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Abstract—In response to the challenges posed by an ageing 
population, radar-based fall detection is gaining attention as a 
valuable tool for clinical monitoring and teleassistance. Once the 
radar signals are processed, they can be visualised as spectrograms 
that capture the dynamic signatures of human activity. In this 
work, we propose an approach that leverages image processing 
techniques to extract descriptive features, such as Area, Perimeter 
or Orientation from these activity signatures. These features are 
then fed into a Support Vector Machine (SVM), a lightweight yet 
effective classification model. Our method achieves an accuracy of 
88.85%, providing a resource-efficient alternative that matches or 
exceeds more complex state-of-the-art solutions. 
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I.  INTRODUCTION

Many developed countries face an ageing population, 
increasing the risk of motor impairments and falls. In France, 
20% of the population is at risk, leading to 10,000 deaths and 
more than 136,000 hospital admissions each year [1]. In 2022, 
global recommendations were established for elderly fall 
prevention [2]. The standard approach involves physician 
referrals for clinical gait and balance assessments. However, 
overcrowded services often lack sufficient staff and time. 

Wearable sensors, such as gyroscopes and accelerometers in 
necklaces or watches, can be used to recognise activities like 
"Walk" [3], but they are restrictive. Cameras offer alternatives, 
yet remain intrusive as well [4]. Radar provides a non-intrusive 
way to detect micro-movements without visual imaging. The 
resulting micro-Doppler spectrograms reflect activity-specific 
limb movements [5]. Classification models like Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN) and GoogLeNet 
achieved recognition accuracies from 74% to 94%.  

The study [6] achieved 87.10% accuracy with ResNet-18, 
without modifying the model or input data. This suggests 
potential for improvement using basic image processing and a 
lighter model. This paper proposes a lightweight classifier for 
human activity recognition based on spectrogram features, and 
explores simple image processing techniques.  

Section II reviews radar pre-processing, classification 
methods, and image processing techniques used. Then,   
Section III presents the spectrogram generation, feature 
extraction, and classification applied. Section IV describes and 
compares results with [6], while Section V offers an overall 
analysis. 

II. RELATED WORK
In this section, we present the radar data extraction method 

and the recognition techniques developed from it. 

A. Radar Data Extraction
Radar (Radio Detection And Ranging) uses radio waves to

detect and track objects. For activity recognition, its key 
advantage is analysing Doppler signatures [6]. Doppler 
signatures reflect frequency changes due to movement, while 
micro-Doppler are small variations caused by finer movements, 
such as arm motion during walking. 

The radar emits signals and measures reflections. Most 
studies use Frequency Modulated Continuous Wave (FMCW) 
radars [7]. Analysis of the received signal provides Doppler 
frequency and time delay (beat frequency). Raw data undergoes 
Fast Fourier Transform (FFT) to extract distance and time, 
followed by filtering to remove static elements. Then, a Short 
Time Fourier Transform (STFT) generates velocity-time 
representations, highlighting Doppler variations.  

The pre-processed data are spectrograms, visually 
representing movement speed over time. As shown in  
Figure 1a, spectrograms display signal energy distribution 
during an activity. These representations serve as the basis for 
recognition algorithms, which distinguish activities by their 
unique signatures.  

For FMCW radar, range resolution depends on bandwidth, 
while Doppler resolution depends on observed signal duration 
in the STFT. In this study, we use a range resolution of 37.5 cm 
and Doppler resolution of 1.25 Hz ( 0.03 m/s), enabling 
accurate velocity analysis and classification. Using these 
parameters, spectrograms like Figure 1a are generated. 

B. Activity Classification
Current research aims to improve image classification using

radar data from animals or humans [9], [10]. Common models 
like SVM, KNN and ResNet-18 [6], [11], [12] require sufficient 
data for training. Experiments on the Radar Signatures of 
Human Activities dataset [8] show spectrograms are effective for 
recognition. Studies [11], [12] used AlexNet for feature 
extraction and transfer learning to SVM and KNN, achieving 
accuracies of 78.25% and 77.15%. Transfer learning uses 
knowledge from pre-trained models to solve related tasks.  
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ResNet-18, an 18-layer network, achieves 70% to 90% accu-
racy without optimisation, and suits resource-limited systems 
[6]. The study [6] reported 87.10% accuracy with unmodified 
ResNet-18. While deep learning models perform well, SVMs 
remain a viable lightweight alternative for embedded 
applications due to fast training and low resource needs. 

SVMs are effective in human activity recognition by con-
structing optimal hyperplanes between classes. The study [13] 
showed SVMs can reach 92.8% accuracy on Continuous Wave 
(CW) radar and 95.4% on FMCW, though performance varies 
with pre-processing. Based solely on micro-Doppler data, the 
accuracy drops to around 80%. Kernel choice, hyperparameters, 
and pre-processing are critical. SVMs remain a strong option for 
balancing performance with hardware constraints, especially 
when combined with feature extraction. 

C. Image Processing, Parameters Extraction & PCA
Studies [12], [13] on human activity recognition from

spectrograms aim to improve performance by processing data. 
Some approaches [14] adjust parameters during data acquisi-
tion and pre-processing, like filters or biases. Others [15] modify 
the data before classification, with common classifiers including 
Convolutional Neural Network (CNN) or SVM.  

Most datasets offer opportunities to enhance accuracy with 
different processing strategies. These datasets address human 
activity recognition in diverse contexts, based on spectrograms 
from radar or simulated sensors. The Radar signatures of human 
activities dataset [8], widely used with over 5,000 downloads, 
has been extensively tested in pre-processing, spectrogram 
manipulation, and classification. Techniques like binarisation 
and masks help extract relevant activity features. 

Classical processing methods bring only slight 
improvements. Studies [16] show that Principal Component 
Analysis (PCA) effectively reduces dimensionality by selecting 
key spectrogram variables. This enhances model accuracy and 
lowers computational cost. 

III. METHODOLOGY
This section describes the input data generation method and 

the classification model employed to improve accuracy. 

A. Spectrogram Generation & Parameter Extraction
The Radar signatures of human activities [8] dataset, chosen

for its completeness and relevance, contains 1,753 images across 
6 activity classes. We follow the pre-processing chain of authors. 
After generating spectrograms, activity signatures are extracted 
by binarising the images, unlike [6], which used raw 
spectrograms. To reduce storage and computational costs, 
classical shape-based features are preferred. 

We extract 8 shape features, Area, Perimeter, Orientation, 
Major, Minor, Centroids X and Y, and Excentricity, using 
mathematical methods and the skimage1 Python library. Ac-
tivity signatures are isolated by identifying connected regions in 
the binarised spectrograms. Morphological and geometric 
descriptors are computed via the regionprops function, while 
contours are extracted using measure.find_contours with a  
0.9 threshold and fully_connected = ”high” option enabled to 
have full diagonal connectivity. 

θ = � θ + 90,  if θ < 0
θ − 90, else   (1) 

Contours oriented clockwise are reversed to counterclock-
wise to maintain geometric consistency. Orientation 𝜃𝜃 is 
converted to degrees and adjusted for the image coordinate sys-
tem, where y increases downward, as described in Equation 1. 

B. Hyperparameter & Parameter Selection
The Radar signatures of human activities [8] dataset

contains two similar activities: "Pick" and "Drink". The paper 
[6] showed this confusion. To address this issue, we propose
combining these activities under a single label, "Other". As a

1 https://scikit-image.org/ 

(b) Parameters Extraction (Area, Perimeter, Orientation, Centroid) (a) Spectrogram of "Walk" [8]

FIGURE I. Spectrogram Analysis, from the Original to the Parameters Extraction 
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result, we work with 5 activity classes: "Walk", "Sit", "Stand", 
"Other", "Fall".  

The optimal SVM kernel was chosen based on the five 
highest classification accuracies from spectrogram parameters. 
Among common kernels (Linear, RBF, Sigmoid, Polynomial), 
Linear and Sigmoid were excluded due to the nonlinearity data. 
RBF and Polynomial kernels, which performed well in initial 
tests, were compared to identify the most suitable kernel and 
hyperparameters for human activity recognition.  

For the Polynomial kernel, key hyperparameters include C 
(error penalty), degree (model complexity), and coef0 
(importance of lower degree terms, especially when degree > 1). 
Hyperparameter tuning was done using GridSearchCV 
(exhaustive search with cross-validation) and Randomized-
SearchCV (random sampling within defined bounds), both 
ensuring model robustness and generalisation.  

Finally, we apply PCA to reduce data dimensionality, 
capture key variations, and compare results with and without this 
technique. The goal is to optimise model parameters and 
hyperparameters by selecting the most relevant features from 
spectrogram signatures. 

C. Classification Method
The study [6] has highlighted the feasibility of recognising

activities using a simple and easily implementable recognition 
method. ResNet-18 performed initial training directly on the 
spectrograms obtained at the output of a radar recording. 
However, we are now exploring an alternative approach for 
interpreting the signatures, while still aiming to maintain a 
simple and lightweight solution. 

An SVM is used to learn from spectrograms after feature 
extraction. It offers a lightweight, fast, and effective solution, 
especially for small datasets, and requires minimal storage. The 
SVM implementation from the Python library sklearn2 is used, 
with the kernel type selected based on extracted data results. 
Hyperparameter tuning, detailed in Section III-B, identifies 
optimal settings.  

Training is conducted on the Radar signatures of human 
activities dataset [8], using the same train and test splits as [6] 
for fair comparison with the ResNet-18 model. Despite the 
imbalance of the dataset, particularly fewer samples for the 
"Fall" activity, this does not hinder performance evaluation, as 
noted in [6]. The model is trained on features extracted from 
spectrograms stored in text files. From eight initial features, the 
most relevant ones are selected, as described in Section III-B, 
along with suitable kernels and hyperparameters. 

IV. RESULTS & DISCUSSION
This section outlines the results, from parameter extraction 

to model training. 

A. Hyperparameter Selection
The results presented here focus on the Polynomial kernel.

To identify optimal hyperparameters, we applied two search 
techniques: GridSearchCV, which exhaustively explores a 
predefined set, and RandomizedSearchCV, which samples a 
fixed number of combinations randomly. We tuned the 
hyperparameters C, degree, and coef0. Both methods agreed on 

coef0 = 1.0, but highlighted two promising values for C (100, 
1000) and degree (3, 4).  

TABLE I. ACCURACY FOR ALL HYPERPARAMETERS COMBINATIONS 

C=100 C=1000 

degree=3 87.45% 87.45% 

degree=4 87.80% 86.41% 

All four combinations were tested, revealing up to a 10% 
accuracy difference between degree = 3 with C = 1000 and 
degree = 4 with C = 100. The highest accuracy was achieved 
with degree = 4 and C = 100, as shown in Table I. The next step 
involves extracting and selecting the most relevant features from 
the spectrogram data. 

B. Parameter Extraction and Selection
To extract the characteristic data, the spectrogram image is

first binarised as shown in Figure 1b, followed by contour 
extraction to recover the activity signature. This enables the 
computation of eight previously described parameters, includ-
ing Area, Perimeter, and Orientation. In Figure 1b, the Area is 
outlined in red, the Orientation indicated by the orange line, and 
the Centroid marked by the green dot. 

These parameters serve as SVM inputs, but their relevance 
must be assessed to determine whether the full set is necessary. 
PCA is then applied: the data are centred and standardised, and 
the explained variance of each principal component is 
calculated. As shown in Figure 2, at least 5 components are 
needed to preserve 90% of the total variance, indicating robust 
data representation. 

FIGURE II. Explained Variance per PCA 

Subsequently, all parameter combinations were evaluated. 
Subsets of 5 to 6 features proved sufficient to achieve recog-
nition rates of approximately 80% or higher. Among the top-
performing subsets, the most consistently relevant features, 
identified using the polynomial kernel with tuned hyperparam-
eters, are Orientation, Major, Minor, Centroid X, Centroid Y, 
and Excentricity. 

C. SVM Application and Its Advantage over ResNet-18
Using the selected feature set, the SVM with a Polynomial

kernel achieved an accuracy of 88.85%. This configuration 

2 https://scikit-learn.org/stable/ 
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included the features Orientation, Major, Minor, Centroid X, 
Centroid Y, and Excentricity. The confusion matrix in Figure 3 
confirms strong classification performance, with clear diago-
nals and minimal confusion between classes.  

The use of SVM improved activity recognition performance 
by 1.75% compared to the ResNet-18 of [6]. Grouping similar 
activities helped reduce confusion, while learning from image-
extracted parameters led to further gains, exceeding a 1% 
improvement. These results emphasise the value of clearly 
defined spectrogram signatures, as more distinctive features 
allow for more accurate classification. In [6], an accuracy of 
87.10% was achieved using dataset [8]. Our approach demon-
strates that a lightweight, resource-efficient method focused on 
the most relevant features can still deliver strong performance. 

V. CONCLUSION

This paper proposes a method for recognising human activity 
using Frequency Modulated Continuous Wave (FMCW) radar 
data. Spectrograms are generated through a preprocessing chain 
from an open-source dataset [8]. Key features such as Area, 
Perimeter, and Orientation are extracted from these 
spectrograms and used to train a Support Vector Machine 
(SVM). Using Principal Component Analysis (PCA), the 
approach achieved an accuracy of up to 88.85%, demonstrating 
that complex radar data can be effectively analysed with simple, 
informative features.  

Future work will focus on exploring lightweight, efficient 
activity recognition methods and enhancing existing techniques. 
Once detection and recognition reach satisfactory performance, 
the next step will involve developing and evaluating a real-time 
solution for fall risk prediction. The long-term objective is to 
create a real-time embedded system suitable for real-world 
deployment. 
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