Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Towards Optimized Arithmetic Circuits with MLIR

Louis Ledoux, Pierre Cochard, Florent de Dinechin
INSA Lyon, Inria, CITI, UR3720, 69621 Villeurbanne, France

{louis.ledoux, pierre.cochard,

Abstract—Numerical programs are typically conceived with
real numbers in mind. However, programming languages operate
at a lower abstraction level with fixed-width machine arithmetic.
This abstraction gap limits the scope of legal arithmetic opti-
mizations in compilers, in particular when targetting hardware.

This work introduces a set of MLIR dialects that explicitly
separate concerns between real-valued computation and low-level
arithmetic representation. The RealArith dialect captures math-
ematical intent, enabling algebraic rewrites and approximation-
aware transformations. The FixedPointArith dialect expresses
quantized arithmetic with fine-grained control over bit widths.
This separation enables arithmetic optimizations beyond those
supported by conventional compilers. An example end-to-end
lowering flow performs polynomial approximation, then gener-
ates fixed-point Horner-form architectures tailored for hardware
synthesis. Early hardware results on signal processing bench-
marks demonstrate the potential of this approach.

Keywords—MLIR, arithmetic optimization, fixed-point, poly-
nomial approximation, high-level synthesis

I. INTRODUCTION

Numerical programs are often written under the implicit as-
sumption that operations behave like those over real numbers.
However, modern compiler infrastructures, including MLIR,
typically operate on machine-level formats such as fixed-width
integers and floating-point numbers (IEEE754). These formats
impose rigid evaluation semantics, limiting the set of legal
arithmetic transformations.

For example, while addition is associative in real arithmetic,
it is not in floating point. Similarly, expression fusion or
algebraic rewrites that are mathematically valid may become
unsafe or imprecise when executed with finite-precision types.
These constraints hinder possible optimizations, particularly
in domains like signal processing, scientific computing, and
machine learning, where computations follow well-defined
mathematical patterns such as matrix multiplication (GEMM),
quantization, sparse accumulation, activation functions, or
transcendental operations. These patterns are often amenable
to algebraic simplification or approximation before being low-
ered to low-level arithmetic circuits, where further hardware-
specific rewrites such as operator specialization and bitwidth
tuning can be applied.

When compiling to hardware, such limitations can and
should be relaxed. Hardware offers the freedom to implement
arithmetic operators with arbitrary bit widths and optimized
datapaths. Given the ability to tune precision and layout at
the circuit level, designers can trade off accuracy, and area
according to application needs. To fully exploit this flexibility,
compiler flows must reason not only about bits, but also about
the mathematical semantics of computation.

Manuscript received July 14, 2025; revised July 28, 2025; accepted July
25, 2025. Published September 2, 2025.

Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025

Paper category: Short

DOI: doi.org/10.64552/wipiec.v11i1.90

24

florent.de-dinechin}@insa-lyon.fr

The Multi-Level Intermediate Representation (MLIR) [3]
offers a promising foundation for building such flows. Orig-
inally developed to improve the compilation of machine-
learning models, MLIR now also serves as a foundation
for hardware-oriented compiler projects such as CIRCT!
and Dynamatic?. Its extensible infrastructure enables modular
modeling of programs across abstraction levels. In MLIR,
these levels are described as dialects, each of which defines
an Intermediate Representation (IR) with its own operations,
types, and transformation rules. However, existing MLIR di-
alects remain tightly bound to machine arithmetic and lack a
systematic way to express real-valued computation or reason
about approximation.

This work introduces an arithmetic-aware MLIR flow that
bridges high-level mathematical intent and hardware-oriented
representation. Our contributions include two dialects with
transformation passes and lowerings for arithmetic optimiza-
tion and hardware generation:

« RealArith represents computations over real numbers,
enabling semantic-preserving rewrites and symbolic ap-
proximation control.

« FixedPointArith expresses quantized arithmetic with
precise control over fixed-point types and is designed to
target hardware synthesis.

Building on these dialects, we implement a full low-
ering pipeline that transforms real-valued expressions into
hardware-oriented fixed-point arithmetic. The pipeline per-
forms approximation using external tools such as Sollya [1]
and FloPoCo [2], generating Horner-form evaluators with
precision-tuned datapaths. This enables the synthesis of op-
timized arithmetic accelerators directly from high-level math-
ematical IR. Our contributions are as follows:

(1) We design and implement the RealArith and
FixedPointArith MLIR dialects to support multi-
level arithmetic reasoning and transformation.

(2) We develop an approximation-aware lowering pipeline
that translates real expressions into fixed-point arithmetic
using Sollya and FloPoCo.

(3) We generate precision-tuned, pipelined Horner architec-
tures, suitable for RTL and HLS-based synthesis.

(4) We demonstrate early hardware results on signal pro-
cessing benchmarks, where our approach enables trade-
offs between memory footprint and arithmetic complexity
under an accuracy budget.

Thttps://circt.llvm.org/
Zhttps://dynamatic.epfl.ch/

https://doi.org/10.64552/wipiec.v11i1.90

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

II. BACKGROUND
A. Multi-Level Intermediate Representation (MLIR)

MLIR provides an extensible infrastructure for building
compiler pipelines with multiple abstraction levels. Its core
abstraction, the dialect, allows different computational mod-
els to coexist, enabling progressive lowering from high-level
semantics to hardware-ready representations. Projects such as
CIRCT and Dynamatic extend MLIR for hardware synthesis,
motivating our use of dialects to capture arithmetic intent
across levels of precision and abstraction.

B. Functional Audio Stream (FAUST)

Faust [5] is a domain-specific language for real-time digital
signal processing, making it well-suited to capture the associ-
ated mathematical intent. It adopts a functional programming
model and supports multiple backends, including C++, LLVM
IR, and hardware targets. To enable FPGA deployment, the
Syfala toolchain [6] compiles Faust-generated C++ via Vitis
HLS, producing hardware for real-time audio. More recently,
an MLIR backend has been introduced, enabling lowering of
Faust programs to hardware-oriented IR flows.

C. Floating-Point Cores (FloPoCo)

FloPoCo is an open-source tool for generating parameter-
ized arithmetic cores, particularly optimized for FPGA targets.
Internally, FloPoCo is structured around a clear separation of
concerns between high-level arithmetic modeling, such as real-
valued polynomial and piecewise approximations, low-level
datapath construction, including components like bit heaps,
and target-specific mapping to FPGA resources. While this
philosophy guides its architecture, these layers are currently
intertwined in implementation and not explicitly exposed,
making them difficult to access or reuse from external tooling.

These internal abstractions align naturally with MLIR’s
dialect model. Our work seeks to expose each layer as an
explicit dialect, making FloPoCo’s arithmetic reasoning and
circuit synthesis capabilities more accessible and interoperable
within MLIR-based hardware flows.

D. Polynomial Approximations and Horner Architectures

Polynomial approximation is a classical technique that en-
ables efficient evaluation of functions using only additions
and multiplications. This topic has been well studied in the
literature: textbooks [2], [4] detail both the mathematical
foundations and implementation strategies, including range
reduction and hardware-oriented considerations.

punou [euly

Yo=Y
Fig. 1: Horner-form evaluator for degree-3 polynomials.

A univariate polynomial p of degree d over a real variable
X has real-valued coefficients C; € R. The Horner evaluation

25

scheme is often used, since it involves only one multiplication
per coefficient:

p(X)=Co+ X(Cr+---+X(Cy_1 + XCp))). (1)

Figure 1 represents a piecewise polynomial evaluator the
fixed-point architecture for evaluating degree-3 polynomials
using Horner’s method. The input X is decomposed into
two parts: the most significant « bits, denoted A, addresses
a coefficient table holding 2% polynomials. The remaining
wx —« bits, denoted Y, serve as the local offset for evaluation
within the selected sub-interval.

In a fixed-point implementations (Figure 1), the smallest
possible format of each coefficient C; can be derived from the
function and the accuracy constraints. Similarly, each Horner
step may use a truncation Y; of Y to minimize the size of the
corresponding multiplier [2] — this is implemented in FloPoCo.

The segmentation parameter « introduces a trade-off: in-
creasing o reduces the required polynomial degree and hence
arithmetic cost, but exponentially increases memory usage due
to the 2% coefficient sets. This trade-off must be co-optimized
based on implementation constraints. MLIR provides a suit-
able infrastructure to capture this trade-off explicitly, enabling
lowering strategies or automated heuristics to tune the arith-
metic / memory balance in the generated hardware.

III. END-TO-END COMPILATION FLOW
A. System Integration Overview
tensor) |Polybench matmul.cpp| [IIR.dsp
tanh div3.cpp SSH.cpp FM.dsp

i

" {FixedPoint
Arith

Low-Level
Arithmetic
T 77T 777 Instmctions © ':,‘ ST Girenis ¥ 7T

' [emitC] [LLVM]' ! [HWArith]

| w— — |

. |[Handshake | |

Back-End [—— X, .

System |
09) (3]

,,,,,,,,,,,,,,

]
[] External Dialect () External Library () Benchmark
— Lowers to ----» Uses - -» Missing Path

Internal Dialect (O) Internal Library () Language

Fig. 2: Overview of the proposed arithmetic dialects and the high-level
synthesis toolchain.

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Ring Modulator [Faust IR

[RealArith IR

= sin(2 sin(2 < <
y(li»smunﬂ-l)(vl.;m(llrfn{? G | Faust.sraph eprosass laputs: 1, outpute: 1) ¢ S | func. func eprocess (xargo: ! fixedpt<d,-5,signed>) -> ! ixedpt<o,
P %0 = faust.PI - -23, signed> {
o .
[C) %1 = faust.real (2.000000e+00 : f32) g %0 = r th.constant (4.400000e+02 : 32)
o t.real(3.300000e+01 : f32) S R Da0X
T S t.real (4.800000¢+04 : £32) o %2 = h.constant (2.000000e+00 : 32)
¢ wis2) o %3 = r h.constant (3.300000e+01 : f32)
) @ Do o), €8 8 0 reonet)) %4 = h.constant (4.800000e+04 : 32)
-— O Vfaust.real, %2 & | CEETR) = %5 = 1 th.div(%arge : !fixed_pt_arith.fixedpt<4,-5,sign ! th.r_const)
\Ring modulation shape 9 : Mfaust.real, X1 : Ifaust.rconst) | S | 36 = r-arith.mul(ss : lr_arith
[Faust_language e Paustireal, 50 5 tfaustoreonst) | & e ST e
a : ifau = : I
import(”stdfaust.lib"); !faust. real) %9 = 1 h.sin(%8 : !
B t.real (4.400000¢+02 2) . %10 = r_arith.mul(%5 : !r i "
sine(f,t) = sin(ph)l with = %11 = faust.mul(%5 : !faust.real, %10 : !faust.rconst) | i3 T 5 e 1 It
ph = t/48000.0%f*2.0%ma.PI; T %12 = f tomul (%11 ! t.real, %1 1f rconst) T %12 = ri \ 1 ari
3 oy %13 = faust.mul(%12 : ! t.real, %0 : !faust.rconst) | ‘= %13 = . !
O %14 = faust.sin(%13 : ! t.real) & TR & : | ,)
ringmod(fc,fm,t) = sine(fc,t) + sine(fm,t);f 3 #15 = faust.mul(x14 : faust.real, %9 : Ifaust.real) | & | (55 machine_repr of %14 T 3
Just.output (%15 : !faust.real) return %15 : 1fixed pt arith.fixedpt<@, -23, signed>
process = ringmod(440.0, 33.0); 3} + y
. p— Stepjjiiv: Polynomial Approximation
Arith_+ CF IR | FixedPointArith + SCF IR ' Piii—iv y PP
func. func @process(%arg0: i14) -> i24 { Polynomial Approximation || func.func @process(%arge: !fixed pt_arith.fixedpt<s, -5, unsigned>) -> Ifixed pt_arith.fixedpt<e, -8, signed> {
. Sollya %0 = fixed_pt_arith. t <-23, Ifixed_pt_arith.fixedpt<-5, =11, d>>
%C=405_110 = aritn.constant -405 : 110 (R) BT Lo canst 099 1 Fied b ariin fixeapi <3, 11 siamedss ()
%c4359_i16 = arith.constant 4359 : i16 ® Fixedpt<d, -5, signed> %2 = i pt_arith.const <278, !fixed pt_arith.fixedpt<-1, =11, signed>>
" maps [~16,16) to [~1,1) icent
%c132962_i24 = arith.constant 132962 : fixedpt<e, -23, signed> i_pt_arith.const <19, !fixed_pt_arith.fixedpt<o, =11, signed>>
i24 Degrees/Interval definition i_pt_arith.const <113, !fixed_pt_arith.fixedpt<e, -11, signed>>
oy - .) |_pt_arith.rescale_2pow %argé : <8, -5, unsigned> shift by -8
zcgsgfz,xn 2 M\v,tt:on‘s:t?nt §?iz9 s i27 P(x) = vt x(er + x(ex -+ et + x6) Cbt_arith. extract <0, -3, unsigned> from %86 : <0, -13, unsigned>
€7_.i14 = arith.constan s i _r 1 rith.get_int from %81 : <0, -3, unsigned>
%0 = arith.shrui %arge, %c7_i14 : i14 h.index_cast %82 : i4 to index
%1 = arith.trunci %0 : i14 to i7 scf.index_switch %83 -> !fixed_pt_arith.fixedpt<e, -11, signed>, !fixed_pt_arith.fixedpt<e, -11, signed
9 o o AebaGoet B 8 97 o ks | xed_pt_arith.fixedpt<-1, =11, signed>, !fixed_pt_arith.fixedpt<-3, =11, signed>, !fixed_pt_arith.fixedpt
igned>
%c@ = arith.constant @ : index _||||||I , signe
- o ; . v /5 . case @ {
%3 = arith.cmpi eq, %2, %c@ : index) scf.yield %79, %78, %77, %76, %75 : !fixed_pt_arith.fixedpt<@, -11, signed>, !fixed_pt_arith.fixedpt<a, -11
cf.cond_br %3, *bbl, “bb2 - - signed>, !fixed_pt_ar .fixedpt<-1, =11, signed>, !fixed_pt_arith.fixedpt<-3, =11, signed>, !fixed_pt_aritt
“bbl: // pred: *bbo fixedpt<-5, -11, signed>
cf.br ~bb511(%c66629_i27, %c132962_i24, b
HEOER0AA), SRR AG, SO0 8 S RLAk) B0, £y S5y o §70 8 th ipt<e, -11, signed>, !f fixedpt<o, -11
N 3 < < scf.yie , B » , : xed_p arith. fixedp’ » =11, signe » fix pt_a 4 ixedp T
oy i27, i24, i20, i16, 11@) signed>, !fixed_pt_arith.fixedpt<-1, -11, signed>, !fixed_pt h.fixedpt<-3, -11, signed>, !fixed_pt_arith
Abb2: pred: *bbo _fixedpt<-5, =11, signed>
%cl = arith.constant 1 : index Steps; L.)
%4 = arith.cmpi eq, %2, %cl1 : index PSiv—v—vioviit case 2 {
of .cond_br %4 Abb3, Abb4 . scf.yield %69, %68, %67, %66, %65 : !fixed pt_arith.fixedpt<e, -11, signed>, !fixed pt_a fixedpt<e, -11
“bb3: // pred: "bb2 Targeting Hardware signed>, !fixed_pt_arith.fixedpt<-1, =11, signed>, !fixed_pt_arith.fixedpt<-3, -11, signed>, !fixed_pt_arit
) .) . . . fixedpt<=5, =11, signed>
cf.br ~bb509(%c589043_127, %c384773_i24, |
%c58880_120, %c-1727_i16, %c-136_i10 vitch n
: i27, i24, i20, i16, i10) case 15 (
/7 scf.yield %4, %3, %2, X1, %0 : !fixed_pt_arith.fixedpt<e, -11, signed>, !f rith. fixedpt<e, -11, signed
. . edls SRRSO >, Ifixe Y 1. fixedpt<-1, -11, signed>, !fixed_pt_ar .fixedpt<-3, -11, signed>, !fixed_pt_ar .
bbiei. *;ésg; %756 ")%757 %758, %759 FREEDEED, <y SOIER
cf.br : (M3, & B p i3 , b
%760 : 127, i24, i20, i16, i10) default {
bb509(%761: 127, %762: i24, %763: i20, ettty ey Gy scf.yield %79, %78, 477, %76, ¥75 : lfixed piarith.fixedpt<s, -11, signed>, !fixed pt o fixedpt<o, -1,
%764: 116, %765: i10): // 2 preds: “bb3 signed>, !fixed_pt_arith.fixedpt<-1, -11, signed>, !fixed_pt_arith.fixedpt<-3, =11, signed>, !fixed_pt_aritl
~bb508 O fixed-point coefficients . fixedpt<-5, -11, signed>
=GB O)
cf.br “bbsio O sorntmmmr ||| B o aiorer s S <8 GG G £ 8 O B
“bb51@: // pred bb509 %86 = fixed_pt_arith.rescale_2pow %85 : <-4, -13, unsigned> shift by 2
cf.br ~bb511(%761, %762, %763, %764, (@ + adder output sizes %87 = fixed_pt_arith.extract <-4, -11, unsigned> from %86 : <-2, -11, unsigned>
%765 : 127, i24, i20, i16, i10) G ¢ ¢ X85 nul %8 <5, 11, signed>, %87 i <-4, ~TT, unsigned> -
A i i i 9 B P et orner Stage 1
bb511(%766: 127, %767: i24, %768: i20, e 2)] . X
%769: 116, %770: i10): > preds: “bbl L : s EENE NI L S 00, X S “08, S
cf.br *bb512 %97 ixed_pt_arith.extract <-4, -12, signed> from %96 : <-4, -24, signed>
~bb512: pred: ~bb511 Generated Architecture %98 = fixed pt_arith.add %97 : <-4, -12, signed>, %8441 : <o, -11, signed> -> <1, -12, sxgned)
%771 = arith.trunci %arg0 : i14 to 17 %99 Ipt_arith.mul %98 : <1, -12, signed>, %92 : <-4, -12, unsigned>
%772 = arith.extui %771 : i7 to i20 %100 = fixed_p rith.extract <-2, -12, signed> from %99 : <-2, -24, signed>
: : [%101 = fixed pt_arith.add %100 : <-2, -12, signed>, %84#0 : <0, -11, signed> -> <1, -12, signed>
4) %102 = fixed_pt_arith.extract <, -8, signed> from X101 : <1, -12, signed>
%808 .trunci %807 : i46 to i19 return %102 pt_arith.fixedpt<o, -8, signed>
%809 Lextsi %808 : i19 to i29)
%810 = arith.extsi %766 : i27 to i29 -
%c1_i29 = arith.constant 1 : i29 LLVM Dialect Transformation Passes
%811 = arith.shli %810, %c1_i29 : i29 Step,_,;: faust -lang=mlir ringmod-tfunc.dsp -o ringmod.mlir
%812 = arith.addi %809, %811 : i29 backend | Step,_,y: faust-opt ringmod.mlir -cse -canonicalize -faust-to-core=’tfunc’ -o ringmod_realarith.mlir
%c4_i29 = arith.constant 4 : i29 Stepy_iy: flopoco-opt ringmod_realarith.mlir -realarith-to-fixed_pt_arith="approximation-method=uniform_piecewise_poly \
%813 = arith.shrsi %812, %c4_i29 : i29 Hardware IR / HLS polynomial-degree=4" -symbol-dce -canonicalize -cse -o ringmod_fixedpt.mlir
%814 = arith.trunci %813 : i29 to i24 Step;,_,,: flopoco-opt ringmod_fixedpt.mlir -fixed_pt_arith-to-arith -o ringmod_arith.mlir
e arn wora L en CIRCT Step,_,,: circt-opt ringmod_arith.mlir -switch-to-if -o ringmod_if.mlir
)ynamat
3 " | backend | Step,_,: mlir-opt ringmod_if.mlir -convert-scf-to-cf -o ringmod_cf.mlir

Fig. 3: From real-valued audio signals to synthesizable RTL: multi-intent arithmetic dialects and transformation passes.

Figure 2 illustrates the integration of our arithmetic-aware
flow within a high-level synthesis toolchain. While the diagram
emphasizes signal processing use cases, the flow is designed
to accommodate a broader range of inputs, such as Al models
or polyhedral C++ code. Figure 2—@ and - denote baseline
that bypass the proposed optimizations.

B. Multi-Level Arithmetic Dialects

We introduce two MLIR dialects that reflect distinct levels
of arithmetic abstraction. The RealArith dialect operates
over mathematical real numbers and supports symbolic expres-
sions with both algebraic and transcendental operations. As
illustrated by Figure 3-, it introduces the machine_repr
operation, which defines the transition point from infinite-
precision real arithmetic to a concrete fixed-point format
suitable for implementation. The FixedPointArith dialect
encodes quantized fixed-point arithmetic with operations. This
dialect serves as an intermediate representation amenable to

hardware synthesis and lowers directly to the core MLIR
dialects (Arith).

C. Transformation and Pass Pipeline

Figure 3 illustrates the transformation pipeline across inter-
mediate representations in our flow. The process begins from
high-level real-valued expressions written in DSLs like Faust,
which are then mapped to the RealArith dialect. Approx-
imation is triggered by the insertion of a machine_repr
operation, introduced by the faust-opt pass (Figure 3-
). This operation marks the boundary between real-valued
computation and fixed-point implementation, as indicated by
the absence of the R badge. The LSB of its return type
determines the desired output precision.

This request is handled by a transformation pass that per-
forms symbolic approximation using the Sollya library. The
result is a fixed-point polynomial architecture expressed in
Horner form. The corresponding evaluator is emitted with our
FixedPointArith dialect, paired with SCF (Structured

26

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

02 04 06

1

0 02 04 06 08 0 08 1

(a) =1, Dégreezlf) b) a =5, Dfegree:4

Fig. 4: Uniform piecewise polynomial approximations.
Control Flow) Dialect to implement a case-based memory
access over 2% coefficient sets.

The generated architecture corresponds to the fixed-point
Horner evaluator depicted in Figure 1. The fixed-point co-
efficients ¢; are defined by the values yielded in each
scf.index_switch case. Since each of the 2% segments
requires a polynomial of degree d, each case yields d + 1
constants, totaling (d + 1) - 2% coefficients. The truncated
inputs Y; are propagated through the stages, visible in the
IR as shared extract and rescale operations. Adder
output sizes .S; result from precision growth at each stage and
correspond to the bitwidths seen in the intermediate addition
results on lines %$88-%90. Eventually, to target hardware
synthesis tools, the IR is lowered to core dialects: Arith, CF,
and Builtin. This includes scaling fixed-point into integers
and converting control constructs into the CF dialect required
by CIRCT or Dynamatic. Once in this form, downstream tools
such as dynamatic—opt and export—-hdl can be used to
generate synthesizable HDL.

IV. RESULTS DISCUSSIONS
A. Experimental Setup and Methodology

We evaluate our compilation flow on a ring modulation
algorithm expressed in Faust. The computation consists of the
product of two sine waves, y(t) = sin(2w f1t) - sin(27 fot),
chosen for its relevance to real-time audio processing and
the presence of a nonlinear transcendental function. Two
baselines are considered (see two first rows of Table I).
The first uses Syfala, which compiles Faust-generated C++
through Vitis HLS to produce synthesizable RTL (see Fig-
ure 2-). The second bypasses our proposed optimiza-
tions by lowering Faust-generated MLIR directly to the
arith dialect in floating point, and applies the mlir-opt
—-test-math-polynomial-approximation pass to
expand transcendental functions into f32-based polynomial
approximations(see Figure 2-@). Figure 4 shows two of our
polynomial approximation configurations after range reduction
to [0,1) of a subset of a full period. The visible alternation of
segments reflects the piecewise scheme. The degree-16 case
needs to store 2! - (16 +1) = 34 coefficients, likely wider than
the 2° - (4 + 1) = 160 narrower ones of the degree-4 case.

B. Hardware Results

Table 1 reports hardware usage across methods on the
xc7z020-1clg400c FPGA. DSP usage increases with polyno-
mial degree due to deeper pipelines and wider coefficients,
which result in more arithmetic stages and facilitate automated

27

TABLE I: Resource usage across methods on xc7z020 FPGA.

Hardware resources

Method (output precision) Poly. degree

LUT FF DSP

faust-syfala (32 bits) * 3,765 3,142 32
faust-mlir (32 bits) * 14,638 8,226 27
4 2,868 4,172 4

Uniform Piecewise 5 3,209 4,460 5
Poly. Approx. (10 bits) 14 1,252 1,157 50
18 1,531 1,369 63

3 127,441 209,121 5

4 32,042 56,004 8

Uniform Piecewise 5 17,608 30,399 11
Poly. Approx. (24 bits) 6 9,712 16,489 15
8 4,965 7,886 24

9 5,228 8,229 27

* Not applicable in this case.
DSP inference. Lower-degree piecewise configurations trade
arithmetic for memory by increasing the number of segments.
Both 32-bit floating-point baselines show high DSP usage due
to mantissas being mapped to dedicated multipliers.

While these early results demonstrate the feasibility of our
flow, we note that baseline paths required manual construction
due to gaps in existing MLIR hardware lowering support. A
detailed and systematic evaluation of baseline strategies, as
well as more precise comparisons across numeric formats, will
be the subject of future work.

V. CONCLUSIONS AND FUTURE WORK

This work presents a multi-level arithmetic-aware MLIR
flow that connects high-level mathematical semantics to low-
level hardware representations in an end-to-end pipeline.

Preliminary results on a signal processing benchmark show
promising trade-offs between memory footprint and arithmetic
complexity. However, the current state of end-to-end MLIR
hardware support poses challenges for establishing robust
baselines. With the dialect and lowering infrastructure now
in place, future work will focus on introducing hardware-level
optimizations — such as bitheap-based arithmetic synthesis [2,
ch. 7] — as well as supporting a wider range of approxima-
tion schemes, including table-based methods and non-uniform
segmentation strategies. We also plan to extend evaluation to
larger workloads in signal processing, linear algebra, and Al,
where the benefits of semantic-aware arithmetic compilation
are expected to be more pronounced.

REFERENCES

[1] S. Chevillard, M. Joldes, and C. Lauter, “Sollya: An environment for
the development of numerical codes,” in International Congress on
Mathematical Software, vol. 6327. Heidelberg, Germany: Springer,
September 2010, pp. 28-31.

F. de Dinechin and M. Kumm, Application-Specific Arithmetic. Springer,
2024.

C. Lattner et al., “MLIR: Scaling compiler infrastructure for domain
specific computation,” in 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2021, pp. 2—-14.

J.-M. Muller, Elementary functions, algorithms and implementation, 3rd
Edition. Birkhaiiser Boston, 2016.

Y. Orlarey, D. Fober, and S. Letz, “FAUST : an Efficient Functional Ap-
proach to DSP Programming,” in NEW COMPUTATIONAL PARADIGMS
FOR COMPUTER MUSIC, E. D. FRANCE, Ed., 2009, pp. 65-96.

M. Popoft, “Audio DSP to FPGA Compilation: The Syfala Toolchain
Approach,” Ph.D. dissertation, Univ Lyon, INSA Lyon, Inria, May 2023.

(2]
(3]

[4]
(5]

(6]

