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Abstract—Deep Neural Networks (DNNs) have experienced 
significant growth over the years, accompanied by a 
corresponding rise in energy consumption due to their escalating 
demand for computational resources. To mitigate the 
environmental impact of AI, and address growing concerns over 
data privacy, a growing trend is to process data locally at the edge 
rather than relying on large-scale data centers. FPGA-based 
systems are particularly suited for this kind of applications, with 
their low power consumption to high parallel computation ratio. 
The main drawback of commodity FPGAs is their limited 
hardware resources, constraining the size of the DNNs which can 
run efficiently on such targets. This paper presents a methodology 
for distributed DNNs on multiple commodity FPGAs to support 
models that are usually only suited for larger FPGAs. We are able 
to support the inference for a MobileNetV1 on six Zedboards with 
a peak throughput of 118.3 inferences per second for an estimated 
power consumption of 16.176 Watts. 
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I.  INTRODUCTION

The inference of deep neural networks (DNNs) and 
particularly convolutional neural networks (CNNs) at the edge 
(through edge and fog nodes) has gained in popularity for its 
energy efficiency, data locality, and data privacy – all growing 
concerns [1]. This computation can be done by a variety of 
hardware, e.g.: smartphones [2], [3], microcontrollers [4] and 
FPGAs, leading to the rise Tiny Machine Learning (TinyML) 
[5], i.e., the deployment of machine learning models on ultra 
low-power, resource-constrained devices. Microcontrollers are 
a possible target, but while they fulfill the need for very low-
power consumption, they lack the efficient parallel computation 
capability of FPGAs, while suffering the same drawbacks of 
having too few resources to support larger models. Performing 
the inference of large scale DNNs and CNNs require a massive 
amount of floating-point operations.  

As data privacy is an important factor, implementing a 
system closer to the data source may help avoid resorting to 
cloud-based solutions. Yet, high-end FPGA are expensive and 
have a high absolute power consumption (can be over hundreds 
of watts). In the context of smart buildings, where heterogeneous 
low-power devices are abundant, commodity FPGAs offer a 
very promising trade-off: they yield a low power footprint while 
being able to take advantage of parallelism in a pre-trained 
neural network model, thus being able to deliver great 
performances in the context of edge computing. However, 

commodity FPGAs offer limited hardware resources, making 
the implementation of DNNs challenging for models larger than 
a few binarized layers.  

Multiple techniques have been developed in recent years to 
provide a flexible way to implement DNNs on FPGA, such as 
FINN [6], from weight compression using quantization, up to 
using only one or two bits for weights and bias [7]. Operations 
conversion has also been developed to leverage this level of 
compression [8], [9]. Few works have tackled distributed 
inference on FPGAs to support larger networks or to speed up 
computation. Alonso et al. [10] focused on resource partition and 
optimization for splitting a MobileNetV1 and a Resnet50 across 
two high-end FPGA boards. It is based on direct FPGA to FPGA 
communication with 100 Gbps Ethernet links, using VNx IP 
cores. While this setup yields very high throughput, it is not 
suited for low-power IoT devices. Some works have explored 
such hardware. Notably, Fiscaletti et al. [11] used FINN to split 
a network of binarized CNN on three Pynq boards, but their 
model splitting was done manually. Jiang et al. [12] have tackled 
the implementation of a framework for DNN distributed 
inference on multiple FPGAs. They use it on two boards to speed 
up DNN inference, but it does not implement the hardware 
optimizations used by FINN related to quantized neural 
networks.   

In this paper, we address the problem of how to fit DNNs 
onto several embedded devices on the same network while 
leveraging FPGAs suitability for hardware acceleration and their 
low power consumption. In addition, we are interested in the 
possibility to substitute a dedicated high-end FPGA for a 
multiple of networked low-power commodity FPGAs. We 
propose a way to distribute DNN models inference over several 
FPGAs when a single board is not sufficient to hold the whole 
DNN. Communications are handled by the CPU, while the 
actual inference is done by the FPGA.  

II. METHODOLOGY

Our approach enables the deployment of DNNs, typically 
suited for high-end FPGAs (e.g., Alveo U250) due to their size, 
onto commodity FPGAs by partitioning the model into multiple 
sub-models. These sub-models are distributed across a network 
of SoC-FPGAs.  

Our methodology provides a flexible and scalable approach 
to FPGA-based inference, enabling larger models to run on low-
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cost hardware. While it does not yet match the performance of 
high-end FPGAs, it represents a step toward more accessible and 
efficient distributed inference solutions. Our work uses FINN as 
a basis for hardware implementation to run inferences. FINN can 
convert a DNN model to target an FPGA. It will take an ONNX 
model representing the DNN architecture and its weights, 
convert it to multiple intermediate representations and output a 
bitstream file, including the model and custom Direct Memory 
Access (DMA) engines. However, the intended use is to take a 
complete model to produce a configuration that will fit in a 
single FPGA. Our goal is to partition the model into smaller sub-
models that can each fit into a commodity FPGA and 
communicate with each other to complete the overall model. To 
achieve this, we split the ONNX model representing the DNN, 
use FINN to generate a bitstream from each sub-model, use 
those bitstreams to configure each board, and establish 
communication with every board to run inferences.  

Network Splitting Strategy 
To allow medium size DNN models to fit on low-power 

FPGAs, it is necessary to split them to fit resource constraints. 
FINN [9] is used to automatically generate a preprocessed model 
and a per-layer resource estimation. The resulting split is based 
on those models. The objective of our automated splitter is to 
maximize resource occupancy to reduce the number of 
bitstreams. Fig. 1 provides an overview of our splitting process. 
Currently, only the network splitting is automatic. FINN’s 
preliminary and complementary steps are still launched 
manually.  

To find a suitable cut, the ONNX graph is traversed, starting 
from the first layer. For each node, the required resources 
estimate (i.e., LUTs, BRAMs, DSPs) are added, until they 
exceed available resources for a given board. For now, the only 
objective of our automated splitter is to maximize resource 
occupancy to reduce the number of bitstream files (in the future, 
other metrics and objectives may be targeted, such as the amount 
of data transmitted between layers to reduce network traffic). 
The original ONNX model is then split into several ONNX 
submodels. The resulting models are then fed to FINN to 
generate FPGA design as well as a bitstream for each sub-model. 
We modified FINN to support the Zedboard for bitstream 
generation (since we do not use the Pynq OS, we have no need 
for the Pynq overlay). For now we target identical boards, but in 
the future we will have different types of SoC-FPGA systems, 
and some submodel may only fit on specific boards, or 

alternatively, a given sub-model may be allocated differently 
resource-wise (to favor resource utilization, limit power 
consumption, etc.) depending on the target hardware for a given 
submodel. A more complex automatic solver will be required 
then.  

III. EXPERIMENTAL RESULTS

A. Experimental Testbed
The overall system is architected as a pipeline, with each

SoC-FPGA board running its own client/server software. The 
client part sends data to the next board while the server part waits 
and processes data from the previous board (see Fig. 2). 
Submodels are generated beforehand, as explained in Section II. 
Each board embeds all submodels (including Initial weights), 
stored locally as bitstreams. A client can distribute a DNN on-
the-fly by ordering a selected board to reconfigure its 
Programmable Logic (PL) into the desired submodel.  

Each board can be queried independently by the orchestrator. 
Communications are thus handled by a TCP server written in 
C++, and running on the Processing System (PS) side, as shown 
in Fig. 2. The server directly interacts with the PL part to trigger 
network inferences through the CPU.  

Fig. 2: Example of a full communication for a DNN divided into six bitstreams, 
from an image input to the model classification (Sub model 6 output), from 
right to left in a sequential manner. 

Fig. 1: DNN splitting process. Complete pipeline from quantified DNN to FPGA implementation. 
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DNNs are fully executed on the FPGA fabric, with no 
contribution from the CPU: the ARM processor is only used for 
data transfers: network communications, input data buffering, 
and moving data to and from the PL. It currently runs on two 
threads, one listening for incoming data and storing them in a 
queue, while the second pops data items from the queue, passes 
them to the PL and sends the output to the next board. For this 
study, our system is comprised of 6 Zedboards (using Zynq 
XC7Z020) connected to a 1 Gbps Ethernet switch. The Zynq is 
a heterogeneous system with a dual-core processor (ARM 
Cortex-A9) coupled with an FPGA (XC7Z020-CLG484-1). 
Each board is set up with an identical version of Petalinux 
v2024.1. A laptop acts as an orchestrator for initial configuration 
and as a client sending data to the first board and receiving model 
inference output from the last (see Fig. 2). Time measurement 
has been taken client-side to account for all network transit. 
Power estimations are given by Vivado after the bitstream 
synthesis stage. In our case, we take the sum of each PS and PL 
estimates for each board.  

B. MobileNetV1
MobileNetV1 [13] is a CNN with 3.22 million parameters.

The DNN is quantized to 4 bits for weights and activations. We 
are using the version made available by Xilinx on their FINN 
example git repository. It has been trained on the ImageNet 
dataset [14] using input images with a resolution of 224×224×3 
pixels. Using our splitting automation script, it resulted in 6 
bitstreams which can each fit in a single XC7Z020. In FINN, the 
folding configuration is the per-layer selection of processing-
element (PE) and SIMD-lane counts that affect the level of 
parallelization of each layer, trading resource use against 
throughput. Default folding configuration was used, except for 
the first and last layer of every submodel where, respectively, 
SIMD and PE were set to two. This is due to the 4 bits 
quantization of the MobileNetV1. This allows to pack multiple 
data words into a single byte at DMA level to avoid having half 
empty bytes at the sub-model output. This halves the network 
communication overhead. The number of layers in those six 
submodels is very disparate (31 layers for the first submodel, 
only 5 for the last submodel). This is due to the high variability 
in resource consumption between each layer, as shown in Fig. 3. 

Fig. 3: Resources per layer and layers per sub-model (separated by red dotted line), cumulative resources per sub-model in semi-transparency, layers not 
requiring DSP nor BRAM are not plotted (account for 57 layers out of 86 — 66.3% of the total). A small number of LUTs is used by each omitted layer in this 
case. The vertical limit represent the limit for each resource type. In transparency, the cumulative resources used by each layer on a submodel. 

TABLE 1 COMPARISON TO EXISTING WORKS ON TINY ML ACCELERATION 
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The disparity is also present in the type of resources used: For 
this model, using the default folding configuration, targeting a 
single Zedboard, the total estimated resources yield 126% of its 
LUTs, 340% of its DSPs and 378% of its BRAMs.  

Fig. 4 breaks down the computation and network cost in 
time. There we can observe that transfer times vary widely. It is 
due to the difference in input/output sizes of the submodels (up 
to 100 kb per inference between submodel 1 and 2). Submodels 
inferences time also widely vary from 6754 μs for submodel 1, 
to 3422 μs for submodel 6. This could be leveraged with 
submodels duplication and parallel processing using more 
boards.   

Using our pipelined architecture we are able to achieve 118.3 
peak FPS for a batch size of 1 using our neural network splitting 
technique. Hence, we achieve a throughput sufficient for real-
time video classification while maintaining reasonable power 
consumption.  

IV. CONCLUSION

In this paper, we have presented a methodology to partition 
neural networks across several commodity SoC-FPGA systems. 
This solution supports an arbitrary number of bitstreams and 
boards. Our first results are promising with a peak throughput of 
118.3 inferences per second for MobileNetV1. We stand at a 
compromise between throughput and power requirements. 

It is difficult to compare pure performances between works 
since most papers use different hardware, slightly different 
models, may use an object-detection head (SSD) in conjunction, 
and/or an altogether reworked MobileNet architecture. Our 
solution is suited to local processing of data with its fairly small 
power consumption, with a throughput allowing for real-time 
image processing. We believe it is suitable for environments 
seeking data privacy and that do not want to rely on cloud 
services. 

Future work includes partitioning larger neural networks to 
map onto FPGA chips, forming a heterogeneous system of 
FPGAs to accommodate particularly large layers. This will 
imply exploring the various tradeoffs to partition such networks, 
e.g., maximal resource usage per board, the type of resources
used (e.g., BRAM vs. LUT-RAM, etc.), as well as automatic
generation of folding configurations.
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