
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Efficient Neural Network Reduction for
AI-on-the-edge Applications through

Structural Compression
Adriano Puglisi, Flavia Monti, Christian Napoli and Massimo Mecella

Department of Computer, Control, and Management Engineering Antonio Ruberti
Sapienza Università di Roma, Rome, Italy

Email: {puglisi, monti, napoli, mecella}@diag.uniroma1.it

Abstract—Modern neural networks often rely on
overparameterized architectures to ensure stability and accuracy,
but in many real-world scenarios, large models are unnecessarily
expensive to train and deploy. This is especially true in Internet of
Things (IoT) and edge computing scenarios, where computational
resources and available memory are severely limited. Reducing
the size of neural networks without compromising their ability to
solve the target task remains a practical challenge, especially when
the goal is to simplify the architecture itself, not just the weight
space. To address this problem, we introduce ImproveNet, a
simple and general method that reduces the size of a neural
network, without compromising its ability to solve the original
task. The approach does not require any pre-trained model,
specific architecture knowledge, or manual tuning. Starting with a
standard-sized network and the standard training configuration,
ImproveNet verifies the model's performance during training.
Once the performance requirements are met, it reduces the
network by resizing feature maps or removing internal layers, thus
making it ready for AI-on-the-edge deployment and execution.

Index Terms—IoT, Edge AI, Deep Model Optimization, Neural
Network Compression

I. INTRODUCTION

The Internet of Things (IoT) concept, first introduced by
Ashton in 1999, describes a system in which physical objects
equipped with sensors are connected to the Internet and used to
collect data from the environment. Since then, the idea has
evolved rapidly and today includes billions of devices that can
communicate with each other and exchange information in real
time. There are currently over seven billion IoT devices in the
world, and this number is expected to exceed twenty billion in
the coming years.

As the number of connected devices increases exponentially,
the amount of data generated is also growing. Although this data
may contain useful information, it is often affected by noise,
redundancies or errors [1]. As a result, traditional processing
methods are no longer sufficient and increasing machine
learning techniques are being used to extract knowledge from
collected data. However, running machine learning models
directly on IoT devices is extremely complex. These systems,
also called edge devices, are characterized by limited resources,
limited memory, low computational power, and stringent energy
constraints. For these reasons, running large models locally (on-
device) is often impractical.

An alternative solution could be to send the data to a remote
server (cloud), where heavier models can be run without
hardware constraints. However, in many real-world scenarios
this option is limited or unacceptable, either for latency reasons
(such as in real-time applications) or for privacy reasons (in
healthcare, industrial, or personal contexts). In these scenarios,
keeping the computation local is the only sustainable choice,
provided that the model is light enough to be run safely and
efficiently on the device.

To address this trend towards AI-on-the-edge (a.k.a. Edge
AI), we propose ImproveNet, a simple method that reduces the
size of a neural network directly during training, while ensuring
that the model maintains the required performance. The
approach starts with complete architecture, which is then
progressively reduced as training progresses.

Block removal and filter reduction are the two structural
alterations that lead to reduction. Removing a block means
eliminating entire sequential portions of the network, each
composed of one or more convolutional or linear layers, with a
direct impact on the depth of the model. Filter reduction, on the
other hand, consists in decreasing the number of output channels
in the convolutional or dense layers, with the effect of reducing
the width of the intermediate representations. Both operations
allow us to simplify the architecture in a controlled way, keeping
the capacity of the model within acceptable thresholds.

In the following sections, we describe in detail how this
strategy works and analyze its application in different scenarios.
In particular, Section II presents the main existing works
dedicated to the reduction of neural networks through pruning,
quantization or architectural simplification. Section III
introduces the logic of ImproveNet and how reduction
operations are integrated into the training cycle. Finally, in
Section IV, we report the experimental results obtained by
applying the method to the ESA-ADB dataset, using two
autoencoders, one linear and one fully convolutional.

II. RELATED WORKS

In our application context, oriented to industrial scenarios
and constrained by efficiency and compatibility requirements
with edge systems, requirements analysis has led to narrowing
the focus to fully convolutional or linear networks. Despite this
choice, the comparison with existing compression techniques

Manuscript received May 19, 2025; revised August 27, 2025; accepted
July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025.
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i1.89

20

https://doi.org/10.64552/wipiec.v11i1.89

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

will be conducted in a fair way, highlighting for each approach
the context of validity and the reference architectures to which it
applies. Several methods have been proposed to reduce the size
and complexity of neural networks, particularly in applications
with limited computational or memory resources, such as
embedded or IoT devices. Most existing techniques are based on
static approaches, including quantization [2], pruning [3], and
knowledge distillation [4] [5], and are typically applied after
training. Table 1 summarizes the main differences between
ImproveNet and other model compression techniques, i.e.,
Structured Pruning, Unstructured Pruning, and Distillation.

III. IMPROVENET

Unlike traditional techniques based on neural importance,
induced sparsity in weights, or post-training strategies,
ImproveNet takes a completely different approach. The method
acts directly during the training process, progressively reducing
the network only when performance reaches predefined
thresholds. This reduction occurs without requiring a fully
trained model or the use of external heuristics.

The method takes as input the initial model together with all
the components needed for training, such as the dataset, the
optimizer, the metrics estimator, the loggers, and the
performance constraints to be achieved such as the loss ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
and the accuracy ℳ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . At regular intervals, the optimizer
checks whether the current model 𝑀𝑀 satisfies the target
requirements. These requirements are expressed as constraints
on global quantities, such as the loss ℒ(𝑀𝑀) and the accuracy
metric ℳ(𝑀𝑀), as formalized in the following equation

ℒ(𝑀𝑀) ≤ ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⋀ ℳ(𝑀𝑀) ≥ℳ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

If the conditions are satisfied, ImproveNet applies a
structural transformation to the network, choosing between
reducing the number of channels and removing an internal
block.

The type of reduction applied is managed dynamically based
on the size of the current model compared to the initial one. The
first two attempts apply a channel reduction and a simple block
removal respectively. After this, the method computes the
reduction ratio between the current network and the original one.
If this ratio is still higher than the first threshold, priority is given
to block removal, alternating every three attempts with a filter
reduction. When the ratio drops below the first but above the
second threshold, the two types of reduction are alternated more
frequently (once every two attempts). Finally, only channel
reduction is performed below the second threshold, preventing
further excessive structural eliminations.

Using this technique, the model can gradually reduce while
preserving its structural balance and avoiding excessive
compression in subsequent training phases. To avoid repeated or
harmful activities, the system also considers the number of
reductions performed previously.

An additional protection mechanism is activated in case the
network starts to stagnate. If the model does not converge within
a certain number of iterations and the reduction attempts exceed
half of the maximum expected number, ImproveNet performs a
controlled reallocation of the architecture. The goal is to prevent
excessive compression from trapping the model in non-ideal
local minima.

Finally, if at the end of a reduction cycle the model fails to
stably maintain the convergence conditions, the system restores

TABLE 1 - COMPARISON OF MODEL COMPRESSION TECHNIQUES

Property ImproveNet Structured Pruning
 [7] [8]

Unstructured Pruning
[9] [10] Distillation [11]

Reduction type Structural Structural Sparse Knowledge transfer

Granularity Blocks, Channels, Neuron Filters Weights -

Inference time Reduced Reduced Same Reduced

Memory footprint Reduced Reduced Same Reduced

Compression ratio High High Same Reduced

Performances
retention Preserved Not guaranteed Not guaranteed Teacher-dependent

Loss stability Controlled Requires retraining Requires retraining Regularized

Training Time High High Low Low

Architecture
agnostic Yes No No Yes

Self contained Yes Yes Yes No

Repeatability Yes
[7] Available in Caffe (Python)

[8] Available in PyTorch

[9] Not available

[10] Official not available
(3rd part)

[11] Official not available
(3rd part)

Neural Network
Supported Linear & Fully Convolutional CNN CNN Any

21

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

the last effective configuration, i.e. the last architecture that
satisfied the performance constraints. An alternative strategy is
then adopted, for example switching from block removal to filter
reduction, or vice versa. This rescue mechanism ensures that the
compression process does not irreversibly compromise the
optimization capacity of the network.

The described structural transformations are based on the
reduction of the number of channels (i.e. of input and output
channels) and on the removal of entire blocks, which include
sequences of convolutional or linear layers. Both operations take
into account both the number of attempts already made and the
size of the current model compared to the original one, Figure 1
shows the full workflow underlying the ImproveNet procedure,
highlighting how the system monitors the training progress and
applies structural reductions when the target conditions are met.

IV. PRELIMINARY RESULTS

To evaluate the performance of ImproveNet, one approach
could have been a comparison with the methods in Table 1, but
since most of them did not provide official source code or were
not implemented in PyTorch or the code was available but did
not work properly, we decided to test our method using ESA-
ADB dataset [6], a recognized benchmark for multivariate time-
series anomaly detection based on real data from space missions.
We chose this dataset because it is representative of an edge
environment where there is a need for small and compact
models, suitable for resource constrained environments and a
real-time operational context. The dataset is composed of three
missions from which we selected Mission 1, composed of 76
channels, 58 of which are target channels and are splitted into 4
subsystems. Mission 1 includes 200 annotated events where 118

are anomalies, 78 nominal rare events (atypical but expected
telemetry variations), and 4 communication gaps. We conducted
experiments on a lightweight subset consisting of channels 41 to
46 as suggested by [6]. These channels were selected because
they contain interesting but manageable anomalies, are useful
for monitoring the health of the satellite, are relatively easy to
visualize and analyze manually, and are independent of other
channels or subsystems. The data were normalized in the range
[0, 1] using a Min-Max scaling channel by channel, to ensure
uniformity between the signal scales and avoid distortions in the
calculation of the loss function.

The data were split respecting the temporal order of the
observations where 70% was used for training, while the
remaining 30% was divided into equal parts for validation and
testing. The anomalous pattern is present exclusively in the test
set, to train the model on the reconstruction of normal
conditions. The time series were then transformed into fixed-
length windows of 50 samples, with a stride of 50, obtaining
sequences of the type (batch, 50, 6), where 6 represents the
number of channels.

Training was conducted for a maximum of 100 epochs, using
the Adam optimizer with a learning rate of 0.0001. The objective
function used is a weighted combination of mean squared error
(𝑀𝑀𝑀𝑀𝑀𝑀) and mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀), defined as

ℒ = 𝛼𝛼 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀 + (1 − 𝛼𝛼) ∙ 𝑀𝑀𝑀𝑀𝑀𝑀

where (𝛼𝛼 = 0.5) represents the balance between the two
components. This formulation allows to penalize both large
point errors (that the 𝑀𝑀𝑀𝑀𝑀𝑀 effectively intercepts) and moderate
diffuse errors (captured by the 𝑀𝑀𝑀𝑀𝑀𝑀), resulting particularly
suitable for anomaly detection tasks.

We considered a Fully Convolutional Autoencoder (FCAE)
and a Linear Autoencoder (LAE). ImproveNet was applied to
these models, which operated during training by progressively
reducing their structural complexity through functional criteria,
generating compressed versions capable of maintaining
comparable performance in terms of predictive accuracy.

All the experiments were run using an Intel core I5-
13600KF, 32 GB of RAM and an RTX 3060 with 12 GB of
VRAM. The results obtained show a significant reduction in the
size of the models, in the case of the convolutional autoencoder,
as shown in Table 2, the number of parameters goes from
130,886 in the original version to only 6,734 in the compressed
network, with a reduction ratio of 94.85%, a reduction in the
inference time from 3.4 ms to about 1 ms (3.4x faster) and a
reduction in memory footprint of 94.07%. Similarly, in the linear
model, as shown in Table 2, the parameters drop from 244,972
to 15,284 (93.76% reduction), and the inference time is reduced
from 1.56 ms to about 0.15 ms (10.4x faster) and a memory
footprint reduced of 93.37%.

Figure and Figure display anomaly detection results on a
test sequence for linear autoencoder and convolutional models,
respectively. In both situations, it is noted that the smaller

Figure 1 - Schematic representation of the ImproveNet workflow.

22

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

version of the network (the lower time series in both images),
parameters. For the convolutional model, the compressed
obtained using ImproveNet, retains the ability to accurately
detect abnormal patterns, despite the reduction in the number of
network shows a slightly lower reconstruction quality than the
original network, but the ability to detect anomalies remains
unchanged, with comparable predictive performances.
Similarly, in the case of the linear autoencoder, a slight
degradation of the reconstruction is observed, but the anomaly
is still correctly identified.

V. CONCLUSIONS

In this paper, we demonstrated the effectiveness of our
approach for convolutional and linear networks in AI-on-the-
edge scenarios where the size of the model is a central constraint.
The ability of ImproveNet to progressively reduce architectural
complexity while maintaining stable performance makes it
particularly suitable for use in systems where the trade-off
between accuracy and computational efficiency is essential.

In addition to the space/satellite, similar applications are
found in sectors such as autonomous robotics, distributed
industrial monitoring systems, wearable biomedical devices, and
IoT infrastructures, all of which share the need to run neural
models under limited computation and energy constraints.

A future development consists of directly integrating the
compressed models generated by ImproveNet into real devices,

evaluating their behavior on embedded hardware and low-power
microcontrollers, in unsimulated operating conditions.

ACKNOWLEDGMENT
The work of Adriano Puglisi is supported by Thales Alenia Space

and Regione Lazio, through the fellowships (CUP B83C23001060009),
(SIGEM 22066DP000000035) AI-based digital industrial processes for
space systems production workflow.

REFERENCES

[1] H. N. W. R. C. W. W. H. Z. Z. &. V. A. V. Dai, "Big data analytics for
large-scale wireless networks: Challenges and opportunities," ACM
Computing Surveys (CSUR), pp. 1-36, 2019.

[2] B. K. S. C. B. Z. M. T. M. H. A. .. &. K. D. Jacob, "Quantization and
training of neural networks for efficient integer-arithmetic-only
inference," Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704-2713, 2018.

[3] H. K. A. D. I. S. H. &. G. H. P. Li, "Pruning filters for efficient convnets,"
arXiv preprint arXiv:1608.08710, 2016.

[4] T. G. I. &. S. J. Chen, "Net2net: Accelerating learning via knowledge
transfer," arXiv preprint arXiv:1511.05641, 2015.

[5] R. C. a. A. N.-M. C. Buciluˇa, "Model compression," Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery
and data mining, p. 535–541, 2006.

[6] K. H. C. A. J. R. B. N. J. L. D. .. &. D. C. G. Kotowski, "European space
agency benchmark for anomaly detection in satellite telemetry," arXiv
preprint arXiv:2406.17826, 2024.

[7] J. H. Z. H. Z. H. Y. X. C. W. W. J. &. L. W. Luo, "ThiNet: Pruning CNN
filters for a thinner net," IEEE transactions on pattern analysis and
machine intelligence, vol. 41, no. 10, pp. 2525-2538, 2018.

[8] Y. K. G. D. X. F. Y. &. Y. Y. He, "Soft filter pruning for accelerating
deep convolutional neural networks," arXiv preprint arXiv:1808.06866,
2018.

[9] S. &. B. R. V. Srinivas, "Data-free parameter pruning for deep neural
networks," arXiv preprint arXiv:1507.06149, 2015.

[10] S. P. J. T. J. &. D. W. Han, "Learning both weights and connections for
efficient neural network," Advances in neural information processing
systems, vol. 28, 2015.

[11] G. V. O. &. D. J. Hinton, "Distilling the knowledge in a neural network,"
arXiv preprint arXiv:1503.02531, 2015.

TABLE 2 – COMPARISON BETWEEN THE LARGE AND THE REDUCED FULLY
CONVOLUTIONAL AUTOENCODER (FCAE) AND LINEAR AUTOENCODER

(LINEAR AE) ARCHITECTURES

Figure 2 - Anomaly detection on a test sequence by the original convolutional model (the upper one) and reduced one (the lower one).

Figure 3 - Visual comparison between the original linear autoencoder (the upper one) and the reduced linear autoencoder model (the lower one).

Total Param

CPU Inference Time
(ms)

Size
(MB)

FCAE 130,886 3.4073 0.5046

Reduced
FCAE 6,734 1.019 0.0299

Linear AE 244,972 1.5676 0.9397

Reduced
Linear AE 15,284 0.1508 0.0623

23

