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Abstract—The recent rise of open hardware, mainly driven by the 
momentum of the RISC-V ecosystem, has sparked significant 
innovation in the development of open-source CPUs and SoCs. 
This movement has enabled broad exploration across academia 
and industry, fostering collaboration and reuse. However, the 
diversity and openness that empower this space also introduce 
challenges: academic projects often fall short of industry-grade 
robustness, lack of standardization, and simulation limitations. To 
ease the work of researchers some key challenges must be faced in 
open hardware development: platforms’ reconfigurability, ease of 
integration of third-party IPs, and support for technological 
heterogeneity. To address these issues, we present Simply-V, a 
flexible, FPGA-based soft-SoC platform designed for rapid 
prototyping and open hardware research. Simply-V enables plug-
and-play support for multiple CPUs, IPs and accelerators, offers 
structured configurability across embedded and highperformance 
profiles, and supports the integration of both RTL and HLS-based 
components. We demonstrate the SoC’s capabilities through 
platform-fair CPU benchmarking and the iterative development 
of HLS-designed convolutional accelerators, showcasing 
simplified fast prototyping, configurability, and heterogeneous IP 
support on real hardware. Simply-V is openly available at 
https://github.com/HiSA-Team/Simply-V.git. 

Index Terms—RISC-V, FPGA, Fast-Prototyping, Experimental 
Research. 

I.  INTRODUCTION

In recent years, open hardware has experienced a remarkable 
surge, largely fueled by the RISC-V open ISA, which has 
become a catalyst for research into open-source CPUs and 
Systems-on-Chip (SoCs) across both academia and industry. On 
one hand, this rich, diverse, and open environment fosters 
knowledge sharing and promotes the reusability of hardware 
solutions. On the other hand, academic projects often fall short 
of industry-grade standards in areas such as documentation, 
usability, and long-term maintainability. As a result, open 
hardware researchers frequently encounter significant 
challenges, not only in reproducing experimental results, but 
also in building upon existing work. Most setups are often hard 
to reproduce, and the inherent heterogeneity can result in 
inconsistent or non-comparable performance figures. As a 
mitigation to these challenges, one would wish for a simple, 
verified and hardware-ready playground platform for open 

hardware research that is reconfigurable, easy to use and reuse 
in larger systems. Such an achievement, however, is nontrivial 
for several reasons. First, validating CPUs in realistic scenarios, 
such as running full operating systems or benchmarking memory 
hierarchies, goes beyond basic testbenches. Second, while 
reusable IP blocks like accelerators, peripherals and protocol 
bridges are widely available, they often lack consistent interface 
standardization and toolchain compatibility, shifting focus from 
open hardware research to low-level troubleshooting. Lastly, 
seamless configurability remains a major roadblock. Tasks like 
address mapping, dependencies management, memory and bus 
resizing, or clock domain crossing (CDC) are often hardcoded 
or require manual rework, limiting scalability and slowing down 
design iterations.  

To address these challenges, we present Simply-V 
(pronounced ”simplify-ve”), an easy-to-deploy, flexible, and 
extensible soft-SoC platform for rapid prototyping, open 
hardware research and development. Simply-V provides a 
simple, FPGA-based, hardware-ready playground platform for 
full-stack evaluation on real physical devices in open hardware 
research. The platform offers a structured reconfiguration flow, 
is portable across a wide range of FPGA devices, supporting 
both embedded and high-performance profiles. It enables drop-
in integration of multiple CPUs and accelerators, along with a 
configurable interconnect managed through a high-level flow. 
We demonstrate the capabilities of Simply-V with a platform-
fair benchmarking of set open-source CPUs, across the 
embedded and high-performance computing (HPC) profiles, in 
both 32 and 64 bits. Additionally, we validate the integration of 
custom IPs, support for technological heterogeneity and fast 
design iterations by deploying a set of incrementally-designed 
high-level synthesis (HLS) convolutional accelerators. 

II. BACKGROUND AND MOTIVTION

A. A Flexible SoC for Open Research and Fast Prototyping
While many reconfigurable RISC-V-based platform designs

have been proposed, a significant number of them are either 
proprietary or not publicly accessible. Conversely, most 
opensource RISC-V CPUs are distributed with minimal testing 
environments, valuable for evaluating the processor’s 
functionalities but not meant to serve as hardware-ready SoCs.  
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More sophisticated open-source SoCs do exist, such as 
lowRISC’s OpenTitan [1], however, these systems lack the right 
reconfigurability across a wide spectrum of technology needed 
for open-hardware research. In contrast to fixed-functionalities 
SoCs, frameworks for SoC generation can offer more flexibility, 
such as ESP [2] and Chipyard [3]. Similarly to Simply-V, using 
a configuration-driven design flow, they can generate RTL for a 
complete SoC, including the CPUs, caches, interconnects, and 
co-processors. On the other hand, Chipyard specifically focuses 
on verification of ASIC tape-outs, and ESP is mostly oriented at 
tiled architectures, integrating third party SoCs and IP cores. 
Instead, Simply-V is explicitly targets FPGA platforms and SoC 
architecture, with fast prototyping for academic research as its 
primary aim. 

B. A Practical Alternative to Simulation 
Simulation frameworks have long been the cornerstone in 

digital design validation. System emulation platforms such as 
QEMU, and instruction set simulator like Spike, are clearly 
limited to functional validation, and cannot be used for 
performance evaluation. More advanced tools, such as gem5 [4] 
and event-driven simulators, like GVSoC [5], offer reasonable 
trade-offs between timing accuracy and simulation time, but 
tend to be platform-specific and require a reimplementation of 
the simulated modules. On the other hand, cycle-accurate RTL 
simulators are often prohibitively slow, namely when simulating 
long-running programs like booting an OS. Hybrid 
hardware/software co-simulation approaches attempt to mitigate 
these issues, but they rely on custom intermediate 
representations, or emulation on expensive FPGA platforms [6].  

Simply-V addresses these challenges by providing the 
fidelity of hardware execution without the burden of RTL design 
and platform integration. Such flexibility allows rapid 
prototyping, fast design iterations, and real-system validation 
beyond cycle-accurate simulations or FPGA-based emulations. 

III. ARCHITECTURE 
This section describes the design principles of our Simply-V 

and design challenges it addresses. To ease the work of 
researchers and practitioners, we focus on (1) system-wide 
reconfigurability, (2) ease of integration of custom IPs and (3) 
technological heterogeneity as pivotal requirements. 

MBUS: the Simply-V architecture, depicted in Figure 1, is 
based on fully parametric and reconfigurable, yet simple, main 
bus (MBUS) interconnect, based on AMBA AXI4. Most 
memories in Simply-V, generically encompassing ROMs, 
onchip SRAMs and external DRAMs, are mapped on the 
MBUS.  

PBUS: Low-end and low-frequency peripherals, which 
commonly require a limited range of addresses for register file 
data and control, are collected in the peripheral bus (PBUS), as 
an additional slave to the MBUS. By design, the PBUS is meant 
for non-performance-critical bus traffic, hence we opt for an 
AXI4-lite interconnect.  

HBUS: Our platform is also designed of accelerator 
development and HPC configurations, hence a high-bandwidth 
bus (HBUS) interconnect is exposed as a further slave of the 
MBUS. The HBUS offers streamlined, long-word access to 
more performant memories, such as DDR banks or HBM 
channels. The HBUS is suitable for high-performance 
accelerators, which require high-bandwidth to external DRAM 
memories, such as AI engines or vector co-processors.  

PLIC and interrupts: Interrupts are managed by an 
implementation of the RISC-V standard platform-level interrupt 
controller, namely PLIC, integrated as a custom unit leveraging 
our custom IP flow, detailed in Section III-C.  

SysMaster: Since Simply-V is primarily designed for 
research and development, host-side debug is a fundamental 
feature. We explicitly expose on the MBUS a host-side 
connection, the SysMaster. It allows the user to directly interact 
with the SoC, e.g. to inject faults or read-back data over a high-
speed link, e.g. PCIe, rather than low-speed JTAG.  

Cross-profile UART: A UART peripheral is hosted in the 
PBUS for both embedded and HPC profiles. For embedded, we 
leverage a physical UART IP over a PMOD connector. In case 
of HPC deployment, such as on PCIe acceleration cards, a 
PMOD connection is typically not available. Therefore, we 
design a virtual UART module to emulate the same behaviour 
of its physical counterpart over the PCIe link. 

A. SoC Configuration Flow 
Simply-V provides a lightweight, parameter-based 

configuration flow to re-shape the platform at build time and 
restructure the whole SoC to adapt it to their experimental needs. 

Fig. 1. General architecture and on-chip interconnect of Simply-V. It features a main bus (MBUS), a peripheral bus (PBUS) for low-speed devices and a high-
performance bus (HBUS) for high-bandwidth memory accesses, suitable for accelerators and co-processors. On the MBUS, the RV Socket hosts a RISC-V processor 
and debug module. Finally, the SysMaster grants the host full control of the platform and master access to the SoC interconnect. 
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Four modular input tables are required, namely a systemlevel 
configuration, e.g. target CPU, RISC-V XLEN, and three 
configuration files for MBUS, PBUS and HBUS, respectively, 
for interconnect, address map and CDC management.  

Buses are reconfigured in a transparent, automated and 
verified process. The necessary RTL modifications to remap 
addresses and interconnections are automated and hidden to the 
user. Peripheral IPs, such as timers, GPIOs or accelerators, can 
be optionally instantiated in one or multiple instances and their 
clock frequency, alongside the CPU clock, can be controlled 
from configuration files. 

B. RV Socket and Debug Support
Simply-V aims at providing a fast deployment flow that

targets different processors with a vendor-agnostic plug-in 
framework. To address such needs, we introduce the RV 
Socket, a modular CPU wrapper offering a unified interface for 
the RISC-V cores towards the MBUS for operation and the host 
for debugging. Figure 2 depicts the architecture of the RV 
Socket. In the following, we present motivation and detail our 
design choices. 

1) Unifying CPU Interfaces: In order to provide a vendor-
independent interface for CPUs, we leverage our custom IP 
flow to provide a packaging framework for compatible and re-
usable adapters. Adapters can be either imported or 
implemented from scratch, and deployed alongside the RISCV 
CPU to provide a unified interface for all CPUs, allowing plug-
in CPU support. 

2) RISC-V External Debugging: RISC-V CPUs can support 
a Debug Transport Module (DTM) for external debugging. The 
RISC-V debug specification defines a Debug Module Interface 
bus (DMI), but the implementation is left to the designer. 
Consequently, each RISC-V core comes with a tightly-couples 
DTM. With our simple configuration flow, the transition 
between CPUs remains seamless, which transparently enables 
the right DTM and compatible DMI interconnect.  

C. Custom IP Packaging
For Simply-V, we design a custom IP packaging

methodology to ease the integration of custom and third-party 
IPs. We allow users to package RTL or other HDL sources into 
a selfcontained IP, namely a blunt out-of-context netlist, with no 
remaining references to its source code. Such a flow is depicted 
in Figure 3. The first step of the packaging is to provide the 
necessary sources, resolve internal dependencies, and is 
IPspecific. Simply-V poses no constraints on this step, other than 

providing a custom top wrapper module for all IP sources. The 
second step is unified for all IPs and automatically builds such 
top module in a library IP element. Consequently, this strategy 
enables Simply-V to integrate third-party IPs with potential non-
compatible code bases, effectively turning third-party IPs in 
simple and off-the-shelf library elements. 

D. Managing Clock Domain Crossing
Managing clock domains can be difficult and deploying a

whole SoC in the same domain might be inefficient in 
performance and power. Our configuration flow allows for the 
slaves of the main bus to be clocked at different frequencies, 
with automated and verified CDC bridges deployment. A main 
clock domain is shared by RV Socket, MBUS, PLIC and 
BRAM memories, as such modules typically show no 
advantage in a dedicated domain. The PBUS hosts all of its low-
speed peripherals in a single domain, clocked at lower 
frequency. All MBUS additional peripherals, such as 
programmable co-processors or specialized accelerators, can be 
placed in a dedicated domain, allowing fast integration at their 
natural frequency, or use the MBUS domain. Moreover, the 
HBUS maximizes integration with DDR and HBM channels by 
deploying in their high-speed clock domain. Such a domain is 
available for accelerator deployment for the best performance 
and integration with the high-speed interconnect. 

IV. EXPERIMENTAL VALIDATION
In this section, we empirically validate the capabilities of 

Simply-V for fast prototyping and research. We configure our 
SoC CDC with PBUS, HBUS and DRAM memories in 
dedicated clock domains and build our FPGA designs with 
Vivado v2024.2. We deploy Simply-V embedded profile on 
Digilent Nexys A7 Artix-7 board. For validation in HPC 
profile, we use an AMD Xilinx Alveo PCIe Card. 

A. Cross-vendor CPU Benchmarking
We demonstrate a platform-fair comparison of RISC-V

CPUs and the plug-and-play support of multiple processors 
from a diverse pool of vendors, namely CV32E40P from 
OpenHW, Ibex from lowRISC, MicroblazeV from AMD 
Xilinx, and finally, we demonstrate RV64 support with CVA6. 
Leveraging our configuration flow, for given a Simply-V setup 
we seamlessly plug in and out different CPUs. Additionally, we 
showcase the transparent profile transition from embedded to 

Fig. 3 . Architecture of the RV Socket, with CPU-specific logic enclosed in 
dashed lines. 

Fig. 2. Custom IP packaging flow. On the left, in dashed lines the IP-specific 
steps. On the right, the common steps managing packaged IPs as library 
elements in the target EDA tool. 
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HPC setups, with no overhead from the practitioner. We run the 
tacle-bench1 benchmark on all CPUs and Simply-V profiles. 
For the embedded profile, we run software from onchip BRAM 
memory, in the main clock domain at 50MHz, alongside the 
CPU. For the HPC profile, we run the software both from 
BRAM memory and an external DDR bank. 

Figure 4 shows the tacle-bench1 latency results, averaged 
over 10 iterations. CPUs can be quickly evaluated and 
compared in the embedded profile, for its fast turn-around time, 
obtaining a fast, baseline indication with the sophisticated 
CVA6 core performing worse than simpler cores. Transitioning 
to a HPC configuration, namely and keeping code in local 
BRAMs or off-chip DDR, and increasing the target frequency 
in the main clock domain, a researcher can easily evaluate the 
differences in performance for the various cores. 

B. Fast Prototyping an HLS-based Convolutional Core
In this section, we demonstrate the use of Simply-V as a

hardware-ready platform for fast prototyping custom IPs, 
including support for technological heterogeneity with HLS 
technology. We target an 8-bit 2D convolutional engine, 
namely CONV2D, as a representative example of modern 
workloads. We implement a pool of CONV2D engines and 
integrate each one in Simply-V as an accelerator IP, 
demonstrating fastprototyping capabilities, both from the IP 
design and SoC integration perspective. Figure 5 reports the 
HLS engine’s performance across design iterations: (1) Naive 
loop-nest: the baseline prototype of our core is a basic HLS-
compatible Ccode, with a single AXI master port for memory 
access. (2) AXI bursts: activating memory coalescing; (3) 
Double buffering: implementing double buffering; (4) 
Frequency boost: leveraging our configuration-based CDC, we 
boost the IP clock frequency; Such approach improves 
performance by a only limited amount, suggesting the IP core 
is bottle-necked by memory accesses; (5) Split interfaces: 

1 https://github.com/tacle/tacle-bench/tree/V1.9 

maximizing data-access parallelism with three parallel read and 
write AXI ports; (6) HBUS access: alternatively, leveraging the 
HBUS interconnect for wider memory accesses, showcasing 
the best performance. 

V. CONCLUSIONS

In this work, we presented Simply-V, a reconfigurable, 
hardware-ready soft-SoC platform for fast prototyping and 
open hardware research. We demonstrated the capabilities of 
our platform by simplifying platform-fair CPU benchmarking 
and fast prototyping a HLS-based convolutional engine. 
Moving forward, we plan support for additional CPUs and IPs 
for RISC-V extensions and heterogeneous technologies, such as 
Chisel. We plan to soon boot Linux on Simply-V and deliver a 
full-fledged platform for experimental and applied research. 
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Fig. 5. Demonstrating fast prototyping with the latency evaluation of the multiple 
design iteration of HLS-CONV2D IP across Simply-V profiles. 

Fig. 4. Latency results of tacle-bench CPU benchmarking across Simply-V 
profiles and memory devices. 
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