
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Towards a Distributed Quantized Machine Learning
Inference with Commodity SoC-FPGAs Using FINN

Mathieu Hannoun1,2
¹Laboratoire ETIS, UMR8051, CY Cergy Paris Universités,

ENSEA, CNRS, F-95000 Cergy, France
²Madicob, 14 Rue du Petit Albi, 95520 Osny, France

Stéphane Zuckerman, Olivier Romain1
¹Laboratoire ETIS, UMR8051, CY Cergy Paris Universités,

ENSEA, CNRS, F-95000 Cergy, France

Abstract—Deep Neural Networks (DNNs) have experienced
significant growth over the years, accompanied by a
corresponding rise in energy consumption due to their escalating
demand for computational resources. To mitigate the
environmental impact of AI, and address growing concerns over
data privacy, a growing trend is to process data locally at the edge
rather than relying on large-scale data centers. FPGA-based
systems are particularly suited for this kind of applications, with
their low power consumption to high parallel computation ratio.
The main drawback of commodity FPGAs is their limited
hardware resources, constraining the size of the DNNs which can
run efficiently on such targets. This paper presents a methodology
for distributed DNNs on multiple commodity FPGAs to support
models that are usually only suited for larger FPGAs. We are able
to support the inference for a MobileNetV1 on six Zedboards with
a peak throughput of 118.3 inferences per second for an estimated
power consumption of 16.176 Watts.

Keywords-Machine Learning, Deep Learning, CNN, FPGA, Edge
Computing

I. INTRODUCTION

The inference of deep neural networks (DNNs) and
particularly convolutional neural networks (CNNs) at the edge
(through edge and fog nodes) has gained in popularity for its
energy efficiency, data locality, and data privacy – all growing
concerns [1]. This computation can be done by a variety of
hardware, e.g.: smartphones [2], [3], microcontrollers [4] and
FPGAs, leading to the rise Tiny Machine Learning (TinyML)
[5], i.e., the deployment of machine learning models on ultra
low-power, resource-constrained devices. Microcontrollers are
a possible target, but while they fulfill the need for very low-
power consumption, they lack the efficient parallel computation
capability of FPGAs, while suffering the same drawbacks of
having too few resources to support larger models. Performing
the inference of large scale DNNs and CNNs require a massive
amount of floating-point operations.

As data privacy is an important factor, implementing a
system closer to the data source may help avoid resorting to
cloud-based solutions. Yet, high-end FPGA are expensive and
have a high absolute power consumption (can be over hundreds
of watts). In the context of smart buildings, where heterogeneous
low-power devices are abundant, commodity FPGAs offer a
very promising trade-off: they yield a low power footprint while
being able to take advantage of parallelism in a pre-trained
neural network model, thus being able to deliver great
performances in the context of edge computing. However,

commodity FPGAs offer limited hardware resources, making
the implementation of DNNs challenging for models larger than
a few binarized layers.

Multiple techniques have been developed in recent years to
provide a flexible way to implement DNNs on FPGA, such as
FINN [6], from weight compression using quantization, up to
using only one or two bits for weights and bias [7]. Operations
conversion has also been developed to leverage this level of
compression [8], [9]. Few works have tackled distributed
inference on FPGAs to support larger networks or to speed up
computation. Alonso et al. [10] focused on resource partition and
optimization for splitting a MobileNetV1 and a Resnet50 across
two high-end FPGA boards. It is based on direct FPGA to FPGA
communication with 100 Gbps Ethernet links, using VNx IP
cores. While this setup yields very high throughput, it is not
suited for low-power IoT devices. Some works have explored
such hardware. Notably, Fiscaletti et al. [11] used FINN to split
a network of binarized CNN on three Pynq boards, but their
model splitting was done manually. Jiang et al. [12] have tackled
the implementation of a framework for DNN distributed
inference on multiple FPGAs. They use it on two boards to speed
up DNN inference, but it does not implement the hardware
optimizations used by FINN related to quantized neural
networks.

In this paper, we address the problem of how to fit DNNs
onto several embedded devices on the same network while
leveraging FPGAs suitability for hardware acceleration and their
low power consumption. In addition, we are interested in the
possibility to substitute a dedicated high-end FPGA for a
multiple of networked low-power commodity FPGAs. We
propose a way to distribute DNN models inference over several
FPGAs when a single board is not sufficient to hold the whole
DNN. Communications are handled by the CPU, while the
actual inference is done by the FPGA.

II. METHODOLOGY

Our approach enables the deployment of DNNs, typically
suited for high-end FPGAs (e.g., Alveo U250) due to their size,
onto commodity FPGAs by partitioning the model into multiple
sub-models. These sub-models are distributed across a network
of SoC-FPGAs.

Our methodology provides a flexible and scalable approach
to FPGA-based inference, enabling larger models to run on low-

Manuscript received April 30, 2025; revised July 24, 2025; accepted
July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i1.76

60

https://doi.org/10.64552/wipiec.v11i1.76

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

cost hardware. While it does not yet match the performance of
high-end FPGAs, it represents a step toward more accessible and
efficient distributed inference solutions. Our work uses FINN as
a basis for hardware implementation to run inferences. FINN can
convert a DNN model to target an FPGA. It will take an ONNX
model representing the DNN architecture and its weights,
convert it to multiple intermediate representations and output a
bitstream file, including the model and custom Direct Memory
Access (DMA) engines. However, the intended use is to take a
complete model to produce a configuration that will fit in a
single FPGA. Our goal is to partition the model into smaller sub-
models that can each fit into a commodity FPGA and
communicate with each other to complete the overall model. To
achieve this, we split the ONNX model representing the DNN,
use FINN to generate a bitstream from each sub-model, use
those bitstreams to configure each board, and establish
communication with every board to run inferences.

Network Splitting Strategy
To allow medium size DNN models to fit on low-power

FPGAs, it is necessary to split them to fit resource constraints.
FINN [9] is used to automatically generate a preprocessed model
and a per-layer resource estimation. The resulting split is based
on those models. The objective of our automated splitter is to
maximize resource occupancy to reduce the number of
bitstreams. Fig. 1 provides an overview of our splitting process.
Currently, only the network splitting is automatic. FINN’s
preliminary and complementary steps are still launched
manually.

To find a suitable cut, the ONNX graph is traversed, starting
from the first layer. For each node, the required resources
estimate (i.e., LUTs, BRAMs, DSPs) are added, until they
exceed available resources for a given board. For now, the only
objective of our automated splitter is to maximize resource
occupancy to reduce the number of bitstream files (in the future,
other metrics and objectives may be targeted, such as the amount
of data transmitted between layers to reduce network traffic).
The original ONNX model is then split into several ONNX
submodels. The resulting models are then fed to FINN to
generate FPGA design as well as a bitstream for each sub-model.
We modified FINN to support the Zedboard for bitstream
generation (since we do not use the Pynq OS, we have no need
for the Pynq overlay). For now we target identical boards, but in
the future we will have different types of SoC-FPGA systems,
and some submodel may only fit on specific boards, or

alternatively, a given sub-model may be allocated differently
resource-wise (to favor resource utilization, limit power
consumption, etc.) depending on the target hardware for a given
submodel. A more complex automatic solver will be required
then.

III. EXPERIMENTAL RESULTS

A. Experimental Testbed
The overall system is architected as a pipeline, with each

SoC-FPGA board running its own client/server software. The
client part sends data to the next board while the server part waits
and processes data from the previous board (see Fig. 2).
Submodels are generated beforehand, as explained in Section II.
Each board embeds all submodels (including Initial weights),
stored locally as bitstreams. A client can distribute a DNN on-
the-fly by ordering a selected board to reconfigure its
Programmable Logic (PL) into the desired submodel.

Each board can be queried independently by the orchestrator.
Communications are thus handled by a TCP server written in
C++, and running on the Processing System (PS) side, as shown
in Fig. 2. The server directly interacts with the PL part to trigger
network inferences through the CPU.

Fig. 2: Example of a full communication for a DNN divided into six bitstreams,
from an image input to the model classification (Sub model 6 output), from
right to left in a sequential manner.

Fig. 1: DNN splitting process. Complete pipeline from quantified DNN to FPGA implementation.

61

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

DNNs are fully executed on the FPGA fabric, with no
contribution from the CPU: the ARM processor is only used for
data transfers: network communications, input data buffering,
and moving data to and from the PL. It currently runs on two
threads, one listening for incoming data and storing them in a
queue, while the second pops data items from the queue, passes
them to the PL and sends the output to the next board. For this
study, our system is comprised of 6 Zedboards (using Zynq
XC7Z020) connected to a 1 Gbps Ethernet switch. The Zynq is
a heterogeneous system with a dual-core processor (ARM
Cortex-A9) coupled with an FPGA (XC7Z020-CLG484-1).
Each board is set up with an identical version of Petalinux
v2024.1. A laptop acts as an orchestrator for initial configuration
and as a client sending data to the first board and receiving model
inference output from the last (see Fig. 2). Time measurement
has been taken client-side to account for all network transit.
Power estimations are given by Vivado after the bitstream
synthesis stage. In our case, we take the sum of each PS and PL
estimates for each board.

B. MobileNetV1
MobileNetV1 [13] is a CNN with 3.22 million parameters.

The DNN is quantized to 4 bits for weights and activations. We
are using the version made available by Xilinx on their FINN
example git repository. It has been trained on the ImageNet
dataset [14] using input images with a resolution of 224×224×3
pixels. Using our splitting automation script, it resulted in 6
bitstreams which can each fit in a single XC7Z020. In FINN, the
folding configuration is the per-layer selection of processing-
element (PE) and SIMD-lane counts that affect the level of
parallelization of each layer, trading resource use against
throughput. Default folding configuration was used, except for
the first and last layer of every submodel where, respectively,
SIMD and PE were set to two. This is due to the 4 bits
quantization of the MobileNetV1. This allows to pack multiple
data words into a single byte at DMA level to avoid having half
empty bytes at the sub-model output. This halves the network
communication overhead. The number of layers in those six
submodels is very disparate (31 layers for the first submodel,
only 5 for the last submodel). This is due to the high variability
in resource consumption between each layer, as shown in Fig. 3.

Fig. 3: Resources per layer and layers per sub-model (separated by red dotted line), cumulative resources per sub-model in semi-transparency, layers not
requiring DSP nor BRAM are not plotted (account for 57 layers out of 86 — 66.3% of the total). A small number of LUTs is used by each omitted layer in this
case. The vertical limit represent the limit for each resource type. In transparency, the cumulative resources used by each layer on a submodel.

TABLE 1 COMPARISON TO EXISTING WORKS ON TINY ML ACCELERATION

62

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

The disparity is also present in the type of resources used: For
this model, using the default folding configuration, targeting a
single Zedboard, the total estimated resources yield 126% of its
LUTs, 340% of its DSPs and 378% of its BRAMs.

Fig. 4 breaks down the computation and network cost in
time. There we can observe that transfer times vary widely. It is
due to the difference in input/output sizes of the submodels (up
to 100 kb per inference between submodel 1 and 2). Submodels
inferences time also widely vary from 6754 μs for submodel 1,
to 3422 μs for submodel 6. This could be leveraged with
submodels duplication and parallel processing using more
boards.

Using our pipelined architecture we are able to achieve 118.3
peak FPS for a batch size of 1 using our neural network splitting
technique. Hence, we achieve a throughput sufficient for real-
time video classification while maintaining reasonable power
consumption.

IV. CONCLUSION

In this paper, we have presented a methodology to partition
neural networks across several commodity SoC-FPGA systems.
This solution supports an arbitrary number of bitstreams and
boards. Our first results are promising with a peak throughput of
118.3 inferences per second for MobileNetV1. We stand at a
compromise between throughput and power requirements.

It is difficult to compare pure performances between works
since most papers use different hardware, slightly different
models, may use an object-detection head (SSD) in conjunction,
and/or an altogether reworked MobileNet architecture. Our
solution is suited to local processing of data with its fairly small
power consumption, with a throughput allowing for real-time
image processing. We believe it is suitable for environments
seeking data privacy and that do not want to rely on cloud
services.

Future work includes partitioning larger neural networks to
map onto FPGA chips, forming a heterogeneous system of
FPGAs to accommodate particularly large layers. This will
imply exploring the various tradeoffs to partition such networks,
e.g., maximal resource usage per board, the type of resources
used (e.g., BRAM vs. LUT-RAM, etc.), as well as automatic
generation of folding configurations.

REFERENCES
[1] H. F. Atlam, R. J. Walters, et al., Fog Computing and the Internet of

Things: A Review.Big Data and Cognitive Computing. vol. 2, p. 10,
June 2018. Number: 2 Publisher: Multidisciplinary Digital Publishing
Institute.

[2] H. Li, G. Shou, Y. Hu, et al., “Mobile Edge Computing: Progress and
Challenges,” in 2016 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud), pp. 83–84,
Mar. 2016.

[3] T. Zebin, P. J. Scully, et al., “Design and Implementation of a
Convolutional Neural Network on an Edge Computing Smartphone for
Human Activity Recognition,” IEEE Access, vol. 7, pp. 133509–
133520, 2019.

[4] M. Merenda, C. Porcaro, et al., “Edge Machine Learning for AI-Enabled
IoT Devices: A Review,” Sensors, vol. 20, p. 2533, Jan. 2020. Number:
9 Publisher: Multidisciplinary Digital Publishing Institute.

[5] N. N. Alajlan and D. M. Ibrahim, “TinyML: Enabling of Inference Deep
Learning Models on Ultra-Low-Power IoT Edge Devices for AI
Applications,” Micromachines, vol. 13, p. 851, June 2022. Number: 6
Publisher: Multidisciplinary Digital Publishing Institute.

[6] Y. Umuroglu, N. J. Fraser, et al., “FINN: A Framework for Fast,
Scalable Binarized Neural Network Inference,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’17, (New York, NY, USA), p. 65–74, Association
for Computing Machinery, 2017.

[7] M. Courbariaux, I. Hubara, et al., “Binarized Neural Networks: Training
Deep Neural Networks with Weights and Activations Constrained to +1
or -1,” Mar. 2016. arXiv:1602.02830.

[8] M. Rastegari, V. Ordonez, et al., “XNOR-Net: ImageNet Classification
Using Binary Convolutional Neural Networks,” in Computer Vision –
ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.),
(Cham), pp. 525–542, Springer International Publishing, 2016.

[9] M. Blott, T. B. Preußer, et al., “FINN-R: An end-to-end deep-learning
framework for fast exploration of quantized neural networks,”ACM
Transactions on Reconfigurable Technology and Systems (TRETS),vol.
11, no. 3, pp. 1–23, 2018.

[10] T. Alonso, L. Petrica, et al., “Elastic-df: Scaling performance of dnn
inference in fpga clouds through automatic partitioning,” ACM Trans.
Reconfigurable Technol. Syst., vol. 15, Dec. 2021.

[11] G. Fiscaletti, M. Speziali, et al., “BNNsplit: Binarized neural networks
for embedded distributed FPGA-based computing systems,” in 2020
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 975–978, 2020.

[12] W. Jiang, E. H.-M. Sha, et al., “Achieving Super-Linear Speedup across
Multi-FPGA for Real-Time DNN Inference,” ACM Trans. Embed.
Comput. Syst., vol. 18, pp. 67:167:23, Oct. 2019.

[13] A. G. Howard, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[14] J. Deng, W. Dong, et al., “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255, Ieee, 2009.

[15] A. Sharma, V. Singh, et al., “Implementation of CNN on Zynq based
FPGA for Real-time Object Detection,” IEEE Internet of Things Journal,
pp. 1–7, July 2019.

Fig. 4: Average time per task for one inference for each board,
waiting/receiving new data, FPGA inference and sending data. In blue, waiting
for new data from previous board/client, in orange, data transfer from PS to PL
and submodel inference on the FPGA fabric, in green network transfer from the
board to the next board/client

63

