
Multi Hardware-Attack Dataset and ML-based
Detection Using Processor Stress Patterns on x86

1st David Andreu
Department of Computer Architecture
Universitat Politècnica of Catalunya

Barcelona, Spain

david.andreu.gerique@estudiantat.upc.edu

2nd Beatriz Otero
Department of Computer Architecture
Universitat Politècnica of Catalunya

Barcelona, Spain

beatriz.otero@upc.edu,

3rd Ramon Canal
Department of Computer Architecture
Universitat Politècnica of Catalunya

Barcelona, Spain

ramon.canal@upc.edu,

Abstract—Hardware attacks exploit the vulnerabilities discov-
ered in state-of-the-art CPUs. As an example, attacks such as
Meltdown and Spectre have made the headlines. To benefit from
the vulnerabilities, hardware attacks stress tremendously some
section/s of the processor, usually the branch-prediction unit and
the different cache levels. This gives us a recognizable pattern
and a way to implement a system capable of detecting the
presence of these attacks while monitoring the computer. In this
paper, we describe the set of hardware attacks under focus, then
we describe how we create the dataset and, finally, the use of
machine learning to detect the attacks in three scenarios (i.e.
training on both benign applications and attacks, training on
only benign applications and training only on attacks) and two
x86 CPUs (Intel and AMD). The techniques proposed are capable
of achieving over 99% detection rate with a machine learning
model. This provides a run-time solution to quickly identify the
attack as it starts running and take remedial actions.

Index Terms—Security, hardware attack, Spectre, Meltdown,
Fallout, machine learning

I. INTRODUCTION

In today’s world, computers are integral to our daily lives,
from work desktops to personal smartphones. We trust these
devices to securely store our data, but this trust is often
misplaced, as we are continually at risk of cyber attacks.
Most modern attacks exploit vulnerabilities in operating sys-
tems, with privilege escalation being the most common goal.
These software-based vulnerabilities can often be quickly fixed
through updates. In contrast, hardware-based attacks, like
Meltdown [1] and Spectre [2], target vulnerabilities in the
microprocessor itself. These hardware attacks typically stress
parts of the processor, such as the branch-prediction unit and
caches, creating recognizable patterns that can uncover them.
Modern solutions such as KPTI [3] are effective in mitigating
many hardware attacks. However, the objective is to develop
a solution that can also address future attacks. By employing
machine learning’s pattern recognition capabilities, similar
behaviours in new exploits can be identified. The objective of
this work is to develop, train, and fine-tune a machine learning
(ML) model capable of detecting both current and future
hardware attacks by learning their characteristic patterns.

Specifically, in this work, we will refer to hardware attacks
as a set of attacks falling under the category of hardware-based
attacks known as cache side-channel attacks. Cache side-
channel attacks are a type of attack that exploit unintentional

information leaks within the processor’s cache system. These
attacks use variations in cache access times, storage patterns,
or eviction behaviours to infer sensitive information such as
cryptographic keys or private user data. These attacks leverage
the subtle changes in how data is stored, accessed, or evicted
across different cache levels, enabling attackers to deduce the
operations performed by a program without directly accessing
the target data. This poses a significant and sophisticated
security threat to modern computing systems.

There are various types of attacks within this category.
In this work, we focus on the following cache side-channel
attacks: Spectre V1, Spectre V2, Spectre V4, Meltdown,
ZombieLoad, Fallout and Crosstalk.

II. HARDWARE ATTACKS IN X86

A. Threat model

This work assumes an unprivileged attacker (i.e., without
kernel-level access) and the absence of kernel-level mitigations
against microarchitectural vulnerabilities such as Kernel Ad-
dress Space Layout Randomization (KASLR) (e.g. KAISER
[3] LAZARUS [4], or FLARE [5]) —which are designed for
x86 architectures and rely on platform-specific features —are
not considered active. This assumption is realistic as we are
considering a platform-independent mechanism to detect the
attacks.

B. Related Work

Hardware attacks create distinctive performance anomalies,
such as an unusual frequency of branch mispredictions or
excessive cache evictions. These patterns are often consistent
across different executions of the attack, enabling ML models
to generalize and detect them reliably. Previous approaches
to detecting hardware attacks using hardware performance
counters and ML models have shown great performance [6],
[7], [8], [9]. However, these efforts focus only on a single
attack and do not share their training datasets, models, or
instructions for generating similar models locally. This lack of
extensive analysis and reproducibility in the area has brought
some authors [10] to believe that ML is not appropriate, even
disregarding previous work and evidence.

Other studies, like Carnà et al. [7], provide examples of
binaries used in attacks, they lack details on data recording

Manuscript received May 19, 2025; revised July 30, 2025; accepted
July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025
Paper category: Regular
DOI: doi.org/10.64552/wipiec.v11i1.94

36

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

https://orcid.org/https://orcid.org/0000-0002-9194-559X
https://orcid.org/https://orcid.org/0000-0003-4542-204X
https://doi.org/10.64552/wipiec.v11i1.94

conditions and methods, as well as specifics on benign pro-
grams, making exact replication difficult.

The primary goal of this work is to build and release
[11] a comprehensive dataset comprising multiple known
attacks and describing the creation methodology. With this,
we develop a novel ML model for detecting hardware attacks
using hardware performance counters (HPCs). This effort aims
to facilitate replication and foster further research within the
community.

The ML model is designed to enable rapid, real-time
analysis of HPC data streams, making it possible to scale
the detection mechanism across multiple systems without
sacrificing responsiveness or reliability. In summary, our work
makes the following contributions:

• Build a reliable and reproducible dataset. The dataset
must include relevant samples from both hardware attacks
and benign programs, correctly labeled and compatible
across different machines and architectures. It should
be reproducible under the same conditions on other
machines, involving:

– Identify hardware attack binaries and benign pro-
grams for data collection.

– Record HPC data and sample rate.
• Develop a ML model. The model should classify input

samples as either malicious or benign, and also distin-
guish between known attacks and benign programs. The
ML model will be broken down in the following steps:

– Identify the optimal ML model for the task.
– Preprocess data for the selected model and training

it.
– Optimize parameters.

III. ML MODELS

Machine learning is preferred over deep learning because
the dataset is too small. Deep learning models require hun-
dreds of thousands to millions of samples, while the current
dataset only has 28,000 samples from 14 different programs.
This size is insufficient for deep learning, making traditional
ML methods more suitable and recommended for smaller
datasets.

This paper uses Naive Bayes, Decision Tree, Random
Forest, and Support Vector Machines classifiers for multi-class
classification tasks. Each method is briefly described below.

Naive Bayes is a simple and efficient probabilistic classifier
based on Bayes’ theorem, assuming feature independence [12].

Decision trees are widely used supervised learning algo-
rithms for classification [13]. They have a hierarchical tree-
like structure, where the internal nodes represent decisions
based on the feature values, the branches represent the decision
results, and the terminal nodes represent the classification
categories.

Random Forest (RF) is a classification algorithm that
builds multiple independent decision trees using bootstrap
sampling of the training data [14]. For each split, it randomly
selects a subset of features. In classification, each tree votes on
the class, and the majority vote determines the final prediction.

Support Vector Machine (SVM) is a supervised learning
algorithm for classification tasks, such as distinguishing be-
tween benign and malicious samples and identifying specific
attacks [15]. SVM uses support vectors, the critical data points
closest to the decision boundary (hyperplane), to maximize
the margin between classes, improving generalization to new
data. The margin can be determined using linear or non-linear
functions like polynomial or radial basis functions (RBF).

One-Class SVM, a variant of SVM, is used for anomaly
detection by learning the majority class space and identifying
deviations as anomalies. This is useful for detecting cyberat-
tacks in datasets with mostly benign or few attack samples
by training the model on benign patterns and identifying
deviations as potential attacks. This method will be applied
to unbalanced datasets where the samples are entirely benign
or malicious.

IV. SYSTEM SETUP AND DATASET CREATION

The platforms selected are two x86 CPUs from different
manufacturers: Intel i5-8250U and an AMD Ryzen 7 3700X.
In our analysis, some older architectures are not vulnerable
to certain attack types. This ensures the ability to create a
consistent dataset for each platform with multiple attacks.
The hardware attacks selected run successfully in the host
machines (thus, we guarantee we log ”real” traces). We
use Lesimple’s spectre-meltdown-checker script available on
GitHub [16] for this purpose. This script analyzes computer
characteristics and available mitigations and provides a list of
successful hardware-based attacks on the computer. Section
IV-C describes the attacks in detail.

The selection of benign programs is performed to ensure
reliable and reproducible execution behavior that mirrors com-
mon workloads. Various benchmarks with different focuses
will be chosen to maximize dataset coverage. Section IV-D
describes the attacks in detail.

A. Selection of HPCs

The selected HPCs should accurately represent the patterns
exploited by hardware-based attacks, enabling the detection of
anomalies when compared to benign executions. The selected
counters must also be generic enough to avoid dependence on
specific architectures, ensuring the solution’s portability across
a wide range of computers. Experimentally, we found that
there is a soft limit of four counters before some samples are
lost in our system. Therefore, monitoring will be limited to
four counters.

Some hardware attacks, like those in the Spectre family,
exploit speculative execution, triggered when the branch pre-
dictor predicts the outcome of a branch instruction. Both
branch instructions and branch misses are

generic perf events, providing the ratio between the total
branches and those where the predictor missed. This selection
is supported by previous work, such as Congmiago Li et
al. [6]. Additionally, many hardware-based attacks use side
channels to extract information, which heavily stress the
computer’s cache memory. A high count of cache misses on

37

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

the last-level cache (LLC) memory may indicate the presence
of a FLUSH+RELOAD side-channel attack, known as the
most effective and popular among hardware-based attacks.
The first-level cache is also a common target in other at-
tacks, as used by Stefano Carnà et al. [7]. Thus, the other
two HPCs to be analyzed will be LLC-load-misses and
L1-dcache-load-misses.

For dataset generation, the perf tool will be utilized. This
tool enables recording of multiple HPCs during binary exe-
cution. The perf stat command will output HPC counts
in a csv file format. To streamline operations, only one CPU
core will be utilized, achieved using the taskset Linux tool,
ensuring collected HPC data remains unaffected by workload
distribution across cores.

B. Sample rate

Another decision to make is the sampling rate. Previous
works have used sampling rates ranging from 1 ms per sample
to 100 ms per sample. Congmiago Li et al. [6] even dynam-
ically change the sample rate to prevent evasive malware. To
generate a large number of samples for the ML model, the
aim was to use the lowest possible sample rate. However,
experimentally it was found that anything under 10 ms caused
anomalies in perf, such as some samples not being recorded.
Therefore, a 10 ms sample rate was chosen.

C. Selected hardware attacks

The selected hardware attacks are:
• Meltdown: among the most notorious hardware attacks,

operates uniquely. While modern computers typically
have the KPTI/KAISER mitigation against it, analyzing
its behavior could be beneficial for the dataset. The
Meltdown code was extracted from the IAIK GitHub
repository [17].

• Spectre V1, V2, and V4: the infamous companion of
Meltdown, has seen several versions released to date,
with minor changes between them. A functional proof
of concept (PoC) for Spectre V3 was not found, so it
was skipped. Codes for the first [18], second [19], and
fourth [20] versions of PoCs have been obtained from
GitHub repositories.

• ZombieLoad [21]: similar to Meltdown, it captures sen-
sitive data accessed by a user on a machine, and has been
shown to work even on Meltdown-safe computers. The
PoC by IAIK can be found on their GitHub repository
[22].

• Fallout [23]: akin to Meltdown, leaks data from the CPU
pipeline’s store buffer and is classified under Microarchi-
tectural Data Sampling (MDS) attacks along with RIDL
[24]. The PoC code for the Fallout attack is sourced from
Tristan Hornetz’s GitHub repository [25].

• Crosstalk [26]: another MDS attack, aims to leak infor-
mation between CPU cores, making it unique as it utilizes
multiple cores, unlike other attacks. The source code for
the proof of concept used is also obtained from Tristan
Hornetz’s GitHub repository [27].

These attacks bring the total number of malicious programs to
7. Other hardware attacks, like RIDL, Foreshadow [28], and
ForeshadowNG [29], among others, were not selected because
they rely on features not present in the laptop’s architecture,
such as Intel TSX [30].

D. Selection of benignware

The other half of the dataset will be generated using benign
programs to contrast the behavior of the hardware attacks. To
maintain balance, an equal number of benign programs (7)
have been chosen:

• Matrix multiplier: A simple C program that multiplies
large amounts of integer numbers to stress the computa-
tional sections of the CPU.

• stress -c: This is from the Debian stress tool, which
stresses the CPU computing unit by repeatedly perform-
ing square roots of random numbers [31].

• stress -m: Also from the same tool, this option stresses
the memory unit by repeatedly running malloc() and
free() [31].

• MiBench Bitcount:A benchmark from the MiBench suite
under the automotive category [32] available on Embe-
cosm’s Github repository [33]. It performs a bitcounting
benchmark algorithm that stresses the CPU.

• STREAM: The STREAM benchmark [34], known for
measuring memory bandwidth, will be used to stress
the memory unit. The source code is available in Jeff
Hammond’s Github repository [35].

• bzip2: This is a high-quality lossless data compres-
sor, chosen for both computational and memory work-
loads [36]. It will compress a fixed file, specifically the
FreeBSD ISO image, to ensure replicability [37].

• FFmpeg: A multipurpose audio and video tool, used as
a benchmark and example of a common mixed workload
[38]. In this case, it will decode the ”Big Buck Bunny”
animation [39], commonly used for video testing [40],
[41], [42].

The benchmarks selected are chosen to have similar execu-
tion profiles as the attacks listed. They either stress the memory
unit, the CPU computational units or a mix. This ensures
that the model can reliably distinguish malicious memory
usage from memory-intensive workloads; and similarly for
computational units or a mix.

V. EXPERIMENTS AND RESULTS

The first architecture used for testing is based on the
Intel Core i5-8250U processor. The system runs Debian 11
(Bullseye) with the Linux kernel version 5.10.0. The processor
operates at a maximum clock frequency of 3.4 GHz and
features a 4-core / 8-thread configuration. This CPU belongs to
Intel’s Kaby Lake R (8th generation) family and is built using
a 14nm process. It includes the following cache hierarchy:

• L1 Data Cache: 128 KiB
• L2 Cache: 1 MiB
• L3 Cache: 6 MiB

38

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

TABLE I
DATASETS, SCENARIOS AND SAMPLES

Dataset name Representative scenario %Samples/Type Total samples

Balanced Both representative benign applications and attacks are available for training. System
administrator knows representative applications and attacks. The ML method has both
information on what is benign and malign to make its prediction.

50% benign
50% malicious 28,000

Benign-only Only representative benign applications are available for training. System administrator only
knows the representative applications running on the system. Any other application will be
deemed malign. The ML method turns into an anomaly detection setup.

100% benign 14,000

Malicious-only Only representative malign applications are available for training. System administrator
only knows the representative malign applications that can target the system. Any other
application will be deemed benign. The ML method turns into an anomaly detection setup.

100% malicious 14,000

TABLE II
PARAMETERIZATION OF THE METHODS USED IN THE BALANCED DATASET

Method Kernel Parameters

Naive Bayes Gaussian n.aMultinomial

Decision Tree n.a

entropy, max depth=10,
min samples leaf=1,
min samples split=5
entropy, max depth=None,
min samples leaf=1,
min samples split=2

Random Forest n.a
Same optimal parameters of
decision tree with 100
decision tree estimators

SVM

Lineal C=1000
Polinomial
(second degree) C=100

RBF (Detection) C=10, γ=10
RBF (Classification) C=100, γ=10

As mentioned in subsections IV-C and IV-D, we have
a total of 14 programs: 7 benign and 7 malicious. From
each of these programs, we obtain 2,000 samples, totaling
14,000 benign plus 14,000 malign samples. To conduct the
experiments, we group these samples into three datasets:
benign-only, malicious-only and balanced (both benign and
malign samples). Table I shows for each dataset, its intended
representative scenario and the proportion and type of samples.
In all cases, 80% of the samples from each dataset were used
for model training and 20% for testing.

A. Balanced dataset: Attack detection

For the balanced dataset, all the methods described in the
previous section have been studied, except for the One-Class
method (as it does not apply). For each case, hyperparameter
tuning was performed using GridSearchCV [43], [44]. Table
II shows the resulting hyperparameters for each method and
variants or kernels studied in each case in the balanced dataset.

Table III shows the accuracy of each method studied. As
shown in the table, Naive Bayes is the worst performing
unless as it fails to detect benign samples correctly. We
analyzed the case an it is caused by the non-independence
between the counters used. The other 3 ML methods perform
similarly (above 99% accuracy) being the SVM with RBF
kernel the method that gives the best results for detection (i.e.

benign/malign decision). Table IV shows the accuracy, recall,
precision and F1-Score of this case (together with the best
performing mechanisms of the next subsections).

TABLE III
PERFORMANCE OF MACHINE LEARNING MODELS ON THE BALANCED

DATASET (INTEL CORE I5-8250U)

Method Kernel Metric

Naive Bayes Gaussian

90% to detection and classification,
but with the presence of false positives
in detection, which impairs the
for FFmpeg samples.

Multinomial

53.69% to detection with problems
to detect benign samples. By modifying
the dataset to eliminate non independent
HPCs, accuracy improves up to 90,89%.

Decision Tree n.a 99.85% (Detection)
99.79% (Classification)

Random Forest n.a 99.94% (Detection)
99.89% (Classification)

SVM

Lineal 99% detection and classification
Polinomial
(second degree) 99.8% detection and classification

RBF 99.9% detection and classification

B. Balanced dataset: Classification

Beyond detecting if our system is under attack, we may want
to know what kind of attack are we suffering to take specific
remedial actions. As listed in Section IV-C, the attacks under
study focus on different parts of the CPU and specific actions
could be taken in each case.

We used the same ML methods as in the previous section
to evaluate the effectiveness of detecting each different malign
attack and benign application. Table III shows the accuracy
results and, again, SVM with the RF Kernel is the most accu-
rate. Figure 4 shows the confusion matrix for the classification
using this method. Classification is nearly perfect (just 10
out of 24000 samples are misclassified and 5 being between
Spectre V1 and Spectre V2).

C. Benign-only and malign-only

For the completely unbalanced datasets (benign and mali-
cious), we used the One-Class SVM method with parameter
values γ = 1 and ν = 0.01 (obtained through GridSearchCV
[43], [44]). Figures 2 and 3 show the confusion matrices of
each dataset for detection. In the scenario where One-Class

39

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

SVM is used to detect benign samples, there are many false
positives because the model encounters unseen samples during
training and misclassifies them as malware. Similarly, in the
case of using One-Class SVM to detect malicious samples,
there are also numerous false positives due to the model’s
inability to accurately identify samples from the FFmpeg
program. Overall, the F1-score is still over 90% in both cases,
but not 99,9% as it is for the balanced dataset.

Fig. 1. Confusion matrix for classification using a RBF kernel SVM

Fig. 2. Confusion matrix using a One-Class method and a benign dataset

D. Summary of results on Intel Core i5-8250U

Table IV displays accuracy, recall, precision and F1-score
for both the SVM RBF method and the One-Class method. For
the balanced dataset, all values are above 99,9%, indicating
very precise predictions. In contrast, for the only-benign and
only-malign datasets, the recall and precision values indicate
the a higher presence of false positives. Thus, clearly perform-
ing behind the balanced dataset.

E. Cross-Architecture Experimental Validation

To assess the portability of our approach across different
hardware platforms, we replicated the dataset generation pro-

Fig. 3. Confusion matrix using a One-Class method and malicious dataset

Fig. 4. Confusion matrix for classification using a RBF kernel SVM

TABLE IV
EVALUATION SUMMARY OF SVM-BASED MODELS ON INTEL CORE

I5-8250U

Dataset Method Accuracy Recall Precision F1

Balanced
SVM RBF
(Detection) 99.96ª% 99.92% 100% 99.96%

SVM RBF
(Classification) 99.91% 99.91% 99% 99.91%

Benign One-Class SVM 98.5% 92.71% 98.74% 95.63%
Malicious One-Class SVM 95.51% 99.48% 84.5% 91.38%

cess on a machine with a different architecture. The second
architecture is based on the AMD Ryzen 7 3700X processor.
This system also runs Debian 11 (Bullseye) but with a more
recent Linux kernel version 6.1.0. The CPU has a base clock
frequency of 3.6 GHz and can boost up to 4.4 GHz. It
features 8 cores and 16 threads, offering significantly more
parallel processing capabilities than the first architecture. The
processor is part of AMD’s Zen 2 architecture, manufactured
using a 7nm process. Its cache configuration is as follows:

• L1 Data Cache: 256 KiB
• L2 Cache: 4 MiB
• L3 Cache: 32 MiB

40

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

The only required modification involved adapting one hard-
ware performance counter (HPC): the original counter for
last-level cache load misses, LLC-load-misses, was unavail-
able on the AMD processor. Instead, we substituted it with
an equivalent counter, l3 comb clstr state.request miss [45],
which provides analogous information regarding cache miss
behavior on this architecture.

Using this setup, we generated a new dataset equivalent
in structure and size to the original. We then evaluated
the previously trained models: RBF SVM and the malign-
trained One-Class SVM (without retuning the hyperparame-
ters), maintaining consistency with the original system. As in
the baseline experiments, we applied the same post-processing
steps for prediction smoothing and result refinement.

Table V presents the results obtained using the same
methods previously applied to the Intel-based architecture
(Table IV).The results confirm that the models exhibit similar
behavior to that observed on the Intel platform.

TABLE V
SUMMARY OF SVM-BASED MODELS ON AMD RYZEN 7 3700X

Dataset Method Accuracy Recall Precision F1

Balanced
SVM RBF
(Detection) 99.96% 100% 99.92% 99.95%

SVM RBF
(Classification) 98.92% 98.72% 99.2% 98.95%

Benign One-Class SVM 98.32% 92.6% 97.41% 94.94%
Malicious One-Class SVM 94.41% 99.96% 75.1% 85.76%

The two architectures employed in this study exhibit sub-
stantial differences in computational capabilities and target de-
sign. The Intel Core i5-8250U is a low-power, 8th-generation
mobile processor featuring 4 cores and 8 threads, optimized
for energy-efficient operation in portable devices. Conversely,
the AMD Ryzen 7 3700X is a high-performance desktop
processor with 8 cores and 16 threads, manufactured using
a more advanced 7nm process. It offers higher base and
boost frequencies, as well as significantly larger cache ca-
pacities—most notably a 32 MiB L3 cache compared to 6
MiB in the Intel counterpart. These architectural distinctions
position the Ryzen 7 3700X as more suitable for compute-
intensive and parallelizable workloads, while the i5-8250U is
better aligned with lightweight, general-purpose computing in
mobile environments.

Despite these disparities, the experimental findings indicate
that reproducing the complete workflow—including dataset
generation and model evaluation—on an alternative hardware
platform yields consistent and reliable results. The models
under evaluation (RBF SVM and One-Class SVM) attained
comparable levels of accuracy, even though they were initially
trained and hyperparameter-tuned on the Intel-based system.
Although a minor degradation in performance was observed,
it was largely mitigated through post-processing techniques.
This performance gap is attributed to the hardware-specific
nature of the original hyperparameter optimization, which was
tailored to the Intel architecture.

VI. CONCLUSIONS

This work builds a reliable and reproducible dataset by
using hardware counters to generate samples through the
execution of 14 programs in two x86 CPUs (Intel and AMD).
It then evaluates various ML models to determine the most
effective model for detecting and classifying hardware attacks.
Among the models evaluated, the SVM with RBF kernel
showed superior performance in detecting and classifying
attacks. With an accuracy and F1-score over 99.9% for both
detection and classification tasks.

We also analyzed two scenarios where only the benign
applications are known and only the malign applications are
known. In these scenarios, the One-Class ML model was
used and was capable of achieving an F1-score above 90% in
both cases. Yet, significantly below the 99,9% of the balanced
dataset. The larger amount of false positives reduced the F1-
score accordingly.

REFERENCES

[1] M. Lipp et al., “Meltdown: Reading kernel memory
from user space,” in 27th USENIX Security Symposium,
2018.

[2] P. Kocher et al., “Spectre attacks: Exploiting speculative
execution,” in 40th IEEE Symposium on Security and
Privacy, 2019.

[3] J. Corbet, Kaiser: Hiding the kernel from user space,
https://lwn.net/Articles/738975/, Accessed: 13-05-2024.

[4] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and
A.-R. Sadeghi, “Lazarus: Practical side-channel resilient
kernel-space randomization,” in Research in Attacks,
Intrusions, and Defenses, Springer International Pub-
lishing, 2017, pp. 238–258.

[5] C. Canella, M. Schwarz, M. Haubenwallner, M.
Schwarzl, and D. Gruss, “Kaslr: Break it, fix it, repeat,”
in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, ser. ASIA
CCS ’20, Taipei, Taiwan: Association for Computing
Machinery, 2020, pp. 481–493. DOI: 10.1145/3320269.
3384747.

[6] C. Li and J.-L. Gaudiot, “Detecting spectre attacks using
hardware performance counters,” IEEE Transactions on
Computers, vol. 71, no. 6, pp. 1320–1331, 2022. DOI:
10.1109/TC.2021.3082471.

[7] S. Carnà, S. Ferracci, F. Quaglia, and A. Pellegrini,
“Fight hardware with hardware: Systemwide detection
and mitigation of side-channel attacks using perfor-
mance counters,” Digital Threats, vol. 4, no. 1, Mar.
2023. DOI: 10.1145/3519601.

[8] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time
detection of cache-based side-channel attacks using
hardware performance counters,” Applied Soft Comput-
ing, vol. 49, pp. 1162–1174, 2016. DOI: https://doi.org/
10.1016/j.asoc.2016.09.014.

41

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

https://lwn.net/Articles/738975/
https://doi.org/10.1145/3320269.3384747
https://doi.org/10.1145/3320269.3384747
https://doi.org/10.1109/TC.2021.3082471
https://doi.org/10.1145/3519601
https://doi.org/https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/https://doi.org/10.1016/j.asoc.2016.09.014

[9] S. Bhattacharya and D. Mukhopadhyay, “Who watches
the watchmen?: Utilizing performance monitors for
compromising keys of rsa on intel platforms,” in Cryp-
tographic Hardware and Embedded Systems, Springer
Berlin Heidelberg, 2015, pp. 248–266.

[10] W. Kosasih, Y. Feng, C. Chuengsatiansup, Y. Yarom,
and Z. Zhu, “Sok: Can we really detect cache side-
channel attacks by monitoring performance counters?”
In 19th ACM Asia Conference on Computer and Com-
munications Security, 2024, pp. 172–185. DOI: 10.1145/
3634737.3637649.

[11] B. Otero Calviño, D. Andreu Gerique, and R. Canal
Corretger, Replication Data for: Hardware Attack de-
tectoR via Performance counters analYsis Dataset
(HARPY Dataset), version V1, 2025. DOI: 10.34810/
data1982.

[12] C. D. Manning, P. Raghavan, and H. Schütze, “Intro-
duction to information retrieval,” 2008.

[13] L. Rokach and O. Maimon, “Top-down induction of
decision trees classifiers - a survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 35, no. 4, pp. 476–487, 2005. DOI:
10.1109/TSMCC.2004.843247.

[14] L. Breiman, “Random forests,” Machine Learning,
vol. 45, pp. 5–32, 2001.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, “Numerical Recipes 3rd edition: The
Art of Scientific Computing,” 2007.

[16] S. L. (speed47), Spectre-meltdown-checker, https : / /
github.com/speed47/spectre-meltdown-checker, 2023.

[17] I. of Applied Information Processing and C. (IAIK),
Meltdown, https://github.com/IAIK/meltdown.

[18] R. C. (crozone), Spectrepoc, https://github.com/crozone/
SpectrePoC.

[19] A. C. (Anton-Cao), Spectrev2-poc, https://github.com/
Anton-Cao/spectrev2-poc.

[20] Y. S. (mmxsrup), Cve-2018-3639, https://github.com/
mmxsrup/CVE-2018-3639.

[21] M. Schwarz et al., “ZombieLoad: Cross-privilege-
boundary data sampling,” in CCS, 2019.

[22] I. of Applied Information Processing and C. (IAIK),
Zombieload, https://github.com/IAIK/ZombieLoad.

[23] C. Canella et al., “Fallout: Leaking data on meltdown-
resistant cpus,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security
(CCS), ACM, 2019.

[24] S. van Schaik et al., “RIDL: Rogue in-flight data load,”
in S&P, May 2019.

[25] T. H. (tristan-hornetz), Fallout, https : / / github . com /
tristan-hornetz/fallout.

[26] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C.
Giuffrida, “CrossTalk: Speculative Data Leaks Across
Cores Are Real,” in S&P, Intel Bounty Reward, May
2021. [Online]. Available: https://download.vusec.net/
papers/crosstalk sp21.pdf.

[27] T. H. (tristan-hornetz), Crosstalk, https: / /github.com/
tristan-hornetz/crosstalk.

[28] J. Van Bulck et al., “Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order
execution,” in Proceedings of the 27th USENIX Secu-
rity Symposium, See also technical report Foreshadow-
NG [29], Aug. 2018.

[29] O. Weisse et al., “Foreshadow-NG: Breaking the virtual
memory abstraction with transient out-of-order execu-
tion,” Technical report, 2018.

[30] Intel® transactional synchronization extensions (intel®
tsx) memory and performance monitoring update for
intel® processors, https://www.intel.com/content/www/
us / en / support / articles / 000059422 / processors . html,
Accessed: 28-05-2024, 2023.

[31] R. O. S. Projects, Stress, https : / / github . com /
resurrecting-open-source-projects/stress.

[32] U. of Michigan, Mibench version 1.0, https : / /vhosts .
eecs.umich.edu/mibench/, Accessed: 14-05-2024, 2002.

[33] Embecosm, Mibench, https : / / github.com/embecosm/
mibench.

[34] J. D. McCalpin, Stream: Sustainable memory bandwidth
in high performance computers, https : / / www . cs .
virginia.edu/stream/, Accessed: 28-05-2024.

[35] J. H. (jeffhammond), Stream, https : / / github . com /
jeffhammond/STREAM.

[36] Bzip2, https://sourceware.org/bzip2/, Accessed: 28-05-
2024.

[37] Parallel bzip2 compression benchmarks — openbench-
marking.org, https : / / openbenchmarking . org / test / pts /
compress-pbzip2, Accessed: 28-05-2024.

[38] Ffmpeg, https://ffmpeg.org/, Accessed: 28-05-2024.
[39] Big buck bunny, https://peach.blender.org/, Accessed:

28-05-2024.
[40] Benchmark: Big buck bunny trailer, https://dcpomatic.

com / benchmarks / input . php ? id = 2, Accessed: 28-05-
2024.

[41] Ffmpeg rabbit benchmarks — openbenchmarking.org,
https : / / openbenchmarking . org / result / 2311122 - NE -
FFMPEGRAB69, Accessed: 28-05-2024.

[42] 525.x264 r, https : / / www. spec . org / cpu2017 / Docs /
benchmarks/525.x264 r.html, Accessed: 28-05-2024.

[43] P. M. Lerman, “Fitting segmented regression models
by grid search,” Journal of the Royal Statistical Society
Series C: Applied Statistics, vol. 29, no. 1, pp. 77–84,
Dec. 2018. DOI: 10 . 2307 / 2346413. eprint: https : / /
academic.oup.com/jrsssc/article-pdf/29/1/77/48620247/
jrsssc\ 29\ 1\ 77.pdf. [Online]. Available: https://doi.
org/10.2307/2346413.

[44] Gridsearch documentation, https : / / scikit - earn .
org / stable / modules / generated / sklearn . model
selection.GridSearchCV.html#sklearn.model selection.
GridSearchCV, Accessed: 13-05-2025.

[45] Re: Amd zen2 l3missesevent, https : / / www. spinics .
net / lists / linux- perf - users /msg17608 .html, Accessed:
14-07-2024.

42

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

https://doi.org/10.1145/3634737.3637649
https://doi.org/10.1145/3634737.3637649
https://doi.org/10.34810/data1982
https://doi.org/10.34810/data1982
https://doi.org/10.1109/TSMCC.2004.843247
https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker
https://github.com/IAIK/meltdown
https://github.com/crozone/SpectrePoC
https://github.com/crozone/SpectrePoC
https://github.com/Anton-Cao/spectrev2-poc
https://github.com/Anton-Cao/spectrev2-poc
https://github.com/mmxsrup/CVE-2018-3639
https://github.com/mmxsrup/CVE-2018-3639
https://github.com/IAIK/ZombieLoad
https://github.com/tristan-hornetz/fallout
https://github.com/tristan-hornetz/fallout
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://github.com/tristan-hornetz/crosstalk
https://github.com/tristan-hornetz/crosstalk
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://github.com/resurrecting-open-source-projects/stress
https://github.com/resurrecting-open-source-projects/stress
https://vhosts.eecs.umich.edu/mibench/
https://vhosts.eecs.umich.edu/mibench/
https://github.com/embecosm/mibench
https://github.com/embecosm/mibench
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://github.com/jeffhammond/STREAM
https://github.com/jeffhammond/STREAM
https://sourceware.org/bzip2/
https://openbenchmarking.org/test/pts/compress-pbzip2
https://openbenchmarking.org/test/pts/compress-pbzip2
https://ffmpeg.org/
https://peach.blender.org/
https://dcpomatic.com/benchmarks/input.php?id=2
https://dcpomatic.com/benchmarks/input.php?id=2
https://openbenchmarking.org/result/2311122-NE-FFMPEGRAB69
https://openbenchmarking.org/result/2311122-NE-FFMPEGRAB69
https://www.spec.org/cpu2017/Docs/benchmarks/525.x264_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/525.x264_r.html
https://doi.org/10.2307/2346413
https://academic.oup.com/jrsssc/article-pdf/29/1/77/48620247/jrsssc_29_1_77.pdf
https://academic.oup.com/jrsssc/article-pdf/29/1/77/48620247/jrsssc_29_1_77.pdf
https://academic.oup.com/jrsssc/article-pdf/29/1/77/48620247/jrsssc_29_1_77.pdf
https://doi.org/10.2307/2346413
https://doi.org/10.2307/2346413
 https://scikit-earn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
 https://scikit-earn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
 https://scikit-earn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
 https://scikit-earn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://www.spinics.net/lists/linux-perf-users/msg17608.html
https://www.spinics.net/lists/linux-perf-users/msg17608.html

