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Abstract—Spiking Neural Networks (SNNs) have emerged as an 
energy-efficient alternative to Artificial Neural Networks (ANNs), 
particularly for edge-computing and safety-critical applications. 
Unlike conventional ANNs, SNNs leverage sparse event-driven 
processing to reduce energy consumption while significantly 
maintaining high computational efficiency. This paper presents a 
framework designed to optimize the conversion of ANNs into 
equivalent SNNs while balancing accuracy, reliability, and energy 
efficiency. The proposed framework systematically explores SNN 
hyperparameters to identify configurations that achieve superior 
performance compared to their ANN counterparts. Experimental 
evaluations on MNIST and Fashion-MNIST datasets with 
different network topologies demonstrate that the optimized SNNs 
achieve comparable accuracy while offering in some cases 27.81× 
and 15.17× lower energy consumption and 1.92× and 1.84× less 
accuracy drop in the presence of faults, respectively, over the ANN 
baseline. The results highlight the applicability of SNNs in 
reliability-critical power-constrained environments. 

Index Terms—deep neural networks, spiking neural networks, 
reliability, edge applications, safety-critical applications 

I.  INTRODUCTION

Spiking Neural Networks (SNNs) are gaining traction due to 
their bio-inspired processing, event-driven computation, and 
energy efficiency. Unlike Artificial Neural Networks (ANNs), 
SNNs operate similarly to biological neurons, making them 
well-suited for low-power edge devices and neuromorphic 
computing [1], [2]. Their sparse and asynchronous nature 
enhances computational efficiency and scalability, making them 
ideal for applications in autonomous systems and safety-critical 
environments [3], [4]. However, the temporal dynamics of 
SNNs both at the neuron and network levels, along with the non-
differentiability of spike functions, have made it difficult to train 
efficient SNNs [5]. Different studies with various approaches 
have attempted to adapt backpropagation-based supervised 
learning algorithms to SNNs [6]. To overcome these challenges 
and leverage the effectiveness of ANN training, many methods 
focus on converting well-trained ANNs into functionally 
equivalent SNNs. One key challenge in transitioning from 
ANNs to SNNs is ensuring structural consistency between the 
two architectures [7]. Many deep learning models are highly 
optimized for specific tasks, and modifying their topology 
during conversion can result in accuracy loss, increased training 
complexity, and inefficiencies in hardware deployment. For 
instance, in edge AI applications like real-time image 

recognition for autonomous vehicles, maintaining the original 
ANN topology ensures that pre-trained weights and feature 
extraction mechanisms remain effective while benefiting from 
SNNs' energy efficiency [8]. 

Beyond training, ensuring the reliability of SNNs is critical, 
especially in noisy or faulty hardware environments where 
robustness is essential [9]. Several frameworks have addressed 
specific aspects, such as memory fault tolerance (e.g., ReSpawn 
[10], rescueSNN [11]), Fault Injection (FI) and analysis (e.g., 
SpikingJET [12], SpikeFI [13]), or energy-efficient architecture 
search (e.g., AutoSNN [14]). 

Despite these advancements, there remains a lack of unified 
approaches that convert ANN to SNN, jointly considering 
reliability, energy efficiency, and accuracy with hyperparameter 
tuning. 

To fill these gaps, this paper proposes an automated 
framework for generating optimal, reliable, and low-energy 
consumption SNNs from ANNs. The proposed framework 
generates SNNs with topological similarity to the original ANN 
while searching for optimal SNN configurations within them 
that have balanced accuracy, reliability, and energy 
consumption. The proposed algorithm utilizes only the ANN 
architecture to generate new SNNs, distinguishing it from 
conventional ANN-to-SNN conversion methods that aim to 
transfer learned parameters for SNN training. SNN networks are 
learned with the surrogate gradient method. By using FI 
scenarios, our method ensures that the generated SNNs maintain 
or exceed the performance of their ANN counterparts while 
significantly reducing energy consumption. 

The key contributions of this paper are: 

• A hyperparameter optimization-based technique to
ensure a high-performance, high accuracy reliable SNN 
network

• An automated framework for optimized ANN-to-SNN
conversion based on accuracy, reliability, and energy
consumption

• Experimental validation on different datasets and
network topologies demonstrating the energy,
accuracy, and reliability trade-offs between ANNs and 
SNNs
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The proposed approach offers a practical and efficient 
pathway to leveraging SNNs in safety-critical power-
constrained edge applications, making them viable alternatives 
to conventional ANN-based solutions. 

The remainder of this paper is structured as follows: Section 
II presents the proposed methodology. Section III discusses 
experimental results and the comparison of the initial input ANN 
and the selected SNN. Finally, Section IV concludes the paper. 

II. PROPOSED METHODOLOGY

The framework is developed using PyTorch for ANN 
implementation and snnTorch [15] for SNN implementation, 
both of which support GPU acceleration for training and 
inference. The snnTorch framework supports multiple spiking 
neuron models, with one of the most widely used being the 
Leaky Integrate-and-Fire (LIF) model [15] which was also used 
in this research. Equation (1) represents the discretized form of 
the LIF neuron’s differential equation, which consists of three 
main components. The neuron's membrane potential is denoted 
as U. The input component is the product of the input vector X 
(a spike train of 0s and 1s) and the synaptic weights W. The 
decay term, governed by the decay factor β, causes the 
membrane potential to decrease at a rate of β per time step.  

The neuron's threshold voltage is represented by θ, which 
ensures that when the membrane potential reaches a certain 
threshold, it resets to a predefined value, producing a spike at the 
output [15]. The spikes generated at the output are denoted as 
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡]  ∈  {0, 1}. As described in (2), when 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 1, θ is 
subtracted from the membrane potential; otherwise, no reset 
occurs. This mechanism, known as the subtraction reset or soft 
reset mechanism, is widely used in spiking neural networks [15], 
[16]. 

𝑈𝑈[𝑡𝑡] = 𝛽𝛽.𝑈𝑈[𝑡𝑡 − 1]�������
decay

+ 𝑊𝑊.𝑋𝑋[𝑡𝑡]�����
input

− 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡 − 1].𝜃𝜃���������
reset

(1) 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡] = �1, 𝑖𝑖𝑖𝑖 𝑈𝑈[𝑡𝑡] > 𝜃𝜃
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (2) 

The snnTorch framework also supports multiple spike 
encoding schemes, such as rate coding and temporal coding. In 
this study, rate coding is employed, which converts input 
intensity into a spike count [15]. 

Since all networks in this study are bias-free, the energy 
consumption of ANN models is computed using the equation 
∑𝑤𝑤. 𝑥𝑥 where w and x represent the weight and input data, 
respectively. The computational operations required in ANN 
neurons consist of Multiply-Accumulate (MAC) operations, 
which can be theoretically estimated. The total energy 
consumption is then determined using (3). 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 (3) 

For spiking neurons, computations follow (1). However, in 
this study, the decay factor β is set to approximately 1, allowing 
us to disregard its effect for simplification. Additionally, the 

accumulation term U in (1) is ignored. Consequently, the 
computational operations in spiking neurons primarily involve 
the summation of weights, represented as ∑𝑤𝑤, corresponding to 
Accumulation (AC) operations. 

To determine the number of operations in spiking neurons, 
this study employs a state-of-the-art technique that accurately 
measures computational complexity by counting the average 
number of spikes fired across the entire network. This method, 
which accounts for dataset characteristics, spiking neuron 
hyperparameters, and encoding schemes, has been widely 
adopted in recent research [17], [18]. Specifically, after applying 
the full dataset to the network, the number of spikes generated 
in each layer is recorded, and the average spike count per layer 
is reported. The total energy consumption is then estimated by 
incorporating this spike count into (4) [17]. 

Table I shows the energy estimation resulting from the 
implementation of a 32-bit multiplier and adder at 45nm CMOS 
technology according to reference [19]. Therefore, the 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 and 
𝐸𝐸𝐴𝐴𝐴𝐴  in (3), (4) can be calculated using this table. 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐸𝐸𝐴𝐴𝐴𝐴  (4) 

TABLE I. ENERGY ESTIMATION OF AC AND MAC 
OPERATION IN 45NM CMOS TECHNOLOGY 

45nm Technology Energy (pJ) 
INT FP 

ADD 0.1 0.9 
MUL 3.1 3.7 
ACC 0.1 0.9 
MAC 3.2 4.6 

 SNNs have multiple hyperparameters affecting their 
performance, such as the spiking neuron model, time steps, 
neuron threshold voltage, and neuron reset type [1], [15]. These 
hyperparameters significantly influence SNN performance, 
impacting accuracy, spike rate, and energy consumption [1], 
[15]. A critical factor in SNN efficiency is the selection of an 
appropriate time step. Higher time steps improve accuracy but 
increase spike rate, leading to higher latency and energy 
consumption. Conversely, lower time steps reduce latency but 
may degrade accuracy. Similarly, adjusting the neuron threshold 
voltage modifies spiking behavior, influencing both the learning 
and inference phases. At the same time, these hyperparameters 
play an essential role in the reliability of the networks. The 
learning process in this research was conducted using the 
surrogate gradient method supported by snnTorch. Since a key 
objective of this research is to identify a suitable network for 
edge applications, adopting an integer number format is crucial 
compared to floating-point representation. To achieve this, 
quantization is applied to convert network parameters into an 
integer format. Notably, the proposed framework supports 
quantization with arbitrary precision; however, in this study, an 
8-bit integer format was used. Quantization improves efficiency
in hardware implementations such as FPGAs and ASICs by
reducing memory size and computational complexity. To assess
reliability, the FI method [20] is used, employing Bit Error Rate
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(BER) analysis to simulate faults. This allows systematic 
evaluation of model robustness without requiring exhaustive FI 
into all bits, thus reducing computational overhead. To model 
transient faults, the bit-flip FI method is employed, applying 
different BER to network parameters (weights) to simulate 
cumulative faults. The results are presented in terms of accuracy 
drop as an indicator of network reliability. 

Considering the described matters, Fig. 1 provides an 
overview of the proposed methodology. The workflow consists 
of three steps designed to find an optimal SNN topologically 
equivalent to an ANN, maintaining efficient accuracy, 
reliability, and energy consumption. 

Figure 1. The proposed methodology flowchart 

At first, a pre-trained ANN and a set of hyperparameters 
defining its equivalent SNN are input into the framework. 

In STEP 0, according to the pseudo-code proposed in 
Algorithm 1, the framework trains a set of SNN models, denoted 
as 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗, using the input hyperparameters. After training, post-
training quantization (PTQ) is applied, allowing the user to 
specify bit-width precision. The accuracy check is performed at 
the end of this stage on 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗. On the other hand, the accuracy, 
reliability, and total operations (Ops) of the ANN are also 
measured for comparison. 

In STEP 1, the accuracy of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗ is compared to that of the 
original ANN. If accuracy is maintained or improved, the model 
undergoes reliability assessment. Only configurations meeting 
accuracy and then reliability thresholds are stored in 
candidate_list1. 

In STEP 2, The final step evaluates energy consumption. 
Hyperparameters such as 𝜏𝜏∗, 𝜃𝜃∗ are items from the previous list 
that are met, so they are used in this stage. Configurations with 
lower energy usage than the ANN are stored in candidate_list2. 
If optimal networks exist in candidate_list2, the framework 
returns a selection of viable SNN models. Optionally, the user 
can request the lowest-energy solution. If no configurations meet 
the criteria, the input parameters must be adjusted again. 
Thereby, the algorithm back to the start of STEP 0 according to 
Algorithm 1, and using an automatic or manual mechanism the 
list of hyperparameters must be expanded or be selected in other 
ranges. 
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The framework systematically searches for an optimal SNN 
while ensuring minimal performance degradation. If a network 
from STEP 2 is selected, it is guaranteed to outperform the ANN 
in terms of energy efficiency and reliability while maintaining 
accuracy. 

By applying the order used in checking accuracy, reliability, 
and energy consumption, many weak cases are eliminated in a 
short period of time. According to the experiments performed, 
the accuracy check of an SNN, depending on the selected 
hyperparameters and with the topologies chosen in this study, is 
usually under 3 seconds. However, a reliability test may take 
several minutes to complete. In STEP 1, all cases with 
unacceptable accuracy are eliminated, and neither reliability nor 
energy efficiency tests are performed on them. Also, for SNNs, 
the energy consumption estimation in this algorithm is 
calculated simultaneously with their accuracy test. 

III. EXPERIMENTAL RESULTS 
This section presents the results obtained from the proposed 

framework and its evaluated parameters. The evaluation 
considers multiple network topologies, ranging from shallow to 
deep architectures, as summarized in Table II. Fully connected 
SNNs are often chosen for experiments because of their 
simplicity and demonstrated effectiveness. Their ability to 
leverage the inherent sparsity and event-driven processing of 
spiking computation results in significant reductions in power 
consumption and computational load [5]. This makes them 
especially suitable for applications in edge scenarios such as 
health monitoring [21]. Key hyperparameters such as time steps 
and neuron threshold voltage, shown in Table III, are explored. 
To ensure comprehensive evaluation, a combination of the 
topologies in Table II and configurations in Table III is tested, 
allowing for the identification of the most energy-efficient and 
reliable SNN models. 

The analysis is performed using two widely used 
classification datasets, MNIST and Fashion-MNIST, 
abbreviated as “M” and “F” in the tables, along with network 
topologies and configurations. Two forms of reliability 
assessment are conducted: model-wise and layer-wise. In the 
model-wise method, FI is applied to the entire network 
simultaneously, while in the layer-wise method, faults are 
selectively introduced into specific layers to evaluate their 
individual resilience. 

TABLE II.  DIFFERENT NETWORK TOPOLOGIES 
USED IN THIS WORK 

Name Number of Neurons in layers Number of Layers 
TOP0 32-10 2 
TOP1 64-32-10 3 
TOP2 128-64-10 3 
TOP3 128-64-64-32-10 5 
TOP4 512-256-256-128-10 5 

TABLE III.  THE TOTAL SNN CONFIGS USED 

Config Timesteps Threshold Voltage 
C1 10 0.5 
C2 10 1.5 
C3 30 0.5 
C4 30 1.5 

 

As shown in Fig. 2, the first experiment compares a trained 
and quantized ANN with four SNN variants that share the same 
topology but differ in configuration. Initially, SNN models are 
trained with predefined hyperparameters, followed by 
quantization and comparison with their ANN counterparts. The 
results indicate that SNN models achieved accuracy levels 
comparable to their ANN counterparts. 

 

Figure 2. Comparison of accuracy in different architectures 

The next study examines the impact of injecting faults into 
network parameters. For this purpose, four different topologies 
with four distinct configurations are evaluated, with each graph 
representing the results for a single BER. As shown in Fig. 3, the 
experiment covers four BER ranges. The analysis follows a 
model-wise approach, meaning faults are injected into all 
hyperparameters of a given model. In each experiment, an ANN 
is compared with four SNNs of the same topology but different 
configurations. By analyzing Fig. 3a to 3d, it is evident that 
networks with different hyperparameters exhibit varying levels 
of reliability. This underscores the importance of identifying the 
optimal configuration for an SNN with a given structure. Fig. 3d 
shows the results of heavy FI as BER equals 0.1, the network 
has started to lose its parameters, and fault resiliency is 
unreasonable in this situation.  

The layer-wise reliability analysis is presented in Fig. 4. 
Using the proposed framework, a test was conducted across all 
previously examined cases (various topologies and 
configurations). After determining the most reliable 
configuration for each topology, only the best-performing 
configuration was included in this layer-wise study. This 
analysis focuses on two topologies: a 3-layer and a 5-layer 
network. Faults were applied to all layers, and the ANN results
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(a) 3-Layer (b) 5-Layer

Figure 4. Layer-wise reliability analysis for two 3-Layer and 5-Layer network topologies at BER=0.01

were compared with their corresponding SNNs. In this 
experiment, only the C2 configuration was analyzed at a BER of 
0.01. The results show that SNN layers exhibit greater 
robustness to faults than their ANN counterparts. For instance, 
in Fig. 4b, the fourth layer (L4) of the TOP3 SNN achieves 
96.54% reliability—1.84× higher than the equivalent ANN 
topology, which has a reliability of 52.6%. 

Accuracy, reliability, and energy consumption trade-offs 
illustrated in Fig. 5. According to the values in Table I, the figure 
shows the energy consumption in the two equivalent ANN and 
SNN topologies. To better highlight differences in energy 
consumption, two topologies—2-layer and 5-layer networks—
are examined, as detailed in Table II. The selected 
configurations—C2 and C3 for TOP0 and TOP4 respectively—
represent the optimal SNN models identified by the proposed 
framework. As observed, for both topologies and datasets, the 
accuracy of SNN models remains comparable to their ANN 

(a) BER = 0.0001 (b) BER = 0.001

(c) BER = 0.01 (d) BER = 0.1

Figure 3.  Model-wise reliability analysis for some custom network topologies 
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counterparts, while their reliability surpasses that of equivalent 
ANN models. The figure shows the energy 

Figure 5. The comparison of accuracy, reliability, and energy for ANN and SNN topologies at BER=0.01

consumption difference between ANN and its equivalent 
SNN network, especially in a relatively large network. The 
energy consumption ratio of ANN to SNN in a 2-layer 
feedforward network (TOP0) is 23.36× for MNIST and 11.05× 
for Fashion-MNIST dataset. Also in a 5-layer feedforward 
network (TOP4) is 7.82× for MNIST and 4.2× for Fashion-
MNIST dataset. The difference in energy consumption in two 
SNNs with different datasets is related to the difference in the 
spike rate of the encoded data of the two datasets, which 
naturally changes the computational operations and energy 
consumption. 

Based on the data in Fig. 3c and TOP4, if a naïve conversion 
from ANN to SNN is performed and the proposed framework 
with three-lateral optimization is not used, the conversion result 
may end up in one of the configurations such as C1 or C2, which, 
as is clear from the results, although these configurations meet 
the accuracy and energy conditions, they deteriorate the 
reliability in the converted network up to 54.13%. In contrast, 
the network introduced by the proposed framework, although it 
meets the accuracy and energy conditions, has also improved its 
reliability in C3 configuration up to 28.03%. 

In some other cases such as TOP3, the proposed framework 
gives a set of optimizes SNNs, based on Fig. 3c where SNNs 
showed up to 1.92× and 1.84× better reliability compared to 
ANNs and lower energy consumption reached up to 27.81× and 
15.17× for the MNIST and Fashion-MNIST dataset when using 
the C2 configuration. Selecting candidate networks without 
considering reliability may yield better energy efficiency but 
often lacks fault resilience. Our framework addresses this by 
balancing all aspects to achieve an optimal trade-off, as reflected 
in the reported results. Expanding the SNN configuration space 
could further improve outcomes by offering more design 
choices. 

IV. CONCLUSION

This paper presented a novel framework for optimizing the 
conversion of ANNs to SNNs while balancing accuracy, 
reliability, and energy efficiency. The proposed method 
systematically explores SNN hyperparameters to identify 
optimal configurations that maintain accuracy while 
significantly improving fault tolerance and reducing energy 
consumption. 

Experimental evaluations on MNIST and Fashion-MNIST 
datasets demonstrated that the optimized SNN models achieved 
accuracy levels comparable to their ANN counterparts. 
Moreover, the proposed framework enhanced the reliability of 
SNNs, as reflected in FI studies, where SNNs showed up to 
1.92× and 1.84× lower accuracy degradation under injected 
faults compared to ANNs in some cases. Additionally, layer-
wise reliability assessments confirmed that certain SNN 
configurations exhibited significantly higher robustness in 
individual layers than their ANN equivalents. 

In terms of energy efficiency, the results showed that SNNs 
outperformed ANNs by substantial margins. The energy 
consumption ratio between ANN and SNN reached 27.81× for 
the MNIST dataset and 15.17× for the Fashion-MNIST dataset 
in some cases. These findings validate the effectiveness of the 
proposed approach in achieving energy-efficient and fault-
tolerant SNN architectures, making them ideal candidates for 
edge computing and safety-critical applications. 
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