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Abstract—While many companies aim to use Machine Learn- 
ing (ML) models, transitioning to deployment and practical 
application of such models can be very time-consuming and 
technically challenging. To address this, MLOps (ML Operations) 
offers processes, tools, practices, and patterns to bring ML 
models into operation. A large number of tools and platforms 
have been created to support developers in creating practical 
solutions. However, specific needs vary strongly in a situation- 
dependent manner, and a good overview of their characteristics 
is missing, making the architect’s task very challenging. 
We conducted a systematic literature review (SLR) of MLOps 
platforms, describing their qualities, features, tactics, and pat- 
terns. In this paper, we want to map the design space of MLOps 
platforms. We are guided by the Attribute-Driven Design (ADD) 
methodology. In this way, we want to provide software architects 
with a tool to support their work in the platform area. 
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I.  INTRODUCTION (HEADING 1)
     While machine learning (ML) becomes increasingly impor- 
tant to company success, the continuous transition from model 
development to deployment in the field becomes increasingly 
important. Companies may take a month or even more to 
deploy an ML model. One reason is that data scientists often 
lack knowledge of Software Engineering (SE) and computer 
science in general. While they are able to solve business prob- 
lems with analytics and ML algorithms, they often struggle 
to deploy these algorithms into software systems in the real 
world. MLOps engineers fill this gap with additional knowl- 
edge in software engineering and automation [1]. On the other 
hand, SE processes have to be adapted to ML lifecycles [2] to 
work properly. ML brings in novel characteristics into existing 
SE methods: It requires trained models, is often unpredictable, 
and copes with constantly changing data. 
     MLOps provides processes, tools, practices, and patterns 
to close this gap. It aims at increasing quality attributes 
like correctness or reliability [3]. MLOps relies on DevOps 
principles, an attempt to automate the deployment processes 
of new software versions in software engineering and extents 
this by integrating ML relevant adaptations of the processes. 
MLOps provides best practices and guiding principles around 
ML, including collaborative work, reproducibility, continuous 

delivery, testing, and monitoring [4]. It aims to increase qual- 
ity, simplify the management process, and automate the de- 
ployment process of bringing ML models into production [5]. 
Digital platforms can be defined as products, services, 
or technologies that serve as a basis for a large number 
of companies and offer complementary products, services 
products, services, and technologies [6]. MLOps platforms are 
platforms that manage ML pipelines [7] and try to satisfy the 
abovementioned gaps and capabilities. Since most platforms 
have many overall features in common, they are mainly 
different in their particular application [4]. 
This paper discusses the design space of such MLOps 
platforms from a technical software engineering perspective. 
It categorizes and provides an overview as decision support 
for platform developers and software architects who choose 
platforms as an integration component of more extensive appli- 
cations. Initially, 70 MLOps platforms were compared based 
on a search on Google and Google Scholar to gain a general 
understanding and define terms. Based on that knowledge, an 
SLR was conducted as described in Section III. The results 
of our analysis led to a thorough description of characteristics 
of functions relevant to MLOps as well as example tools that 
implement them. Together with descriptions of relevant tactics 
this provides the core of our analysis of the design space of 
MLOps platforms as given in Section IV. In Section V, we 
particularly describe some major platforms, while Section VI 
provides an analysis and Section VII concludes. 

A. Background
Traditional systems are static and often meet a company’s

needs in terms of speed, reliability, and the ability to predict 
its outcome [3]. ML models, in contrast, are different: They 
have inferences whose function cannot always be verified. 
Sometimes, their behavior is neither predictable nor fully 
repeatable. Data, code, and models are cross-dependent, and 
data, pre-processing, and training are interrelated in very com- 
plex ways. In production, input changes may cause inadvertent 
behavior. Changes in data or parameters cause changes in the 
inference [8], so focusing on mitigation strategies is especially 
important. 
MLOps as a collection of techniques, tools, practices, or 
processes for ML deployment in production [9], [10], [11]. 
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Figure 1: ML life-cycle adapted from [17].

aims to increase the level of automation [12], [13], [14]. A
(1) business problem must be solved. Initially, the problem
has to be fully understood. Further, the problem should be
specified. Data should be acquired or made available for
further steps [15]. For this, raw data must be processed
to extract information, remove erroneous data, and bring
it to a reasonable shape [16]. Then, the data needs to be
(2) explored [15]. This involves finding correlations in the
data by data scientists in collaboration with business domain
experts to find technical challenges and first correlations in the
data. Then, a fitting algorithm to the problem is (3) selected.
(4) Feature selection means checking for similarities and
impact on the prediction goals and eventually transforming
raw data into other representations. A model is (5) built using
the selected algorithm with appropriate features to use the
correlation or patterns to predict. This model is (6) evaluated
by checking how well the model performs using data that
has not been used for training. The results are (7) presented
and should be compared to other methods. This includes an
analysis of the advantages: does its usage exceed the benefits
or the cost? Then follows the (8) design of a pipeline that
suits the needs of prior steps. After the model is (9) de- 
ployed as a module with interfaces (serving the model), it is
(10) monitored by controlling the model behavior over time:
often, there are underlying problems like drift under real-
world
conditions, leading to anomaly and misbehavior of the model.
Consequently, a typical ML life-cycle contains the activities
shown in Figure 1.

II. RELATED WORK

This section reviews literature related to the design space
of MLOps platforms. We focus on architectural descriptions,
implemented MLOps platforms, and systematic reviews.
Several publications discuss MLOps architecture based
on functional components, tools, and software infrastruc- 
tures [18], [19], [20], [21]. Some implementations of MLOps
platforms consider functional aspects as components to show- 
case the benefits of introducing MLOps tools [22], [23].
The architectures of such implementations are often domain- 

specific, e.g., Nia et al. [24] present an MLOps infrastructure
for model deployment for telecom data that has been imple- 
mented and evaluated using metrics.
Furthermore, authors reveal their design decisions by com- 
paring features offered by different platforms, e.g., Zarate et
al. [25] compare different tools based on predefined features,
and Recupito et al. [26] conducted a multivocal literature
review of the most common MLOps tools in which they
examined features and functionalities. Compared to other
literature reviews that address features, in this paper we look
at 70 MLOps platforms and consider features from an SE
perspective as a solution approach for software architects.
Architectural design solutions are described. These include
reference architectures based on components [18], [27], soft- 
ware architecture patterns [28], and cloud computing design
patterns for MLOps [29]. 

III. METHOD

The method for this systematic literature review (SLR)
followed the guidelines for performing SLRs in Software
Engineering [30] and is described in more detail in a technical
report [31]. At first, a search on the topic was carried out via
Google and Google Scholar. Based on the results, an overview
of MLOps platforms and an initial selection of published
studies were obtained. This initial automated search helped
to develop an initial understanding of the topic and to define
terms and expressions that served as the basis for the search
in this SLR. A comprehensive search strategy was developed
to identify relevant studies. The search was performed in
academic search engines including ACM Digital Library, IEEE
Explore, and Science Direct using the keywords related to
“MLOps” or “Machine Learning Operations”. As a result,
we included 47 white and grey literature studies and 95 self- 
published documents. 

A. Research Questions
RQ1 How do MLOps platforms differ in their design?
  RQ1.1 What features are commonly found in MLOps plat- 

                 forms? 
  RQ1.2 How do MLOps platforms support different qualities

 or characteristics in the context of their design and
  implementation?

  RQ2 What are the current MLOps platforms?
   RQ2.1 What can be learned from the current research re- 
               sults?

B. Selection Criteria
We included published research studies in English, such as

conferences, journals, magazine papers, books, reports, and
white papers using the term MLOps or Machine Learning
Operations and dealing with MLOps platforms, automation,
or software engineering published between January 2012 and
May 2022. Self-published documents such as vendor home- 
pages and blogs support our findings if no studies are available.
Excluded are duplicate versions of studies, studies in
languages other than English or German, studies without
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reference to the research questions, talks without available
information like protocols or notes, and posters.

   Studies were excluded if they:

Did not meet the inclusion criteria

Were duplicates

Were published in languages other than English

     Different studies related to MLOps or Machine Learning
Operations were excluded from the analysis. This was because
MLOps can have various meanings, such as minimum lin- 
ear operations or Multi-objective Lexicographic Optimization
Problems. Additionally, the term Machine Learning Opera- 
tions refers to supporting methods for ML, processing opera- 
tions, or ML methods. 

C. Data Extraction, Analysis, and Synthesis
Data extracted from the selected studies include item type,

author(s), publication year, title, DOI, abstracts, and refer- 
ences. A thematic analysis approach was used to synthesize
the findings and identify patterns across the selected studies.
The quality of the included studies was assessed by check- 
ing whether the results were based on evidence and arguments,
whether the study presented a research project, and whether
the study’s objectives were clearly defined. Studies that met
these quality criteria were included in the final analysis. 

D. Threats to Validity
Search on Google utilizes user preferences and factors such

as search history and location, especially when no action
is taken. Since MLOps is in the author’s area of interest
and he regularly searches for it concerning his work, we
assume the bias could benefit our case. The Google and
Google Scholar searches were incomplete, as there were too
many results to review. However, the most relevant articles
are listed first. During the assessment process, we identified
several potential sources of bias that might have impacted the
integrity of the findings. First, the identification of studies
relied exclusively on selecting electronic databases. The initial
search on Google and Google Scholar enabled us to check
whether we had omitted any relevant studies. Further, bias
could arise from only one author reviewing the articles, leading
to subjective decisions. Another source of bias is the initial
search of MLOps platforms, which helped select keywords
and created an understanding of the study’s vocabulary but did
not exclude the inclusion of developer and commercial vendor
articles that were not based on scientific methods. However,
the information gathered there was purely technical and was
supported by information from the subsequent SLR and our
experiences on the topic. 

IV. DESIGN SPACE

This chapter describes features and design decisions in
MLOps platforms. Features, which we consider as function
groups, represent design decisions, while the quality aspects
and criteria provide a rationale for these decisions. 

Here we cover the quality aspects, technical features,
and functionalities required in MLOps platforms. These in- 
clude functionalities that support the activities of the MLOps
lifecycle and features that increase the quality of MLOps. In
some platforms, these features are implemented directly, while
in others, they are made possible by openness and adaptability.

A. Quality Attributes
This section outlines context-specific quality attributes of

MLOps platforms. Significantly more quality attributes are
described in our technical report [31]. Figure 2 provides
an overview of the exemplary properties described in detail
below. 

Figure 2: Context-specific overview of qualititesbased on a utility tree.

1) Actuality of Data: The higher the amount of labeled
data, the higher the model’s quality. Automatic labeling or la- 
bel UIs can help gather new data. It may be beneficial to check
if the correct labels exist and add a category for data that is not
supposed to be predicted by the model to allow completeness.
Additionally, the data should include other representations
of each label. Standards in the data collection and labeling
process allow consistency in terms of the expected data format
and volume. However, labeling mechanisms have weaknesses
since data must meet the intended needs and requirements
to be relevant. This is not always granted due to human or
machine error and must be checked frequently. That is why
data cleaning is crucial. It helps to avoid typos, duplicate
entries, measuring inaccuracies, missing features or values,
and inaccurate labels. There may be a latency until the data
appears in the database when information about a particular
data point is recorded. Timeliness is essential when the system
requires the latest and up-to-date data [17], [32]. Here, real- 
time environments for distributed processing of large datasets,
data warehouses, and distributed search- engines [33] can help.
Some of these environments support the high-performance 
processing of semi-structured in-memory data [34].
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2) Reliability: Reliability is granted when a system contin- 
ues to work correctly [35] and perform at the desired level,
even in the face of adversarial attacks, hardware, software,
or human errors [36]. Integrity and confidentiality checks and
adversarial attack detection can face some of these challenges.
CI, CD, and CT can avoid human errors [37].

3) Robustness: Robustness [38] is granted when a model
can cope with an anomaly, performance degradation, and/or
misbehavior. 

4) Maintainability: Easing adapting to new data and main- 
taining the system behavior makes a system maintainable.
Incorporating user feedback [39], [40], model serialization,
monitoring, logging, model formatting, and documentation can
help here [18].

B. Functional Groups
Several features must be available in the form of functional

groups to support the MLOps lifecycle. We consider process,
analytics, deployment, operations, and data storage as general
function groups. These are described below for specific func- 
tions in design concept catalogs [41]. 

1) Process and Analytics: Data exploration, algorithm se- 
lection, feature engineering, model creation, and model per- 
formance evaluation are mandatory steps in machine learning,
and they need to be supported by an MLOps platform (Table 1). 

Table 1: Process and Analytics Catalog.

Data exploration: Identifying correlations in data and ensuring 
its suitability for analysis. 

Visualization: Representing data effectively to identify
correlations and patterns. Transforming raw data for
feature engineering and inference [15].
Data cleaning: Detecting and correcting corrupt or
inaccurate data values [42].
Data labeling: Annotating or tagging data to enhance
prediction accuracy [43].

Algorithm selection: Choosing an appropriate algorithm for 
the given problem.

AutoML: Building, optimizing, and evaluating machine
learning algorithms and pipelines, often with
automated algorithm selection [44].
Hyperparameter tuning: Automating the
optimization of parameters [9].

Feature engineering: Identifying and extracting 
meaningful features from data. 

Feature extraction: Utilizing automated toolboxes to
extract features from various types of datasets [45].

Model building: Constructing models using selected 
algorithms and learned features. 

Machine learning: Leveraging machine learning
libraries for building and evaluating models.

2) Deployment and Operations: Further, there are
deployment and operational features (Table 2). Some platforms 
allow models to be deployed in the cloud on the web, while 
others allow models to be deployed on-premise or on edge. 

Table 2: Deployment and Operations Catalog.

Model as a Service (MaaS): Providing a fully functioning 
service for deploying models. 

Model serialization: Converting a trained model into a 
format or execution engine that can be easily saved,
transferred, and reloaded without retraining.
Model formatting: Structuring and arranging a
serialized model to include metadata and apply
necessary formats.
Model serving: Serving a model as a service or
dependency [46].

Platform as a Service (PaaS): Providing a platform for 
software development. 

Packaging and containers: Utilizing microservices for 
data pipelines [13]. Containers package code and depen-
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dencies in an isolated environment, often managed by 
container orchestration platforms. 

Infrastructure as a Service (IaaS): Providing computing 
resources as a foundation for cloud computing. 

CPU Cluster: Enabling CPUs to collaborate for
computationally intensive ML tasks.
GPU Cluster: Providing dynamic compute power like
GPU clusters for training and scaling specific ML
algorithms [47], [48].
TPU support: Accelerating ML tasks with Tensor
Processing Units (TPUs) for faster processing times
[46].
FPGA support: Using Field Programmable Gate Arrays 
(FPGAs) for ML tasks with faster processing times [49].

Communication: Enabling components and services to 
communicate effectively. 

Service-oriented architecture (SOA): Creating loosely 
coupled services [50]. 

Distributed event streaming: Managing the storage,
distribution, and balancing of event streams across
services [51].

Observability: Understanding system components for 
performance monitoring and issue detection. 

Monitoring and logging: Tracking model behavior
over time, detecting data drift, anomalies, performance
degradation, or misbehavior [15].

3) Data Storage: Repositories store data, code, models, and 
metadata. Specific databases are frequently used for various
kinds of data and performance requirements (Table 3). 

Table 3: Data storage catalog.

Versioning: Tracking data, models, code, and metadata due 
to cross-dependencies. 

Data repository: Storing data along with its origin,
acquisition details, and aggregations, often using
different databases based on data type and performance 
requirements [15].
Model repository: Storing mathematical models in
machine-readable formats, possibly including validity
checks [52].
Code repository: Using distributed version control
systems to manage code changes [37].

Metadata repository: Storing crucial metadata such as model 
lineage, versioning, aliasing, tagging, and annotations. 
Functions to store metadata are often included in data, code, and 
model registries [53]. 

Feature store: Aiding feature engineering by storing and
selecting suitable features, often including information
about raw data transformations, aggregation, and
management of feature values [54], [15].

Databases: Utilizing specialized databases for 
performancecritical applications. 

Reasoning and semantic database: Storing and
interpreting relationships and meanings in data.
Timescale database: Scaling queries for time-series data
flexibly.
Caching and queuing database: Enhancing performance
and managing resource utilization.

C. Tactics
Tactics such as proven design strategies can improve

various qualities [41]. We collected data on the quality 
aspects mentioned in the reviewed publications. These 
qualities can be categorized into data, models, and software. 
We could also extract tactics to address quality issues for 
most of the qualities. We summarized the qualities and 
constraints in Table 4. Attributes for which no reliable 
tactics were found in the literature are listed without 
naming suitable tactics. More detailed descriptions are 
provided in our report [31].  

Table 4: Overview of quality attributes and constraints of the 
platforms.p
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Table 5: Platform categories.

V. MACHINE LEARNING PLATFORMS

This section overviews infrastructure categories, licensing, 
and domain-specific platforms. In the initial search, we 
identified 70 MLOps infrastructures and categorized them as 
described in Table 5. 

1) Licensing:: Commercial platforms such as SageMaker,
Azure MLOps, GCP, and valohai are offered and managed by 
cloud providers. These platforms frequently cover the whole 
MLOps life-cycle and have AutoML tools embedded [15]. 
Models developed on the platforms of such cloud providers can 
be deployed on-demand using serverless technology, such as 
Google Cloud Functions and Azure Functions. However, 
commercial platforms often have the disadvantage of not being 
particularly customizable and open to technology variants. In 
addition, developers often struggle with vendor lock-in.

On the other hand, open-source licenses are free of charge 
and allow the software to be adapted and extended [19]. Further, 
developers who are concerned about putting their data in the 
cloud or being dependent on another company are implementing 
their own in-house MLOps platforms. Usually, they compose 
open-source platforms, tools, and libraries for that purpose, e.g., 
MLFlow, Sacred, and DVC (data version control) [55]. Tool 
overviews [56], [57], [34] can be used to find adequate options 
for such a compilation.

2) Domain-specific platforms:: Depending on the
requirements, domain-specific platforms for container 
provisioning, automated ML, and big data can be useful. Many 
platforms use containerized workflows. Specialized container 
platforms for container provisioning platforms [58] are, e.g., 
Docker, Kubernetes, OpenShift, AWS Elastic Container, and 
AWS Lambda. Some platforms cover and automate machine 
learning development and deliver ready-to-production models 
[59], e.g., Lobe AI, Google teachable machine, and Clarifai. For 
big data processing, some of the reviewed platforms built up on 
platforms like Databricks, Hadoop/Spark, Snowflake, Amazon 
Elastic Map Reduce and Google Big Query [15]. 

VI. DISCUSSION

Many developers use fully managed MLOps platforms 
provided by cloud service providers as those care for the entire 
infrastructure, servers, networks, security, and updates,

allowing MLOps personnel to focus on their applications and 
data without worrying about the infrastructure. These platforms 
frequently offer services like virtualization, storage, and 
machine learning. Users can easily scale their resources up or 
down as needed but pay only for the resources they use [60].

In cases where companies have concerns about cost or about 
outsourcing data and using it in a cloud, in-house solutions are 
used to perform these tasks. This is also sometimes the case for 
addressing latency or bandwidth issues, e.g., in the case of 
Industry 4.0 scenarios [61]. With today’s open-source libraries 
and tools, organizations can effectively compose platforms for 
their own purpose. 

In our study, we identified features, tactics, design patterns, 
and reference architectures that are covered to varying degrees 
by the literature. In the existing literature, features for individual 
MLOps tools [25], [26] are described. Past literature, however, 
lacks features for MLOps platforms in specific. Therefore, our 
study summarizes MLOps features for platforms to fill that gap. 
Furthermore, we have extracted novel tactics to build such 
platforms. Not all quality attributes were addressed in the 
literature, so we could not provide a tactic for each of them, 
which leaves room for refinement in the future. Design patterns 
have been described by several sources [62] in the past. 
Moreover, reference architectures for MLOps [18], [27] and 
MLOps with specific requirements such as explainable AI and 
feedback in industrial use cases [63] are present in the existing 
literature. In summary, we provide an overview of the design 
space that can help in the design of MLOps platforms, but it does 
not cover all types of problems. Area-specific problems may 
occur that are not fully covered by this overview.

In our study, we found that the existing literature partially 
addresses challenges related to hardware and software 
optimization and containerization. Workflow management 
platforms grant scalability and help manage, scale, and deploy 
complex infrastructure. Searching the existing literature, we 
could not find any platform design concepts that reflect specific 
Machine Learning issues of large language models, e.g., 
encapsulating the multi-tier nature of fine-tuning aspects. We 
assume that a second tier is necessary for this purpose in addition 
to the training tier, which also requires high computing power 
and scalability at the user interface level. The first tier would be 
base model training with extensive datasets on high-
performance clusters with GPU support. The second tier 
specializes the models for specific tasks and datasets. For 
example, scalable cloud instances could be accessed for 
webbased interfaces.

There is already some basic understanding and templates 
[64] on how to build MLOps platforms. These templates need
adaptions for specific requirements. However, based on the
existing literature, the question of how to build MLOps
platforms is only partially answered from a software engineering 
perspective. With our analysis, we contribute to this knowledge
and open up possibilities for future research. Future studies
should extend this knowledge concerning integrating
explainability and feedback into MLOps platforms and explore
how to evaluate them.

g
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VII. CONCLUSION

MLOps platforms frequently have a similar architecture [3]. 
This indicates that there are common qualities, features, and 
tactics relevant to their design. In this paper, we analyzed 
features of existing platforms as well as relevant design concepts 
like existing platforms and tools that can be used in the 
systematic creation of specialized MLOps platforms. We also 
discussed relevant qualities and potential tactics to achieve them. 

We believe that the various design concepts that we 
identified are rather useful both for designers of innovative or 
customized MLOps platforms, as well as for potential users, 
who can use it as a basis to identify appropriate platform 
characteristics to select among potential alternative platform 
providers.  
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