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Abstract—Real-time video analytics powered by artificial 
intelligence (AI) enables public safety agents to effectively perceive 
and respond to dynamic environments. However, processing 
large-scale video streams introduces computational and latency 
challenges. This work presents a framework that combines edge 
and cloud computing to facilitate efficient AI-based processing of 
video streams for public safety applications. We evaluated the 
framework’s performance in a face recognition task by comparing 
edge and cloud processing. Our initial results demonstrate that 
edge processing achieves lower total latency compared to cloud 
processing despite higher inference times, primarily due to 
reduced transmission overhead. The framework also achieves high 
accuracy in recognition tasks, though with trade-offs in recall. 
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I.  INTRODUCTION

Situational awareness (SA) refers to the ability to perceive 
environmental factors, understand their significance, and 
anticipate future developments [1]. In contrast to traditional 
methods relying on radio communication and manual reporting, 
which present significant delays and inefficiencies, modern 
technologies like surveillance cameras and body-worn devices 
can enable real-time data collection and dissemination, thereby 
improving SA and decision-making [2]. 

Public safety operations require quick detection, analysis, 
and response to incidents. To comply with these requirements, 
real-time processing of video streams can be used to detect 
threats and support decision-making. While artificial 
intelligence (AI) techniques can significantly enhance this kind 
of advanced analysis, the large volumes of data to be handled 
and the high computational demand of intelligent models 
typically require cloud resources, which introduce latency due 
to data transmission and depend on reliable connectivity [3]. An 
alternative to alleviate these issues is processing AI close to the 
data source through edge intelligence, i.e., the convergence of 
AI-based task processing and edge computing. This kind of 
approach can reduce latency and bandwidth usage while 
ensuring continuity in low-connectivity environments. 
Nonetheless, the resource constraints of edge devices and 
bandwidth costs of cloud transmission demand a careful task 
distribution strategy. 

This paper addresses these issues through SAALSA [4], a 
framework designed to enable efficient, low-latency video 
analytics by combining edge and cloud computing. We 
instantiated SAALSA into a public safety scenario, including the 
real-time identification of individuals based on face recognition 
resulting from AI-based processing of video streams. We 
assessed SAALSA’s performance for this task by comparing 
edge and cloud processing in terms of latency and accuracy. Our 
preliminary findings have demonstrated the potential of edge 
intelligence to support critical decision-making in public safety 
operations. 

The remainder of this paper is organized as follows. Section 
II brings an overview of SAALSA. Section III describes a face 
recognition use case in public safety that we utilize to 
demonstrate the framework. Section IV reports a preliminary 
evaluation of SAALSA’s performance in AI-driven face 
recognition regarding edge and cloud-based processing latency 
and accuracy. Section V points out final remarks and directions 
for future work 

II. A FRAMEWORK FOR AI-DRIVEN STREAM ANALYTICS IN 
THE EDGE 

SAALSA addresses the fundamental challenge of balancing 
computational efficiency with latency requirements for AI-
based stream analytics [4]. Public safety operations often occur 
under unstable or absent network conditions, requiring solutions 
that function independently of the cloud. AI-powered video 
analytics at the edge addresses this need by directly enabling 
real-time tasks, such as object detection and face recognition, on 
local devices. This enables the provision of timely insights that 
support faster and more accurate decision-making. 

The SAALSA’s architecture, depicted in Fig. 1, allows 
distributing processing tasks across three tiers. The Data Source 
Tier captures and collects raw data (e.g., audio and video streams 
and geolocation data) from various devices. The Edge Tier 
handles initial data processing near data sources, reducing 
latency and minimizing data transmission overhead to the cloud. 
The Cloud Tier handles computationally intensive tasks and 
provides centralized coordination and storage. Unlike traditional 
cloud-based architectures that send raw data to remote servers 
for processing, SAALSA collects data from several sources, 
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processes it at the edge to reduce latency and bandwidth use, and 
offloads it to the cloud for intensive tasks or long-term storage. 
Using SAALSA, it is possible to convert real-time data streams 
into actionable insights in public safety scenarios. 

SAALSA comprises processing, management, and service 
components. Edge nodes handle streaming, detection, and 
recognition, while the cloud coordinates orchestration and 
complex analytics. Services include task scheduling, 
monitoring, multimedia storage, and user interfaces. This 
modular architecture enables adaptive, distributed video 
analytics tailored to public safety operations. 

Data flows from the Data Source Tier to the Edge Tier, 
where the Device Manager and Streaming Service, built with 
Kurento,1 handle media streaming. The Multimedia Storage 
Service records video streams and synchronizes them with the 
cloud when possible. A shared Dashboard provides real-time 
visualization with geolocation. FogFlow2 orchestrates tasks 
between edge and cloud, with the Resource Allocation Manager 
coordinating task distribution between edge and cloud tiers. The 
Intelligence Task Service performs AI-driven task processing by 
using GStreamer3 and DeepStream,4 while Qdrant5 supports 
face recognition. Finally, the Data Communication Manager 
handles inter-tier communication and data synchronization. 

SAALSA implements dynamic task distribution based on 
computational requirements and network conditions. Initial 
processing tasks, such as detection and tracking, occur at the 
edge to minimize latency. Conversely, intensive tasks, including 
feature extraction and database queries, can be offloaded to the 
cloud when network conditions permit and computational 
demands exceed the edge’s capabilities. 

1 https://kurento.openvidu.io/
2 https://fogflow.readthedocs.io/ 
3 https://gstreamer.freedesktop.org/ 
4 https://developer.nvidia.com/deepstream-sdk 

III. FACE RECOGNITION USE CASE IN PUBLIC SAFETY

We implemented a face recognition pipeline to demonstrate 
the feasibility of SAALSA. This use case represents a common 
public safety requirement where officers need to rapidly identify 
individuals in the field. Detected faces are first matched locally; 
if no match is found, embeddings are sent to the cloud. Results 
are annotated on-screen, enabling efficient, low-latency 
recognition adapted to hardware constraints. 

The pipeline comprises three sequential stages that process 
video frames for accurate face recognition. Face detection 
employs the NVIDIA FaceNet model6 to extract faces within 
bounding boxes [5]. Next, the FaceNet convolutional neural 
network [6] performs feature extraction, generating a feature 
vector (embedding) that maps each face to a compact Euclidean 
space. Finally, face recognition is achieved by comparing the 
extracted embedding to those stored in a vector database. 
Considering the incident response scenario, we adopted high-
performance models that strike a balance between robustness 
and low latency, meeting the resource constraints of edge 
environments and the variability of public safety conditions. 

Given the unpredictable nature of public safety scenarios, we 
also implemented an accumulation strategy to improve 
recognition accuracy. The strategy operates by assigning unique 
identifiers to each detected face, extracting embeddings, and 
identifying the closest match in the database for each frame. 
Recognition results are stored for N frames, after which the most 
frequent recognition is selected, and an average distance is 
computed for the final decision. This strategy prioritizes 
precision over recall, a crucial feature for public safety 
applications where false positives can have severe 
consequences. 

IV. EVALUATION

Experimental setup. We evaluated SAALSA using two 
configurations representing typical deployment scenarios. The 
edge configuration utilized an NVIDIA Jetson Nano7 4 GB 
(ARM Cortex-A57, 128 CUDA cores). The cloud configuration 
utilized a server equipped with an Intel i5-9300H processor, 64 
GB of RAM, and a GTX 1650 GPU. 

The evaluation considered streaming a recorded video from 
a simulated device to the edge and the cloud (see Fig. 2). The 
stream, sent via GStreamer using the RTSP protocol, was 
processed by a DeepStream-based face recognition pipeline 
(Section III), which used Qdrant for vector-based identity 
retrieval. Both setups used identical versions of DeepStream 
(6.0) and Qdrant (1.12.1), with consistent configurations and 
quantization levels: INT8 for detection and FP32 for embedding. 
We implemented tracking using NVIDIA’s discriminative 
correlation filter. While we are aware that the hardware used in 
our evaluation does not currently represent the state-of-the-art of 

5 https://qdrant.tech/ 
6 https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/facenet 
7 https://developer.nvidia.com/embedded/jetson-nano 

Figure 1. Main components of the SAALSA framework. 
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specialized AI hardware, we aimed to provide valuable insights 
into trade-offs between edge and cloud processing. 

In addition to edge-only and cloud-only experiments, we 
evaluated a hybrid configuration where detection is performed 
at the edge, and only cropped faces are sent to the cloud for 
recognition. We measured transmission times for both full 
frames (1920 × 1080, RGB) and cropped faces (160 × 160), 
encoded in base64. We also established a secure Tailscale8 
network to simulate realistic cloud latency. 

It is worth mentioning that our study focused on the overall 
pipeline processing rather than the latency due to transmitting 
data, as network conditions can introduce variability that must 
be accounted for in real-world deployments. Future work can 
explore controlled environments with dedicated network 
configurations to provide a more precise evaluation of 
transmission delays in edge and cloud scenarios. 

Data sets. We constructed the dataset used in the evaluation 
from two publicly available face recognition datasets: CelebA 
[7] and Labeled Faces in the Wild (LFW) [8]. CelebA comprises
10,177 individuals, while LFW includes 5,749 individuals. For
this study, we randomly selected 5,000 individuals from CelebA
and 800 individuals from LFW, ensuring each individual had
one to four images. This selection resulted in a total of 5,800
individuals and 9,199 images. Additionally, four volunteers
from our research group contributed three images each, captured 
from different face angles (frontal and both sides profiles),
adding 12 more images to the experimental dataset. We used two 
videos: Video V1 (duration 1’45”) features a single individual
per frame for accurate timing analysis, and Video V2 (duration
3’10”) features the four volunteers in dynamic outdoor settings
to assess the model’s robustness under real-world conditions.

A. Processing Time Assessment
The first experiment evaluated the computational cost of

each stage in the face recognition pipeline, aiming to identify 
performance bottlenecks. This experiment utilized Video V1, 
which includes one person per frame, enabling consistent 
measurement across all frames. We timed four tasks: (i) face 
detection, (ii) face tracking, (iii) embedding extraction, and (iv) 
database query, on both edge and cloud environments. As shown 
in Table I, all stages were faster in the cloud. Embedding 
extraction was the most expensive task, especially on the edge 
(288.37 ms per frame), due to a non-optimized ONNX model9 
that did not fully exploit DeepStream’s acceleration. In contrast, 
face detection used a native DeepStream model, enabling much 
faster inference. Database queries also exhibited higher latency 
on the edge, primarily due to slower communication between 

8 https://tailscale.com/

DeepStream and Qdrant, limited memory bandwidth, and lower 
processing capacity. 

Table II summarizes the total frame processing time. Edge 
processing had lower overall latency than cloud, despite slower 
inference. The hybrid approach, which balanced computation 
and communication, was slightly slower than the edge-only 
approach. These results reflect the trade-offs between 
computation and transmission, as well as the benefits of 
minimizing unnecessary data transfer. 

B. Recognition Assessment
The second experiment evaluated the face recognition

performance by using Video V2. To analyze the accuracy of the 
system, we employed precision and recall metrics, considering 
two parameters: the number of accumulated frames used to 
confirm an identity and a Euclidean distance threshold T that 
defines a valid match. Recognition was considered correct (true 
positive, TP) when the average distance between the detected 
face and its closest match in the database was below T, and the 
predicted identity matched the ground truth. Conversely, a false 
positive (FP) occurred when the distance was acceptable, but the 
identity was incorrect, while a false negative (FN) indicated a 
correct identity with a distance above the threshold. Precision is 
computed using Equation 1, while recall is computed using 
Equation 2: 

Precision = TP
TP + FP

(1) Recall = TP
TP+FN

(2) 

According to the results shown in Fig. 3, precision reached 
100% upon accumulating N = 110 frames and T = 0.8, indicating 
no false positives. However, recall remained at 0.39 due to a high 
false negative rate. This configuration prioritizes accuracy over 
coverage and is suitable for public safety applications where 
minimizing false alarms is crucial. We observed that recall 
improved significantly when we relaxed the threshold; however, 
this came at the cost of reduced precision, with an increase in 
false positives. This trade-off illustrates the balance between 
identifying as many individuals as possible and maintaining a 
high level of confidence in each recognition. These findings 

9 https://onnx.ai/ 

Figure 2. Face recognition setup used in the evaluation. 

TABLE I 
AVERAGE PROCESSING TIME FOR EACH PIPELINE OPERATION 

Operation Cloud Edge 
Face detection 4.73 ± 1.02 ms 47.27 ± 1.96 ms 
Face tracking 2.47 ± 2.31 ms 10.48 ± 11.07 ms 
Embedding extraction 8.85 ± 4.14 ms 288.37 ± 10.58 ms 
Database query 7.05 ± 1.26 ms 29.87 ± 3.20 ms 

TABLE II 
TOTAL PROCESSING TIME PER FRAME 

Metrics Edge Hybrid Cloud 
Average frame processing 
time 

375.99 ms 65.74 ms 23.20 ms 

Average frame 
transmission time 

108.85 ms* 606.75 ms 3,019.42 ms 

Total processing time per 
frame 

484.84 ms 672.49 ms 3,042.62 ms 

*Time to transmit a Full HD frame via Gigabit Ethernet 
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suggest that in public safety scenarios, where reliability is 
paramount, using stricter parameters can help ensure that only 
highly confident identifications are acted upon, even if fewer 
matches are detected overall. 

V. CONCLUSION

This work presented preliminary results for an edge-cloud 
video analytics framework tailored to public safety applications. 
Our initial experiments demonstrated the feasibility of edge 
processing for real-time video analytics, with edge deployment 
achieving the lowest total latency despite computational 
constraints. The face recognition use case illustrated the 
framework’s potential while highlighting key trade-offs between 
accuracy and performance. The accumulation strategy 
successfully eliminates false positives, which is crucial for 
public safety applications, though at the cost of reduced recall. 

The preliminary evaluation revealed several key insights into 
the performance of edge-cloud video analytics. Despite 
computational constraints, edge processing achieves lower total 
latency due to reduced transmission overhead, challenging the 
assumption that cloud processing is always superior for AI-

driven tasks. The accumulation strategy effectively eliminates 
false positives but at the cost of increased false negatives, 
representing a critical trade-off in public safety applications. 
Additionally, selective offloading of computationally intensive 
tasks shows promise but requires careful consideration of 
network conditions and latency requirements. 

Our future work will address current limitations through 
comprehensive evaluation and optimization, considering 
modern hardware, such as NVIDIA Jetson Orin and Raspberry 
Pi 5, in the evaluation. Future evaluation will include large-scale 
testing with realistic public safety scenarios and dynamic task 
distribution algorithms for optimal edge-cloud task allocation. 
An energy efficiency analysis will also examine the implications 
for power consumption and battery life. 
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