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Abstract—Modern neural networks often rely on 
overparameterized architectures to ensure stability and accuracy, 
but in many real-world scenarios, large models are unnecessarily 
expensive to train and deploy. This is especially true in Internet of 
Things (IoT) and edge computing scenarios, where computational 
resources and available memory are severely limited. Reducing 
the size of neural networks without compromising their ability to 
solve the target task remains a practical challenge, especially when 
the goal is to simplify the architecture itself, not just the weight 
space. To address this problem, we introduce ImproveNet, a 
simple and general method that reduces the size of a neural 
network, without compromising its ability to solve the original 
task. The approach does not require any pre-trained model, 
specific architecture knowledge, or manual tuning. Starting with a 
standard-sized network and the standard training configuration, 
ImproveNet verifies the model's performance during training. 
Once the performance requirements are met, it reduces the 
network by resizing feature maps or removing internal layers, thus 
making it ready for AI-on-the-edge deployment and execution. 

Index Terms—IoT, Edge AI, Deep Model Optimization, Neural 
Network Compression 

I.  INTRODUCTION

The Internet of Things (IoT) concept, first introduced by 
Ashton in 1999, describes a system in which physical objects 
equipped with sensors are connected to the Internet and used to 
collect data from the environment. Since then, the idea has 
evolved rapidly and today includes billions of devices that can 
communicate with each other and exchange information in real 
time. There are currently over seven billion IoT devices in the 
world, and this number is expected to exceed twenty billion in 
the coming years. 

As the number of connected devices increases exponentially, 
the amount of data generated is also growing. Although this data 
may contain useful information, it is often affected by noise, 
redundancies or errors [1]. As a result, traditional processing 
methods are no longer sufficient and increasing machine 
learning techniques are being used to extract knowledge from 
collected data. However, running machine learning models 
directly on IoT devices is extremely complex. These systems, 
also called edge devices, are characterized by limited resources, 
limited memory, low computational power, and stringent energy 
constraints. For these reasons, running large models locally (on-
device) is often impractical. 

An alternative solution could be to send the data to a remote 
server (cloud), where heavier models can be run without 
hardware constraints. However, in many real-world scenarios 
this option is limited or unacceptable, either for latency reasons 
(such as in real-time applications) or for privacy reasons (in 
healthcare, industrial, or personal contexts). In these scenarios, 
keeping the computation local is the only sustainable choice, 
provided that the model is light enough to be run safely and 
efficiently on the device. 

To address this trend towards AI-on-the-edge (a.k.a. Edge 
AI), we propose ImproveNet, a simple method that reduces the 
size of a neural network directly during training, while ensuring 
that the model maintains the required performance. The 
approach starts with complete architecture, which is then 
progressively reduced as training progresses. 

Block removal and filter reduction are the two structural 
alterations that lead to reduction. Removing a block means 
eliminating entire sequential portions of the network, each 
composed of one or more convolutional or linear layers, with a 
direct impact on the depth of the model. Filter reduction, on the 
other hand, consists in decreasing the number of output channels 
in the convolutional or dense layers, with the effect of reducing 
the width of the intermediate representations. Both operations 
allow us to simplify the architecture in a controlled way, keeping 
the capacity of the model within acceptable thresholds. 

In the following sections, we describe in detail how this 
strategy works and analyze its application in different scenarios. 
In particular, Section II presents the main existing works 
dedicated to the reduction of neural networks through pruning, 
quantization or architectural simplification. Section III 
introduces the logic of ImproveNet and how reduction 
operations are integrated into the training cycle. Finally, in 
Section IV, we report the experimental results obtained by 
applying the method to the ESA-ADB dataset, using two 
autoencoders, one linear and one fully convolutional. 

II. RELATED WORKS

In our application context, oriented to industrial scenarios 
and constrained by efficiency and compatibility requirements 
with edge systems, requirements analysis has led to narrowing 
the focus to fully convolutional or linear networks. Despite this 
choice, the comparison with existing compression techniques 
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will be conducted in a fair way, highlighting for each approach 
the context of validity and the reference architectures to which it 
applies. Several methods have been proposed to reduce the size 
and complexity of neural networks, particularly in applications 
with limited computational or memory resources, such as 
embedded or IoT devices. Most existing techniques are based on 
static approaches, including quantization [2], pruning [3], and 
knowledge distillation [4] [5], and are typically applied after 
training. Table 1 summarizes the main differences between 
ImproveNet and other model compression techniques, i.e., 
Structured Pruning, Unstructured Pruning, and Distillation. 

III. IMPROVENET

Unlike traditional techniques based on neural importance, 
induced sparsity in weights, or post-training strategies, 
ImproveNet takes a completely different approach. The method 
acts directly during the training process, progressively reducing 
the network only when performance reaches predefined 
thresholds. This reduction occurs without requiring a fully 
trained model or the use of external heuristics. 

The method takes as input the initial model together with all 
the components needed for training, such as the dataset, the 
optimizer, the metrics estimator, the loggers, and the 
performance constraints to be achieved such as the loss ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
and the accuracy ℳ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . At regular intervals, the optimizer 
checks whether the current model 𝑀𝑀 satisfies the target 
requirements. These requirements are expressed as constraints 
on global quantities, such as the loss ℒ(𝑀𝑀) and the accuracy 
metric ℳ(𝑀𝑀), as formalized in the following equation 

ℒ(𝑀𝑀) ≤ ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⋀ ℳ(𝑀𝑀) ≥ℳ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

If the conditions are satisfied, ImproveNet applies a 
structural transformation to the network, choosing between 
reducing the number of channels and removing an internal 
block.  

The type of reduction applied is managed dynamically based 
on the size of the current model compared to the initial one. The 
first two attempts apply a channel reduction and a simple block 
removal respectively. After this, the method computes the 
reduction ratio between the current network and the original one. 
If this ratio is still higher than the first threshold, priority is given 
to block removal, alternating every three attempts with a filter 
reduction. When the ratio drops below the first but above the 
second threshold, the two types of reduction are alternated more 
frequently (once every two attempts). Finally, only channel 
reduction is performed below the second threshold, preventing 
further excessive structural eliminations. 

Using this technique, the model can gradually reduce while 
preserving its structural balance and avoiding excessive 
compression in subsequent training phases. To avoid repeated or 
harmful activities, the system also considers the number of 
reductions performed previously. 

An additional protection mechanism is activated in case the 
network starts to stagnate. If the model does not converge within 
a certain number of iterations and the reduction attempts exceed 
half of the maximum expected number, ImproveNet performs a 
controlled reallocation of the architecture.  The goal is to prevent 
excessive compression from trapping the model in non-ideal 
local minima.  

Finally, if at the end of a reduction cycle the model fails to 
stably maintain the convergence conditions, the system restores 

TABLE 1 - COMPARISON OF MODEL COMPRESSION TECHNIQUES 

Property ImproveNet Structured Pruning 
 [7] [8] 

Unstructured Pruning 
[9] [10] Distillation [11] 

Reduction type  Structural Structural Sparse Knowledge transfer 

Granularity Blocks, Channels, Neuron Filters Weights - 

Inference time Reduced Reduced Same Reduced 

Memory footprint Reduced Reduced Same Reduced 

Compression ratio High High Same Reduced 

Performances 
retention Preserved Not guaranteed Not guaranteed Teacher-dependent 

Loss stability Controlled Requires retraining Requires retraining Regularized 

Training Time High High Low Low 

Architecture 
agnostic Yes No No Yes 

Self contained Yes Yes Yes No 

Repeatability Yes 
[7] Available in Caffe (Python) 

[8] Available in PyTorch 

[9] Not available 

[10] Official not available
(3rd part) 

[11] Official not available
(3rd part) 

Neural Network 
Supported Linear & Fully Convolutional  CNN CNN Any 
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the last effective configuration, i.e. the last architecture that 
satisfied the performance constraints. An alternative strategy is 
then adopted, for example switching from block removal to filter 
reduction, or vice versa. This rescue mechanism ensures that the 
compression process does not irreversibly compromise the 
optimization capacity of the network.  

The described structural transformations are based on the 
reduction of the number of channels (i.e. of input and output 
channels) and on the removal of entire blocks, which include 
sequences of convolutional or linear layers. Both operations take 
into account both the number of attempts already made and the 
size of the current model compared to the original one, Figure 1 
shows the full workflow underlying the ImproveNet procedure, 
highlighting how the system monitors the training progress and 
applies structural reductions when the target conditions are met. 

IV. PRELIMINARY RESULTS

To evaluate the performance of ImproveNet, one approach 
could have been a comparison with the methods in Table 1, but 
since most of them did not provide official source code or were 
not implemented in PyTorch or the code was available but did 
not work properly, we decided to test our method using ESA-
ADB  dataset [6], a recognized benchmark for multivariate time-
series anomaly detection based on real data from space missions. 
We chose this dataset because it is representative of an edge 
environment where there is a need for small and compact 
models, suitable for resource constrained environments and a 
real-time operational context. The dataset is composed of three 
missions from which we selected Mission 1, composed of 76 
channels, 58 of which are target channels and are splitted into 4 
subsystems. Mission 1 includes 200 annotated events where 118 

are anomalies, 78 nominal rare events (atypical but expected 
telemetry variations), and 4 communication gaps. We conducted 
experiments on a lightweight subset consisting of channels 41 to 
46 as suggested by [6]. These channels were selected because 
they contain interesting but manageable anomalies, are useful 
for monitoring the health of the satellite, are relatively easy to 
visualize and analyze manually, and are independent of other 
channels or subsystems. The data were normalized in the range 
[0, 1] using a Min-Max scaling channel by channel, to ensure 
uniformity between the signal scales and avoid distortions in the 
calculation of the loss function. 

The data were split respecting the temporal order of the 
observations where 70% was used for training, while the 
remaining 30% was divided into equal parts for validation and 
testing. The anomalous pattern is present exclusively in the test 
set, to train the model on the reconstruction of normal 
conditions. The time series were then transformed into fixed-
length windows of 50 samples, with a stride of 50, obtaining 
sequences of the type (batch, 50, 6), where 6 represents the 
number of channels.  

Training was conducted for a maximum of 100 epochs, using 
the Adam optimizer with a learning rate of 0.0001. The objective 
function used is a weighted combination of mean squared error 
(𝑀𝑀𝑀𝑀𝑀𝑀) and mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀), defined as 

ℒ = 𝛼𝛼 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀 + (1 − 𝛼𝛼) ∙ 𝑀𝑀𝑀𝑀𝑀𝑀 

where (𝛼𝛼 = 0.5) represents the balance between the two 
components. This formulation allows to penalize both large 
point errors (that the 𝑀𝑀𝑀𝑀𝑀𝑀 effectively intercepts) and moderate 
diffuse errors (captured by the 𝑀𝑀𝑀𝑀𝑀𝑀), resulting particularly 
suitable for anomaly detection tasks. 

We considered a Fully Convolutional Autoencoder (FCAE) 
and a Linear Autoencoder (LAE). ImproveNet was applied to 
these models, which operated during training by progressively 
reducing their structural complexity through functional criteria, 
generating compressed versions capable of maintaining 
comparable performance in terms of predictive accuracy. 

All the experiments were run using an Intel core I5-
13600KF, 32 GB of RAM and an RTX 3060 with 12 GB of 
VRAM. The results obtained show a significant reduction in the 
size of the models, in the case of the convolutional autoencoder, 
as shown in Table 2, the number of parameters goes from 
130,886 in the original version to only 6,734 in the compressed 
network, with a reduction ratio of  94.85%, a reduction in the 
inference  time from 3.4 ms to about 1 ms (3.4x faster) and a 
reduction in memory footprint of 94.07%. Similarly, in the linear 
model, as shown in Table 2, the parameters drop from 244,972 
to 15,284 (93.76% reduction), and the inference time is reduced 
from 1.56 ms to about 0.15 ms (10.4x faster) and a memory 
footprint reduced of 93.37%. 

Figure  and Figure  display anomaly detection results on a 
test sequence for linear autoencoder and convolutional models, 
respectively. In both situations, it is noted that the smaller 

Figure 1 - Schematic representation of the ImproveNet workflow. 
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version of the network (the lower time series in both images), 
parameters. For the convolutional model, the compressed 
obtained using ImproveNet, retains the ability to accurately 
detect abnormal patterns, despite the reduction in the number of 
network shows a slightly lower reconstruction quality than the 
original network, but the ability to detect anomalies remains 
unchanged, with comparable predictive performances. 
Similarly, in the case of the linear autoencoder, a slight 
degradation of the reconstruction is observed, but the anomaly 
is still correctly identified. 

V. CONCLUSIONS

In this paper, we demonstrated the effectiveness of our 
approach for convolutional and linear networks in AI-on-the-
edge scenarios where the size of the model is a central constraint. 
The ability of ImproveNet to progressively reduce architectural 
complexity while maintaining stable performance makes it 
particularly suitable for use in systems where the trade-off 
between accuracy and computational efficiency is essential. 

In addition to the space/satellite, similar applications are 
found in sectors such as autonomous robotics, distributed 
industrial monitoring systems, wearable biomedical devices, and 
IoT infrastructures, all of which share the need to run neural 
models under limited computation and energy constraints. 

A future development consists of directly integrating the 
compressed models generated by ImproveNet into real devices, 

evaluating their behavior on embedded hardware and low-power 
microcontrollers, in unsimulated operating conditions. 
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TABLE 2 – COMPARISON BETWEEN THE LARGE AND THE REDUCED FULLY 
CONVOLUTIONAL AUTOENCODER (FCAE) AND LINEAR AUTOENCODER 

(LINEAR AE) ARCHITECTURES 

Figure 2 - Anomaly detection on a test sequence by the original convolutional model (the upper one) and reduced one (the lower one). 

Figure 3 - Visual comparison between the original linear autoencoder (the upper one) and the reduced linear autoencoder model (the lower one). 

Total Param 
# 

CPU Inference Time 
(ms) 

Size 
(MB) 

FCAE 130,886 3.4073 0.5046 

Reduced 
FCAE 6,734 1.019 0.0299 

Linear AE 244,972 1.5676 0.9397 

Reduced  
Linear AE 15,284 0.1508 0.0623 
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