
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Simply-V: A RISC-V Reconfigurable Playground
Soft-SoC for Open Hardware Research and Fast

Prototyping
Vincenzo Maisto, Stefano Mercogliano, Manuel Maddaluno, Alessandro Cilardo

Department of Information Technology and Electrical Engineering
University of Naples Federico II, Naples, Italy

{vincenzo.maisto2, stefano.mercogliano, manuel.maddaluno, acilardo}@unina.it

Abstract—The recent rise of open hardware, mainly driven by the
momentum of the RISC-V ecosystem, has sparked significant
innovation in the development of open-source CPUs and SoCs.
This movement has enabled broad exploration across academia
and industry, fostering collaboration and reuse. However, the
diversity and openness that empower this space also introduce
challenges: academic projects often fall short of industry-grade
robustness, lack of standardization, and simulation limitations. To
ease the work of researchers some key challenges must be faced in
open hardware development: platforms’ reconfigurability, ease of
integration of third-party IPs, and support for technological
heterogeneity. To address these issues, we present Simply-V, a
flexible, FPGA-based soft-SoC platform designed for rapid
prototyping and open hardware research. Simply-V enables plug-
and-play support for multiple CPUs, IPs and accelerators, offers
structured configurability across embedded and highperformance
profiles, and supports the integration of both RTL and HLS-based
components. We demonstrate the SoC’s capabilities through
platform-fair CPU benchmarking and the iterative development
of HLS-designed convolutional accelerators, showcasing
simplified fast prototyping, configurability, and heterogeneous IP
support on real hardware. Simply-V is openly available at
https://github.com/HiSA-Team/Simply-V.git.

Index Terms—RISC-V, FPGA, Fast-Prototyping, Experimental
Research.

I. INTRODUCTION

In recent years, open hardware has experienced a remarkable
surge, largely fueled by the RISC-V open ISA, which has
become a catalyst for research into open-source CPUs and
Systems-on-Chip (SoCs) across both academia and industry. On
one hand, this rich, diverse, and open environment fosters
knowledge sharing and promotes the reusability of hardware
solutions. On the other hand, academic projects often fall short
of industry-grade standards in areas such as documentation,
usability, and long-term maintainability. As a result, open
hardware researchers frequently encounter significant
challenges, not only in reproducing experimental results, but
also in building upon existing work. Most setups are often hard
to reproduce, and the inherent heterogeneity can result in
inconsistent or non-comparable performance figures. As a
mitigation to these challenges, one would wish for a simple,
verified and hardware-ready playground platform for open

hardware research that is reconfigurable, easy to use and reuse
in larger systems. Such an achievement, however, is nontrivial
for several reasons. First, validating CPUs in realistic scenarios,
such as running full operating systems or benchmarking memory
hierarchies, goes beyond basic testbenches. Second, while
reusable IP blocks like accelerators, peripherals and protocol
bridges are widely available, they often lack consistent interface
standardization and toolchain compatibility, shifting focus from
open hardware research to low-level troubleshooting. Lastly,
seamless configurability remains a major roadblock. Tasks like
address mapping, dependencies management, memory and bus
resizing, or clock domain crossing (CDC) are often hardcoded
or require manual rework, limiting scalability and slowing down
design iterations.

To address these challenges, we present Simply-V
(pronounced ”simplify-ve”), an easy-to-deploy, flexible, and
extensible soft-SoC platform for rapid prototyping, open
hardware research and development. Simply-V provides a
simple, FPGA-based, hardware-ready playground platform for
full-stack evaluation on real physical devices in open hardware
research. The platform offers a structured reconfiguration flow,
is portable across a wide range of FPGA devices, supporting
both embedded and high-performance profiles. It enables drop-
in integration of multiple CPUs and accelerators, along with a
configurable interconnect managed through a high-level flow.
We demonstrate the capabilities of Simply-V with a platform-
fair benchmarking of set open-source CPUs, across the
embedded and high-performance computing (HPC) profiles, in
both 32 and 64 bits. Additionally, we validate the integration of
custom IPs, support for technological heterogeneity and fast
design iterations by deploying a set of incrementally-designed
high-level synthesis (HLS) convolutional accelerators.

II. BACKGROUND AND MOTIVTION

A. A Flexible SoC for Open Research and Fast Prototyping
While many reconfigurable RISC-V-based platform designs

have been proposed, a significant number of them are either
proprietary or not publicly accessible. Conversely, most
opensource RISC-V CPUs are distributed with minimal testing
environments, valuable for evaluating the processor’s
functionalities but not meant to serve as hardware-ready SoCs.

Manuscript received April 30, 2025; revised July 23, 2025; accepted
July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025.
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i1.86

8

https://doi.org/10.64552/wipiec.v11i1.86

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

More sophisticated open-source SoCs do exist, such as
lowRISC’s OpenTitan [1], however, these systems lack the right
reconfigurability across a wide spectrum of technology needed
for open-hardware research. In contrast to fixed-functionalities
SoCs, frameworks for SoC generation can offer more flexibility,
such as ESP [2] and Chipyard [3]. Similarly to Simply-V, using
a configuration-driven design flow, they can generate RTL for a
complete SoC, including the CPUs, caches, interconnects, and
co-processors. On the other hand, Chipyard specifically focuses
on verification of ASIC tape-outs, and ESP is mostly oriented at
tiled architectures, integrating third party SoCs and IP cores.
Instead, Simply-V is explicitly targets FPGA platforms and SoC
architecture, with fast prototyping for academic research as its
primary aim.

B. A Practical Alternative to Simulation
Simulation frameworks have long been the cornerstone in

digital design validation. System emulation platforms such as
QEMU, and instruction set simulator like Spike, are clearly
limited to functional validation, and cannot be used for
performance evaluation. More advanced tools, such as gem5 [4]
and event-driven simulators, like GVSoC [5], offer reasonable
trade-offs between timing accuracy and simulation time, but
tend to be platform-specific and require a reimplementation of
the simulated modules. On the other hand, cycle-accurate RTL
simulators are often prohibitively slow, namely when simulating
long-running programs like booting an OS. Hybrid
hardware/software co-simulation approaches attempt to mitigate
these issues, but they rely on custom intermediate
representations, or emulation on expensive FPGA platforms [6].

Simply-V addresses these challenges by providing the
fidelity of hardware execution without the burden of RTL design
and platform integration. Such flexibility allows rapid
prototyping, fast design iterations, and real-system validation
beyond cycle-accurate simulations or FPGA-based emulations.

III. ARCHITECTURE
This section describes the design principles of our Simply-V

and design challenges it addresses. To ease the work of
researchers and practitioners, we focus on (1) system-wide
reconfigurability, (2) ease of integration of custom IPs and (3)
technological heterogeneity as pivotal requirements.

MBUS: the Simply-V architecture, depicted in Figure 1, is
based on fully parametric and reconfigurable, yet simple, main
bus (MBUS) interconnect, based on AMBA AXI4. Most
memories in Simply-V, generically encompassing ROMs,
onchip SRAMs and external DRAMs, are mapped on the
MBUS.

PBUS: Low-end and low-frequency peripherals, which
commonly require a limited range of addresses for register file
data and control, are collected in the peripheral bus (PBUS), as
an additional slave to the MBUS. By design, the PBUS is meant
for non-performance-critical bus traffic, hence we opt for an
AXI4-lite interconnect.

HBUS: Our platform is also designed of accelerator
development and HPC configurations, hence a high-bandwidth
bus (HBUS) interconnect is exposed as a further slave of the
MBUS. The HBUS offers streamlined, long-word access to
more performant memories, such as DDR banks or HBM
channels. The HBUS is suitable for high-performance
accelerators, which require high-bandwidth to external DRAM
memories, such as AI engines or vector co-processors.

PLIC and interrupts: Interrupts are managed by an
implementation of the RISC-V standard platform-level interrupt
controller, namely PLIC, integrated as a custom unit leveraging
our custom IP flow, detailed in Section III-C.

SysMaster: Since Simply-V is primarily designed for
research and development, host-side debug is a fundamental
feature. We explicitly expose on the MBUS a host-side
connection, the SysMaster. It allows the user to directly interact
with the SoC, e.g. to inject faults or read-back data over a high-
speed link, e.g. PCIe, rather than low-speed JTAG.

Cross-profile UART: A UART peripheral is hosted in the
PBUS for both embedded and HPC profiles. For embedded, we
leverage a physical UART IP over a PMOD connector. In case
of HPC deployment, such as on PCIe acceleration cards, a
PMOD connection is typically not available. Therefore, we
design a virtual UART module to emulate the same behaviour
of its physical counterpart over the PCIe link.

A. SoC Configuration Flow
Simply-V provides a lightweight, parameter-based

configuration flow to re-shape the platform at build time and
restructure the whole SoC to adapt it to their experimental needs.

Fig. 1. General architecture and on-chip interconnect of Simply-V. It features a main bus (MBUS), a peripheral bus (PBUS) for low-speed devices and a high-
performance bus (HBUS) for high-bandwidth memory accesses, suitable for accelerators and co-processors. On the MBUS, the RV Socket hosts a RISC-V processor
and debug module. Finally, the SysMaster grants the host full control of the platform and master access to the SoC interconnect.

9

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Four modular input tables are required, namely a systemlevel
configuration, e.g. target CPU, RISC-V XLEN, and three
configuration files for MBUS, PBUS and HBUS, respectively,
for interconnect, address map and CDC management.

Buses are reconfigured in a transparent, automated and
verified process. The necessary RTL modifications to remap
addresses and interconnections are automated and hidden to the
user. Peripheral IPs, such as timers, GPIOs or accelerators, can
be optionally instantiated in one or multiple instances and their
clock frequency, alongside the CPU clock, can be controlled
from configuration files.

B. RV Socket and Debug Support
Simply-V aims at providing a fast deployment flow that

targets different processors with a vendor-agnostic plug-in
framework. To address such needs, we introduce the RV
Socket, a modular CPU wrapper offering a unified interface for
the RISC-V cores towards the MBUS for operation and the host
for debugging. Figure 2 depicts the architecture of the RV
Socket. In the following, we present motivation and detail our
design choices.

1) Unifying CPU Interfaces: In order to provide a vendor-
independent interface for CPUs, we leverage our custom IP
flow to provide a packaging framework for compatible and re-
usable adapters. Adapters can be either imported or
implemented from scratch, and deployed alongside the RISCV
CPU to provide a unified interface for all CPUs, allowing plug-
in CPU support.

2) RISC-V External Debugging: RISC-V CPUs can support
a Debug Transport Module (DTM) for external debugging. The
RISC-V debug specification defines a Debug Module Interface
bus (DMI), but the implementation is left to the designer.
Consequently, each RISC-V core comes with a tightly-couples
DTM. With our simple configuration flow, the transition
between CPUs remains seamless, which transparently enables
the right DTM and compatible DMI interconnect.

C. Custom IP Packaging
For Simply-V, we design a custom IP packaging

methodology to ease the integration of custom and third-party
IPs. We allow users to package RTL or other HDL sources into
a selfcontained IP, namely a blunt out-of-context netlist, with no
remaining references to its source code. Such a flow is depicted
in Figure 3. The first step of the packaging is to provide the
necessary sources, resolve internal dependencies, and is
IPspecific. Simply-V poses no constraints on this step, other than

providing a custom top wrapper module for all IP sources. The
second step is unified for all IPs and automatically builds such
top module in a library IP element. Consequently, this strategy
enables Simply-V to integrate third-party IPs with potential non-
compatible code bases, effectively turning third-party IPs in
simple and off-the-shelf library elements.

D. Managing Clock Domain Crossing
Managing clock domains can be difficult and deploying a

whole SoC in the same domain might be inefficient in
performance and power. Our configuration flow allows for the
slaves of the main bus to be clocked at different frequencies,
with automated and verified CDC bridges deployment. A main
clock domain is shared by RV Socket, MBUS, PLIC and
BRAM memories, as such modules typically show no
advantage in a dedicated domain. The PBUS hosts all of its low-
speed peripherals in a single domain, clocked at lower
frequency. All MBUS additional peripherals, such as
programmable co-processors or specialized accelerators, can be
placed in a dedicated domain, allowing fast integration at their
natural frequency, or use the MBUS domain. Moreover, the
HBUS maximizes integration with DDR and HBM channels by
deploying in their high-speed clock domain. Such a domain is
available for accelerator deployment for the best performance
and integration with the high-speed interconnect.

IV. EXPERIMENTAL VALIDATION
In this section, we empirically validate the capabilities of

Simply-V for fast prototyping and research. We configure our
SoC CDC with PBUS, HBUS and DRAM memories in
dedicated clock domains and build our FPGA designs with
Vivado v2024.2. We deploy Simply-V embedded profile on
Digilent Nexys A7 Artix-7 board. For validation in HPC
profile, we use an AMD Xilinx Alveo PCIe Card.

A. Cross-vendor CPU Benchmarking
We demonstrate a platform-fair comparison of RISC-V

CPUs and the plug-and-play support of multiple processors
from a diverse pool of vendors, namely CV32E40P from
OpenHW, Ibex from lowRISC, MicroblazeV from AMD
Xilinx, and finally, we demonstrate RV64 support with CVA6.
Leveraging our configuration flow, for given a Simply-V setup
we seamlessly plug in and out different CPUs. Additionally, we
showcase the transparent profile transition from embedded to

Fig. 3 . Architecture of the RV Socket, with CPU-specific logic enclosed in
dashed lines.

Fig. 2. Custom IP packaging flow. On the left, in dashed lines the IP-specific
steps. On the right, the common steps managing packaged IPs as library
elements in the target EDA tool.

10

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

HPC setups, with no overhead from the practitioner. We run the
tacle-bench1 benchmark on all CPUs and Simply-V profiles.
For the embedded profile, we run software from onchip BRAM
memory, in the main clock domain at 50MHz, alongside the
CPU. For the HPC profile, we run the software both from
BRAM memory and an external DDR bank.

Figure 4 shows the tacle-bench1 latency results, averaged
over 10 iterations. CPUs can be quickly evaluated and
compared in the embedded profile, for its fast turn-around time,
obtaining a fast, baseline indication with the sophisticated
CVA6 core performing worse than simpler cores. Transitioning
to a HPC configuration, namely and keeping code in local
BRAMs or off-chip DDR, and increasing the target frequency
in the main clock domain, a researcher can easily evaluate the
differences in performance for the various cores.

B. Fast Prototyping an HLS-based Convolutional Core
In this section, we demonstrate the use of Simply-V as a

hardware-ready platform for fast prototyping custom IPs,
including support for technological heterogeneity with HLS
technology. We target an 8-bit 2D convolutional engine,
namely CONV2D, as a representative example of modern
workloads. We implement a pool of CONV2D engines and
integrate each one in Simply-V as an accelerator IP,
demonstrating fastprototyping capabilities, both from the IP
design and SoC integration perspective. Figure 5 reports the
HLS engine’s performance across design iterations: (1) Naive
loop-nest: the baseline prototype of our core is a basic HLS-
compatible Ccode, with a single AXI master port for memory
access. (2) AXI bursts: activating memory coalescing; (3)
Double buffering: implementing double buffering; (4)
Frequency boost: leveraging our configuration-based CDC, we
boost the IP clock frequency; Such approach improves
performance by a only limited amount, suggesting the IP core
is bottle-necked by memory accesses; (5) Split interfaces:

1 https://github.com/tacle/tacle-bench/tree/V1.9

maximizing data-access parallelism with three parallel read and
write AXI ports; (6) HBUS access: alternatively, leveraging the
HBUS interconnect for wider memory accesses, showcasing
the best performance.

V. CONCLUSIONS

In this work, we presented Simply-V, a reconfigurable,
hardware-ready soft-SoC platform for fast prototyping and
open hardware research. We demonstrated the capabilities of
our platform by simplifying platform-fair CPU benchmarking
and fast prototyping a HLS-based convolutional engine.
Moving forward, we plan support for additional CPUs and IPs
for RISC-V extensions and heterogeneous technologies, such as
Chisel. We plan to soon boot Linux on Simply-V and deliver a
full-fledged platform for experimental and applied research.

ACKNOWLEDGMENTS
This work has been partially supported by the Spoke 1

”FutureHPC & BigData” of ICSC - Centro Nazionale di
Ricerca in High-Performance-Computing, Big Data and
Quantum Computing, funded by European Union -
NextGenerationEU.

REFERENCES
[1] M. Ciani et al., “Unleashing opentitan’s potential: a silicon-ready
embedded secure element for root of trust and cryptographic
offloading,” ACM Transactions on Embedded Computing Systems,
2024.
[2] P. Mantovani et al., “Agile SoC development with open ESP,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, ICCAD ’20, (New York, NY, USA), Association for
Computing Machinery, 2020.
[3] A. Amid et al., “Chipyard: Integrated design, simulation, and
implementation framework for custom socs,” Ieee Micro, vol. 40, no.
4, pp. 10–21, 2020.
[4] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH
computer architecture news, vol. 39, no. 2, pp. 1–7, 2011.
[5] N. Bruschi et al., “GVSoC: A Highly Configurable, Fast and
Accurate Full-Platform Simulator for RISC-V based IoT Processors,”
in 2021 IEEE 39th International Conference on Computer Design
(ICCD), pp. 409–416, 2021.
[6] S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact
Scale-Out System Simulation in the Public Cloud,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pp. 29–42, IEEE, 2018.

Fig. 5. Demonstrating fast prototyping with the latency evaluation of the multiple
design iteration of HLS-CONV2D IP across Simply-V profiles.

Fig. 4. Latency results of tacle-bench CPU benchmarking across Simply-V
profiles and memory devices.

11

