantly reducing GPU 
memory consumption and computational overhead compared to 
the larger Nemotron_70B model. 

IV. RELATED WORK

In recent years, several approaches have leveraged various 
RAG architectures to address a broad range of tasks. Surveys 
such as [14-16] provide comprehensive overviews of RAG-
based methods across multiple domains and applications, 
including domain-specific information retrieval, software safety 
analysis, and code generation. This section focuses specifically 
on existing approaches that employ RAG for domain-specific 
information retrieval.  

Similar to our work, AeroQuery [17] and IDAS [18] use a 
naive RAG pipeline with vector similarity search to extract 
information from aerospace standards (e.g., DO-178C) and 
vehicle user manuals, respectively. In contrast, Kieu et al. [19] 
employ a hybrid retrieval approach that combines keyword-
based and vector-based search results to enhance the 
explainability of AUTOSAR specifications. However, these 
approaches are evaluated on relatively small-scale datasets, 
typically involving only around 20 queries, which limits the 
generalizability and robustness of their findings. 

Simoni et al. [20] introduce a multi-retriever RAG system 
that retrieves both textual information and code to answer 
cybersecurity-related queries. Similarly, Balu et al. [21] use 
multiple retrievers (one per document) to extract information 
from automotive standards. While both approaches reduce 
redundancy and summarize outputs from individual retrievers, 
the aggregated information can exceed the LLM’s context 
length, potentially hindering response quality. 

Some approaches [22–25] involve Graph-RAG, which 
retrieves relevant information from graph structures rather than 
isolated textual chunks. CyKG-RAG [22] applies this to 
cybersecurity by leveraging domain-specific knowledge graphs 
for multi-hop Q&A tasks. HSG-RAG [23] constructs 
hierarchical semantic knowledge graphs to improve retrieval 
from embedded systems documentation (such as API reference 
manuals). Liu et al. [24] use Graph-RAG to retrieve information 
from automotive software specifications, and Ojima et al. [25] 
extract information from event graphs representing automotive 
failure incidents. Although these methods demonstrate 
improved contextual retrieval, they often encounter challenges 
related to traceability and the limited context length of LLMs, 
particularly when aggregating information from numerous graph 
nodes or documents. 

In contrast, our approach adopts a naive RAG pipeline 
augmented with a pre-retrieval filtering mechanism, which helps 
mitigate the context length limitations commonly encountered 
in graph-based or multi-retriever RAG systems. This filtering 
strategy enhances retrieval quality by selecting document 
chunks based on the user filter criteria, thereby improving the 
relevance of the retrieved information with respect to the user 
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query. Furthermore, our preliminary evaluation results indicate 
that smaller LLMs can achieve performance levels comparable 
to their larger counterparts, thereby highlighting the feasibility 
of resource-efficient deployments without significant loss in 
retrieval quality. 

V. CONCLUSION AND FUTURE WORK

In this work, we presented a framework for building a 
queryable knowledge base on microarchitecture documentation 
using RAG with an LLM. Our proof-of-concept based on TC27x 
documentation demonstrates the feasibility of this approach for 
quick and efficient information retrieval in embedded software 
development. As a preliminary evaluation, we used semantic 
similarity metrics to assess the performance of six LLMs with 
different model architectures and sizes. The results show that 
smaller models, including those with 8 billion and 3 billion 
parameters, can achieve similarity scores comparable to those of 
a significantly larger model with 72 billion parameters. These 
findings highlight the robustness of our framework and the 
potential of smaller LLMs as resource-efficient alternatives for 
domain-specific information retrieval tasks. 

While the preliminary evaluation demonstrates the 
feasibility of our approach, further work is required to enhance 
both the evaluation methodology and the underlying system. As 
future work, we plan to evaluate the factual correctness of the 
generated responses. This will involve developing or integrating 
more rigorous evaluation metrics and possibly including human-
in-the-loop assessments.  

In addition, we intend to refine the current naive RAG 
pipeline to improve retrieval quality. This includes optimizing 
document chunking strategies, enhancing query formulation, 
and exploring more advanced search and ranking strategies. 
These improvements are expected to increase the precision and 
relevance of retrieved content, thereby improving the robustness 
of our knowledge base framework. 

Another important step in our future work is the 
implementation of an explicit traceability mechanism. Although 
naive RAG inherently allows tracking of generated responses 
back to the retrieved chunks, we intend to formalize this process 
by extracting and verifying the relevance of each chunk with 
respect to the final answer. This will enable more explainable 
and reliable responses, thereby increasing user trust in the 
knowledge base framework. 

Finally, we plan to fully automate the conversion of source 
PDFs into structured markdown files. This includes extracting 
key elements like text, headings, and tables to streamline content 
preparation. Automating this step will significantly reduce 
manual preprocessing effort and ensure consistency and 
scalability in building and updating knowledge bases. 
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