
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Reliability-Aware Hyperparameter Optimization for
ANN-to-SNN Conversion

Saeed Sharifian1,*, Mahdi Taheri2,3, Vahid Rashtchi1, Ali Azarpeyvand1,3, Christian Herglotz2, and Maksim Jenihhin3
1 University of Zanjan, Zanjan, Iran

2 Brandenburg Technical University, Cottbus, Germany
3 Tallinn University of technology, Tallinn, Estonia

* sharifian.sa@znu.ac.ir

Abstract—Spiking Neural Networks (SNNs) have emerged as an
energy-efficient alternative to Artificial Neural Networks (ANNs),
particularly for edge-computing and safety-critical applications.
Unlike conventional ANNs, SNNs leverage sparse event-driven
processing to reduce energy consumption while significantly
maintaining high computational efficiency. This paper presents a
framework designed to optimize the conversion of ANNs into
equivalent SNNs while balancing accuracy, reliability, and energy
efficiency. The proposed framework systematically explores SNN
hyperparameters to identify configurations that achieve superior
performance compared to their ANN counterparts. Experimental
evaluations on MNIST and Fashion-MNIST datasets with
different network topologies demonstrate that the optimized SNNs
achieve comparable accuracy while offering in some cases 27.81×
and 15.17× lower energy consumption and 1.92× and 1.84× less
accuracy drop in the presence of faults, respectively, over the ANN
baseline. The results highlight the applicability of SNNs in
reliability-critical power-constrained environments.

Index Terms—deep neural networks, spiking neural networks,
reliability, edge applications, safety-critical applications

I. INTRODUCTION

Spiking Neural Networks (SNNs) are gaining traction due to
their bio-inspired processing, event-driven computation, and
energy efficiency. Unlike Artificial Neural Networks (ANNs),
SNNs operate similarly to biological neurons, making them
well-suited for low-power edge devices and neuromorphic
computing [1], [2]. Their sparse and asynchronous nature
enhances computational efficiency and scalability, making them
ideal for applications in autonomous systems and safety-critical
environments [3], [4]. However, the temporal dynamics of
SNNs both at the neuron and network levels, along with the non-
differentiability of spike functions, have made it difficult to train
efficient SNNs [5]. Different studies with various approaches
have attempted to adapt backpropagation-based supervised
learning algorithms to SNNs [6]. To overcome these challenges
and leverage the effectiveness of ANN training, many methods
focus on converting well-trained ANNs into functionally
equivalent SNNs. One key challenge in transitioning from
ANNs to SNNs is ensuring structural consistency between the
two architectures [7]. Many deep learning models are highly
optimized for specific tasks, and modifying their topology
during conversion can result in accuracy loss, increased training
complexity, and inefficiencies in hardware deployment. For
instance, in edge AI applications like real-time image

recognition for autonomous vehicles, maintaining the original
ANN topology ensures that pre-trained weights and feature
extraction mechanisms remain effective while benefiting from
SNNs' energy efficiency [8].

Beyond training, ensuring the reliability of SNNs is critical,
especially in noisy or faulty hardware environments where
robustness is essential [9]. Several frameworks have addressed
specific aspects, such as memory fault tolerance (e.g., ReSpawn
[10], rescueSNN [11]), Fault Injection (FI) and analysis (e.g.,
SpikingJET [12], SpikeFI [13]), or energy-efficient architecture
search (e.g., AutoSNN [14]).

Despite these advancements, there remains a lack of unified
approaches that convert ANN to SNN, jointly considering
reliability, energy efficiency, and accuracy with hyperparameter
tuning.

To fill these gaps, this paper proposes an automated
framework for generating optimal, reliable, and low-energy
consumption SNNs from ANNs. The proposed framework
generates SNNs with topological similarity to the original ANN
while searching for optimal SNN configurations within them
that have balanced accuracy, reliability, and energy
consumption. The proposed algorithm utilizes only the ANN
architecture to generate new SNNs, distinguishing it from
conventional ANN-to-SNN conversion methods that aim to
transfer learned parameters for SNN training. SNN networks are
learned with the surrogate gradient method. By using FI
scenarios, our method ensures that the generated SNNs maintain
or exceed the performance of their ANN counterparts while
significantly reducing energy consumption.

The key contributions of this paper are:

• A hyperparameter optimization-based technique to
ensure a high-performance, high accuracy reliable SNN
network

• An automated framework for optimized ANN-to-SNN
conversion based on accuracy, reliability, and energy
consumption

• Experimental validation on different datasets and
network topologies demonstrating the energy,
accuracy, and reliability trade-offs between ANNs and
SNNs

Manuscript received May 20, 2025; revised July 31, 2025; accepted
July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025.
Paper category: Regular
DOI: doi.org/10.64552/wipiec.v11i1.85

1

https://doi.org/10.64552/wipiec.v11i1.85

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

The proposed approach offers a practical and efficient
pathway to leveraging SNNs in safety-critical power-
constrained edge applications, making them viable alternatives
to conventional ANN-based solutions.

The remainder of this paper is structured as follows: Section
II presents the proposed methodology. Section III discusses
experimental results and the comparison of the initial input ANN
and the selected SNN. Finally, Section IV concludes the paper.

II. PROPOSED METHODOLOGY

The framework is developed using PyTorch for ANN
implementation and snnTorch [15] for SNN implementation,
both of which support GPU acceleration for training and
inference. The snnTorch framework supports multiple spiking
neuron models, with one of the most widely used being the
Leaky Integrate-and-Fire (LIF) model [15] which was also used
in this research. Equation (1) represents the discretized form of
the LIF neuron’s differential equation, which consists of three
main components. The neuron's membrane potential is denoted
as U. The input component is the product of the input vector X
(a spike train of 0s and 1s) and the synaptic weights W. The
decay term, governed by the decay factor β, causes the
membrane potential to decrease at a rate of β per time step.

The neuron's threshold voltage is represented by θ, which
ensures that when the membrane potential reaches a certain
threshold, it resets to a predefined value, producing a spike at the
output [15]. The spikes generated at the output are denoted as
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡] ∈ {0, 1}. As described in (2), when 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 1, θ is
subtracted from the membrane potential; otherwise, no reset
occurs. This mechanism, known as the subtraction reset or soft
reset mechanism, is widely used in spiking neural networks [15],
[16].

𝑈𝑈[𝑡𝑡] = 𝛽𝛽.𝑈𝑈[𝑡𝑡 − 1]�������
decay

+ 𝑊𝑊.𝑋𝑋[𝑡𝑡]�����
input

− 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡 − 1].𝜃𝜃���������
reset

(1)

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜[𝑡𝑡] = �1, 𝑖𝑖𝑖𝑖 𝑈𝑈[𝑡𝑡] > 𝜃𝜃
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (2)

The snnTorch framework also supports multiple spike
encoding schemes, such as rate coding and temporal coding. In
this study, rate coding is employed, which converts input
intensity into a spike count [15].

Since all networks in this study are bias-free, the energy
consumption of ANN models is computed using the equation
∑𝑤𝑤. 𝑥𝑥 where w and x represent the weight and input data,
respectively. The computational operations required in ANN
neurons consist of Multiply-Accumulate (MAC) operations,
which can be theoretically estimated. The total energy
consumption is then determined using (3).

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 (3)

For spiking neurons, computations follow (1). However, in
this study, the decay factor β is set to approximately 1, allowing
us to disregard its effect for simplification. Additionally, the

accumulation term U in (1) is ignored. Consequently, the
computational operations in spiking neurons primarily involve
the summation of weights, represented as ∑𝑤𝑤, corresponding to
Accumulation (AC) operations.

To determine the number of operations in spiking neurons,
this study employs a state-of-the-art technique that accurately
measures computational complexity by counting the average
number of spikes fired across the entire network. This method,
which accounts for dataset characteristics, spiking neuron
hyperparameters, and encoding schemes, has been widely
adopted in recent research [17], [18]. Specifically, after applying
the full dataset to the network, the number of spikes generated
in each layer is recorded, and the average spike count per layer
is reported. The total energy consumption is then estimated by
incorporating this spike count into (4) [17].

Table I shows the energy estimation resulting from the
implementation of a 32-bit multiplier and adder at 45nm CMOS
technology according to reference [19]. Therefore, the 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 and
𝐸𝐸𝐴𝐴𝐴𝐴 in (3), (4) can be calculated using this table.

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐸𝐸𝐴𝐴𝐴𝐴 (4)

TABLE I. ENERGY ESTIMATION OF AC AND MAC
OPERATION IN 45NM CMOS TECHNOLOGY

45nm Technology Energy (pJ)
INT FP

ADD 0.1 0.9
MUL 3.1 3.7
ACC 0.1 0.9
MAC 3.2 4.6

 SNNs have multiple hyperparameters affecting their
performance, such as the spiking neuron model, time steps,
neuron threshold voltage, and neuron reset type [1], [15]. These
hyperparameters significantly influence SNN performance,
impacting accuracy, spike rate, and energy consumption [1],
[15]. A critical factor in SNN efficiency is the selection of an
appropriate time step. Higher time steps improve accuracy but
increase spike rate, leading to higher latency and energy
consumption. Conversely, lower time steps reduce latency but
may degrade accuracy. Similarly, adjusting the neuron threshold
voltage modifies spiking behavior, influencing both the learning
and inference phases. At the same time, these hyperparameters
play an essential role in the reliability of the networks. The
learning process in this research was conducted using the
surrogate gradient method supported by snnTorch. Since a key
objective of this research is to identify a suitable network for
edge applications, adopting an integer number format is crucial
compared to floating-point representation. To achieve this,
quantization is applied to convert network parameters into an
integer format. Notably, the proposed framework supports
quantization with arbitrary precision; however, in this study, an
8-bit integer format was used. Quantization improves efficiency
in hardware implementations such as FPGAs and ASICs by
reducing memory size and computational complexity. To assess
reliability, the FI method [20] is used, employing Bit Error Rate

2

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

(BER) analysis to simulate faults. This allows systematic
evaluation of model robustness without requiring exhaustive FI
into all bits, thus reducing computational overhead. To model
transient faults, the bit-flip FI method is employed, applying
different BER to network parameters (weights) to simulate
cumulative faults. The results are presented in terms of accuracy
drop as an indicator of network reliability.

Considering the described matters, Fig. 1 provides an
overview of the proposed methodology. The workflow consists
of three steps designed to find an optimal SNN topologically
equivalent to an ANN, maintaining efficient accuracy,
reliability, and energy consumption.

Figure 1. The proposed methodology flowchart

At first, a pre-trained ANN and a set of hyperparameters
defining its equivalent SNN are input into the framework.

In STEP 0, according to the pseudo-code proposed in
Algorithm 1, the framework trains a set of SNN models, denoted
as 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗, using the input hyperparameters. After training, post-
training quantization (PTQ) is applied, allowing the user to
specify bit-width precision. The accuracy check is performed at
the end of this stage on 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗. On the other hand, the accuracy,
reliability, and total operations (Ops) of the ANN are also
measured for comparison.

In STEP 1, the accuracy of 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗ is compared to that of the
original ANN. If accuracy is maintained or improved, the model
undergoes reliability assessment. Only configurations meeting
accuracy and then reliability thresholds are stored in
candidate_list1.

In STEP 2, The final step evaluates energy consumption.
Hyperparameters such as 𝜏𝜏∗, 𝜃𝜃∗ are items from the previous list
that are met, so they are used in this stage. Configurations with
lower energy usage than the ANN are stored in candidate_list2.
If optimal networks exist in candidate_list2, the framework
returns a selection of viable SNN models. Optionally, the user
can request the lowest-energy solution. If no configurations meet
the criteria, the input parameters must be adjusted again.
Thereby, the algorithm back to the start of STEP 0 according to
Algorithm 1, and using an automatic or manual mechanism the
list of hyperparameters must be expanded or be selected in other
ranges.

3

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

The framework systematically searches for an optimal SNN
while ensuring minimal performance degradation. If a network
from STEP 2 is selected, it is guaranteed to outperform the ANN
in terms of energy efficiency and reliability while maintaining
accuracy.

By applying the order used in checking accuracy, reliability,
and energy consumption, many weak cases are eliminated in a
short period of time. According to the experiments performed,
the accuracy check of an SNN, depending on the selected
hyperparameters and with the topologies chosen in this study, is
usually under 3 seconds. However, a reliability test may take
several minutes to complete. In STEP 1, all cases with
unacceptable accuracy are eliminated, and neither reliability nor
energy efficiency tests are performed on them. Also, for SNNs,
the energy consumption estimation in this algorithm is
calculated simultaneously with their accuracy test.

III. EXPERIMENTAL RESULTS
This section presents the results obtained from the proposed

framework and its evaluated parameters. The evaluation
considers multiple network topologies, ranging from shallow to
deep architectures, as summarized in Table II. Fully connected
SNNs are often chosen for experiments because of their
simplicity and demonstrated effectiveness. Their ability to
leverage the inherent sparsity and event-driven processing of
spiking computation results in significant reductions in power
consumption and computational load [5]. This makes them
especially suitable for applications in edge scenarios such as
health monitoring [21]. Key hyperparameters such as time steps
and neuron threshold voltage, shown in Table III, are explored.
To ensure comprehensive evaluation, a combination of the
topologies in Table II and configurations in Table III is tested,
allowing for the identification of the most energy-efficient and
reliable SNN models.

The analysis is performed using two widely used
classification datasets, MNIST and Fashion-MNIST,
abbreviated as “M” and “F” in the tables, along with network
topologies and configurations. Two forms of reliability
assessment are conducted: model-wise and layer-wise. In the
model-wise method, FI is applied to the entire network
simultaneously, while in the layer-wise method, faults are
selectively introduced into specific layers to evaluate their
individual resilience.

TABLE II. DIFFERENT NETWORK TOPOLOGIES
USED IN THIS WORK

Name Number of Neurons in layers Number of Layers
TOP0 32-10 2
TOP1 64-32-10 3
TOP2 128-64-10 3
TOP3 128-64-64-32-10 5
TOP4 512-256-256-128-10 5

TABLE III. THE TOTAL SNN CONFIGS USED

Config Timesteps Threshold Voltage
C1 10 0.5
C2 10 1.5
C3 30 0.5
C4 30 1.5

As shown in Fig. 2, the first experiment compares a trained
and quantized ANN with four SNN variants that share the same
topology but differ in configuration. Initially, SNN models are
trained with predefined hyperparameters, followed by
quantization and comparison with their ANN counterparts. The
results indicate that SNN models achieved accuracy levels
comparable to their ANN counterparts.

Figure 2. Comparison of accuracy in different architectures

The next study examines the impact of injecting faults into
network parameters. For this purpose, four different topologies
with four distinct configurations are evaluated, with each graph
representing the results for a single BER. As shown in Fig. 3, the
experiment covers four BER ranges. The analysis follows a
model-wise approach, meaning faults are injected into all
hyperparameters of a given model. In each experiment, an ANN
is compared with four SNNs of the same topology but different
configurations. By analyzing Fig. 3a to 3d, it is evident that
networks with different hyperparameters exhibit varying levels
of reliability. This underscores the importance of identifying the
optimal configuration for an SNN with a given structure. Fig. 3d
shows the results of heavy FI as BER equals 0.1, the network
has started to lose its parameters, and fault resiliency is
unreasonable in this situation.

The layer-wise reliability analysis is presented in Fig. 4.
Using the proposed framework, a test was conducted across all
previously examined cases (various topologies and
configurations). After determining the most reliable
configuration for each topology, only the best-performing
configuration was included in this layer-wise study. This
analysis focuses on two topologies: a 3-layer and a 5-layer
network. Faults were applied to all layers, and the ANN results

4

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

(a) 3-Layer (b) 5-Layer

Figure 4. Layer-wise reliability analysis for two 3-Layer and 5-Layer network topologies at BER=0.01

were compared with their corresponding SNNs. In this
experiment, only the C2 configuration was analyzed at a BER of
0.01. The results show that SNN layers exhibit greater
robustness to faults than their ANN counterparts. For instance,
in Fig. 4b, the fourth layer (L4) of the TOP3 SNN achieves
96.54% reliability—1.84× higher than the equivalent ANN
topology, which has a reliability of 52.6%.

Accuracy, reliability, and energy consumption trade-offs
illustrated in Fig. 5. According to the values in Table I, the figure
shows the energy consumption in the two equivalent ANN and
SNN topologies. To better highlight differences in energy
consumption, two topologies—2-layer and 5-layer networks—
are examined, as detailed in Table II. The selected
configurations—C2 and C3 for TOP0 and TOP4 respectively—
represent the optimal SNN models identified by the proposed
framework. As observed, for both topologies and datasets, the
accuracy of SNN models remains comparable to their ANN

(a) BER = 0.0001 (b) BER = 0.001

(c) BER = 0.01 (d) BER = 0.1

Figure 3. Model-wise reliability analysis for some custom network topologies

5

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

counterparts, while their reliability surpasses that of equivalent
ANN models. The figure shows the energy

Figure 5. The comparison of accuracy, reliability, and energy for ANN and SNN topologies at BER=0.01

consumption difference between ANN and its equivalent
SNN network, especially in a relatively large network. The
energy consumption ratio of ANN to SNN in a 2-layer
feedforward network (TOP0) is 23.36× for MNIST and 11.05×
for Fashion-MNIST dataset. Also in a 5-layer feedforward
network (TOP4) is 7.82× for MNIST and 4.2× for Fashion-
MNIST dataset. The difference in energy consumption in two
SNNs with different datasets is related to the difference in the
spike rate of the encoded data of the two datasets, which
naturally changes the computational operations and energy
consumption.

Based on the data in Fig. 3c and TOP4, if a naïve conversion
from ANN to SNN is performed and the proposed framework
with three-lateral optimization is not used, the conversion result
may end up in one of the configurations such as C1 or C2, which,
as is clear from the results, although these configurations meet
the accuracy and energy conditions, they deteriorate the
reliability in the converted network up to 54.13%. In contrast,
the network introduced by the proposed framework, although it
meets the accuracy and energy conditions, has also improved its
reliability in C3 configuration up to 28.03%.

In some other cases such as TOP3, the proposed framework
gives a set of optimizes SNNs, based on Fig. 3c where SNNs
showed up to 1.92× and 1.84× better reliability compared to
ANNs and lower energy consumption reached up to 27.81× and
15.17× for the MNIST and Fashion-MNIST dataset when using
the C2 configuration. Selecting candidate networks without
considering reliability may yield better energy efficiency but
often lacks fault resilience. Our framework addresses this by
balancing all aspects to achieve an optimal trade-off, as reflected
in the reported results. Expanding the SNN configuration space
could further improve outcomes by offering more design
choices.

IV. CONCLUSION

This paper presented a novel framework for optimizing the
conversion of ANNs to SNNs while balancing accuracy,
reliability, and energy efficiency. The proposed method
systematically explores SNN hyperparameters to identify
optimal configurations that maintain accuracy while
significantly improving fault tolerance and reducing energy
consumption.

Experimental evaluations on MNIST and Fashion-MNIST
datasets demonstrated that the optimized SNN models achieved
accuracy levels comparable to their ANN counterparts.
Moreover, the proposed framework enhanced the reliability of
SNNs, as reflected in FI studies, where SNNs showed up to
1.92× and 1.84× lower accuracy degradation under injected
faults compared to ANNs in some cases. Additionally, layer-
wise reliability assessments confirmed that certain SNN
configurations exhibited significantly higher robustness in
individual layers than their ANN equivalents.

In terms of energy efficiency, the results showed that SNNs
outperformed ANNs by substantial margins. The energy
consumption ratio between ANN and SNN reached 27.81× for
the MNIST dataset and 15.17× for the Fashion-MNIST dataset
in some cases. These findings validate the effectiveness of the
proposed approach in achieving energy-efficient and fault-
tolerant SNN architectures, making them ideal candidates for
edge computing and safety-critical applications.

ACKNOWLEDGMENT
This work was supported in part by the Estonian Research

Council grant PUT PRG1467 "CRASHLESS“, EU Grant
Project 101160182 “TAICHIP“ and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID "458578717".

REFERENCES

6

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

[1] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[2] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, 2019.

[3] J. Ding, Z. Pan, Y. Liu, Z. Yu, and T. Huang, “Robust stable spiking
neural networks,” arXiv preprint arXiv:2405.20694, 2024.

[4] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G.
S. Rose, and J. S. Plank, “A survey of neuromorphic computing and neural
networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[5] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons:
Opportunities and challenges,” Frontiers in neuroscience, vol. 12, p.
409662, 2018.

[6] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10,
p.508, 2016.

[7] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, pp. 54–66, 2015.

[8] C. Stöckl and W. Maass, “Optimized spiking neurons can classify images
with high accuracy through temporal coding and synaptic weights trained
with backpropagation,” Neural Networks, vol. 143, pp. 100–111, 2021.

[9] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Reliability analysis of a spiking
neural network hardware accelerator,” in 2022 Design, Automation &Test
in Europe Conference & Exhibition (DATE), 2022, pp. 370–375.

[10] R. V. W. Putra, M. A. Hanif, and M. Shafique, “Respawn: Energy-
efficient fault-tolerance for spiking neural networks considering
unreliable memories,” in 2021 IEEE/ACM International Conference
OnComputer Aided Design (ICCAD). IEEE, 2021, pp. 1–9.

[11] R. V. Putra, M. A. Hanif, and M. Shafique, “Rescuesnn: enabling reliable
executions on spiking neural network accelerators under permanent
faults,” Frontiers in Neuroscience, vol. 17, p. 1159440, 2023.

[12] A. B. Göğebakan, E. Magliano, A. Carpegna, A. Ruospo, A. Savino, and
S. Di Carlo, “Spikingjet: Enhancing fault injection for fully and
convolutional spiking neural networks,” in 2024 IEEE 30th International

Symposium on On-Line Testing and Robust System Design (IOLTS).
IEEE, 2024, pp. 1–7.

[13] T. Spyrou, S. Hamdioui, and H.-G. Stratigopoulos, “Spikefi: A fault
injection framework for spiking neural networks,” arXiv preprint
arXiv:2412.06795, 2024.

[14] B. Na, J. Mok, S. Park, D. Lee, H. Choe, and S. Yoon, “Autosnn:Towards
energy-efficient spiking neural networks,” in International Conference on
Machine Learning. PMLR, 2022, pp. 16 253–16 269.

[15] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi, M.
Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural
networks using lessons from deep learning,” Proceedings of the IEEE,
vol. 111, no. 9, pp. 1016–1054, 2023.

[16] S. Venkatesh, R. Marinescu, and J. K. Eshraghian, “Squat: Stateful
quantization-aware training in recurrent spiking neural networks,” in 2024
Neuro Inspired Computational Elements Conference (NICE). IEEE,
2024, pp. 1–10.

[17] S. Barchid, J. Mennesson, J. Eshraghian, C. Djéraba, and M. Bennamoun,
“Spiking neural networks for frame-based and event-based single object
localization,” Neurocomputing, vol. 559, p. 126805, 2023.

[18] T. Zhang, S. Xiang, W. Liu, Y. Han, X. Guo, and Y. Hao, “Hybrid spiking
fully convolutional neural network for semantic segmentation,”
Electronics, vol. 12, no. 17, p. 3565, 2023.

[19] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE international solid-state circuits conference
digest of technical papers (ISSCC). IEEE, 2014, pp. 10–14.

[20] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment
methods for deep neural networks,” ACM Computing Surveys, vol. 56, no.
6, pp. 1–39, 2024.

[21] L. Pang, J. Liu, J. Harkin, G. Martin, M. McElholm, A. Javed, and L.
McDaid, “Case study—spiking neural network hardware system for
structural health monitoring,” Sensors, vol. 20, no. 18, p. 5126, 2020.

7

