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Abstract—Time planning of IT Projects is difficult due to a large 
number of uncertainties in the software development process. 
Mistakes in software development planning open ways to 
architectural, functional, and integrative deficiencies of the 
product and surrounding processes. Using a simple synthetic 
project, we compare three analytic techniques to evaluate project 
duration. These three techniques can work with uncertain input 
parameters, represent projects as stochastic activity networks, 
and use simple computations to approximate distributions of the 
start time and end time of all tasks. Most importantly, they 
address the problem of merge event bias. We observe that a 
method with most relaxed assumptions performs better than 
others in comparison with a simulated ideal solution. 
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I.  INTRODUCTION

Time planning in software development projects has always 
been problematic due to uncertainty of required resources, 
time, specifications, and unreliable human estimates. A recent 
review on the development of evaluation techniques of project 
time is given in [1]–[3]. Modern software projects contain 
uncertainty in virtually all possible parameters, the project 
environment is usually unstable and changeable (including 
requirements specification), and there are no established tools 
to help project managers with time analysis. Simple techniques 
that can work with roughly estimated input data seem useful 
for this situation in industry. 

Program evaluation and review technique (PERT) [4, p. 
269] is always mentioned in the literature for practitioners as
an analytical probabilistic method for project time analysis
[2,3]. This technique searches for only one critical path (CP),
and have very restrictive assumptions for applicability. Another
way of reasoning is based on approximations of the effect of
merge event bias (MEB) [4, p.296] in each node of the
stochastic network. MEB shifts the mean of the time
distributions (TD) to the right, i.e. to a longer duration.

Although the issue of MEB is not well communicated in 
today's literature, a practical technique should include MEB 
into consideration, because it is a major model factor of 
underestimation of project time [1]–[4] beyond estimating 
uncertain parameters. As we are working on a new analytical 
method for project time analysis for very uncertain projects, 

our objective is to evaluate performance of simple techniques 
which address MEB problem. We have found no recent traces 
of such a comparison of any analytical techniques for project 
time analysis. We have identified three analytical project 
evaluation techniques that can operate under high uncertainty 
of task duration estimates, and they include a MEB correction 
procedure. These are modified PNET algorithm [4], a 
technique for estimating the distribution of a stochastic project 
makespan by Cohen and Zwikael [5] (hereinafter C-Z method), 
and the Pessimistic project evaluation and review technique 
(PPERT) [3]. 

The PNET method is an extension to classical PERT 
technique based on estimates and initial task TD of classical 
PERT. As in PERT, the normal distribution is assumed for 
eventual path duration. It considers paths in the stochastic 
network of the project but introduces a MEB correction step. 
The task durations are not necessarily statistically independent. 
A heuristic is given to decrease the number of paths involved in 
computations. Then, they select a set of representative paths 
determined using a proposed linear correlation coefficient 
between pairs of project paths and a given threshold 0.5. If the 
correlation coefficient of two paths is less than 0.5, then the 
two paths are assumed independent and representative.  
Otherwise, the "longer" path is selected to represent both paths 
and the shorter path is removed from consideration. The 
representative paths are assumed statistically independent and 
hence having few or no common tasks. It is required to 
generate the list of paths (starting with the CP). The cumulative 
distribution function (CDF) of the project completion time is 
estimated as a product of CDFs of the representative paths.  

The C-Z method can work with diverse symmetric 
distribution types, and it approximates the CDF of project time 
in each network node using discretization, interpolation, and 
extrapolation. The main point is that the maximum distribution 
in nodes differs from the distribution of the longest expected 
time among the predecessor tasks. Assuming independence of 
predecessor tasks of a node, it is possible to estimate (bound) 
the CDF of the event in the node as a product of CDFs of end 
TD of its immediate predecessor tasks connecting the current 
node and preceding nodes. The TD of the immediate 
predecessor task is the TD of the preceding node plus the 
random duration of the predecessor task. Thus, this algorithm 
does not consider paths and needs only one traverse through 
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the project network to compute all approximations of end TD 
of nodes. The meth adds quantiles of distributions of 
consecutive tasks, and multiplies quantiles of parallel 
collapsing tasks.

The method PPERT needs uniform distributions of task 
times as the input. Additionally to assumed task dependencies, 
other non-statistical dependencies (logical, technical, 
procedural, etc.) may be known as background information. 
Therefore, accepting the high uncertainty of the outcome of 
time of each task, a symmetric triangular distribution is used 
for the approximation of TD in nodes of the stochastic network 
as a MEB correction procedure. The chance constraint is used 
to compare two distributions to determine if MEB correction is 
required or the "smaller" path can be dropped, and the 
distribution of the longer "dominating" path can be set as the 
TD in the node. One traverse through the network is required. 
A simple correction of the upper bound of the final TD of the 
end node is required if MEB corrections were applied.

We evaluate the application of the methods using an 
artificial generic network taken from [2]. We will compare 
CDFs of the project duration obtained with the three methods 
and classical PERT to CDF of a simulated makespan. The 
network includes two paths of relatively equal probabilistic 
duration and generates MEB in three nodes.

II. ANALYSIS OF EXAMPLE PROJECT

The project network is given in Fig. 1 in activity-on-arc 
notation, and input data are given in Table I. Random time 
variables of nodes i are denoted as , = 0,1,2,3,4 and 
random time of tasks X , ,is indicated as , , where i and j are 
their begin and end nodes. Their respective CDF are F_ and 
F_ , . For paths, the indices of the origin, intermediary nodes, 
and the end node are used with hyphens, e.g. random time of 
path X . 

The network of the example project

Initial time estimates of tasks are uniformly distributed. 
These data are used directly in C-Z and PPERT techniques. 
Beta distributions for classical PERT and, respectively, PNET 
algorithm, were obtained with simple approximations from 
PERT theory: the mean time is (o+4m+p)/6 and standard 
deviation is [p-o]/6 [5], where optimistic (o), pessimistic (p) 
and most likely (m) values coincide with the minimum, 
maximum and mean parameters of given uniform distributions.

We are searching for an approximated maximum time 
distribution in nodes 2, 3, and 4. The distribution in node 4 is 
also project makespan.

TABLE I. INPUT DATA

Task Min Max Mean Variance Std. dev.

X0,1 7 12 9.5 0.6944 0.8333

X0,2 15 19 17 0.4444 0.6667

X1,2 4 10 7 1 1

X2,3 6 11 8.5 0.6944 0.8333

X1,3 11 16 13.5 0.6944 0.8333

X1,4 18 22 20 0.4444 0.6667

X3,4 5 9 9 0.4444 0.6667

Arcs related to CP of the classical PERT are marked in bold 
in Table I. The solution of the classical PERT for all nodes is 
given in Table II. The outcome is obvious. The PNET solution 
is shown in Table III, the outcome of the C-Z method is given 
in Table IV, and PPERT solution is in Table V.

A. PNET solution
As paths 0-2 and 0-1-2 are not correlated using the

correlation coefficient, the PNET solution for node 2 is trivial: 
CDF F_ (mean, std. dev.) = (17, 0.6667) · (16.5, 
1.3017). Solutions for nodes 3 and 4 are presented in Table III. 
Paths from the origin to node 3, respectively, node 4, are 
ranked in descending order of the mean path duration in the left 
part of the table. In the right part of the table are correlation 
coefficients for each pair of significant paths. Following the 
given heuristic rule for node 3, path P13 is not considered as its 
mean differs from the first (critical) path by more than twice 

considered as its mean differs from the first (critical) path by 
more than twice the larger of its standard deviations, i.e. 

coefficients appear in italics. For node 4, the correlation 

the path P1 represents both paths and the path P2 is removed. 
PNET solution for node 3 is F_ (25, 
1.5456), and for node 4 is F_ (30, 
1.3540). 

TABLE II. PERT SOLUTION

Node Path Distribution

1 0-1 (9.5, 0.8333)

2 0-2 (17, 0.6667)

3 0-2-3 (25.5, 1.0672)

4 0-2-3-4 (32.5, 1.2583)

B. C-Z solution
According to the algorithm, we begin with tasks , and

, as those without predecessors and set their start-time to 
zero. The maximum time in node 1, and start time of 
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immediately following tasks , and , is CDF of the 
respective predecessor task s , . 

For node 2, start-time CDFs are discretized, and sums or 
convolution are computed as completion TD for the task ,  is 
TD of path 0-1-2. CDF of maximum time in node 2 (F_ Tc, 
F_ Ti) and start time of immediately following task ,  are 
computed, and required quantiles are extrapolated. 
Computations for nodes 3 and 4 are similar. The approximate 
discretized distributions of makespan are in Table IV. 

C. PPERT solution
Initially, the end time of tasks ,  and ,  are known. The

start and end time of all other tasks are set to 0, and TD in all 
nodes, start and end time of the rest of the tasks are assigned 
"unset". The steps are given in Table V. We go from the source 
to the sink of the network computing approximate distributions 
in nodes searching the distribution of maximum project time 
(DMPT) in each node. Node distributions depend on end time 
distributions of incoming tasks and determine start time 
distributions of outgoing tasks. 

As the end TD of task ,  is known. It is equal to TD of 
the node 1 and start time of tasks ,  and , . End time of 
task X1,2 is a convolution of TD in node 1 and the duration of 
the task. Now, knowing the end TD of tasks ,  and , , we 

can determine the TD in node 2 where two sub-paths are met in 
step 1 (see Table V). 

In node 2, the domination of one sub-path A measured with 

perform MEB correction with a symmetric triangular 
distribution with P1 = h(A, B)  Tri(15, 18.5, 22) and continue 
with this triangular distribution as the distribution P1 of the 
node 2 in the next step. 

In step 2 we compare distributions of two collapsing 
subpaths A: Tri(15, 18.5, 22) and U(6, 11), and B: U(7, 12)  
U(11, 16) in the next node 3. The former distribution is larger 

we continue with Tri(15, 18.5, 22) U(6, 11) under the name P2 
as the distribution of the node 3 in step 3. 

Step 3 is performed by analogy. P3 with support [26, 42] is 
the approximation of the makespan. Because there was MEB 
correction in node 2, the upper- : 
(42-26)*0.9 
bution in node 4 is symmetric triangular Tri(26, 33.2, 40.4). 

Table III. PNET SOLUTION  

Node 3 
Path id. Path Mean Variance Std. dev. / P11 P12 P13 

P11 0-2-3 25.5 1.3389 1.0672 P11 1 0.4210 0 

P12 0-1-2-3 25 2.3889 1.5456 P12 – 1 0.3812 

P13 0-1-3 23 1.3889 1.1785 P13 – – 1

Node 4 
Path id. Path Mean Variance Std. dev. / P1 P2 P3 P4 

P1 0-2-3-4 32.5 1.5833 1.2583 P1 1 0.5377 0.2609 0

P2 0-1-2-3-4 32 2.8333 1.6833 P2 – 1 0.4997 0.3866

P3 0-1-3-4 30 1.8333 1.3540 P3 – – 1 0.4806 

P4 0-1-4 29.5 1.1389 1.0672 P4 – – – 1

TABLE IV. SOLUTION WITH C-Z 

CDF/Days 25 26 27 28 29 30 31 32 33

F_X4Tc 

0 0 0 0.002 0.004 0.112 0.214 0.329  0.443

34 35 36 37 38 39 40 41 42

0.543 0.631 0.715 0.793 0.855 0.911 0.955 0.999 1

F_X4Ti 

0 0 0 0 0 0.050 0.131 0.230 0.351

34 35 36 37 38 39 40 41 42

0.495 0.594  0.676 0.741 0.799 0.850 0.900 0.950 1
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III. CONCLUSION

A summary of the analysis is given in Fig. 2. Approximate 
CDF of makespan depends on the method. Although the mean 
is almost the same with all methods, of interest is naturally the 
probability above the mean. This is a manifestation of a longer 
possible delay. A simulated makespan is a "perfect" time to 

which the methods should be close to.

As indicated previously (e.g. [2], [4]), classical PERT 
underestimates probabilities of longer duration. Although 
PNET corrects it, the improvement is small due to reliance on 
paths instead of analysis of nodes where MEB emerges and 
accumulates. On the opposite, the C-Z method overestimates 
the duration. Moreover, overestimation is larger if one uses by 
design only discretized TD and interpolation (extrapolation) to 
calculate distributions of successor tasks without application of 
sometimes available original CDF or their convolutions. It 
follows from Fig. 2 where lines C-Z1 and C-Z2 show the 
results with Tc and Ti suffixes respectively.

The approximation of PPERT is closer to the simulated 
result despite its simple type of approximating function. This 
simple example shows that under- and overestimation can be 
visible even in a small network. There is no data on the 
behavior of unsophisticated heuristics in larger stochastic 
networks. However, the error can become larger. Although 

comparison to simulated distributions is a usual way of 
performance comparison, a better way were to apply the 
methods to data from real projects and compare results to 
recorded end times of each task and makespan. The latter is our 
incentive for future research in this area.
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Table V. PROCESSING WITH PPERT, 0.9

Step A B DMPT MEB Corr. Next step

1 X0,2 X0,1 X1,2 0.43 P1 = h(A,B) Yes 2 

2 P1 X2,3 X0,1 X1,3 0.91 P2 = A No 3 

3 P2 X3,4 X0,1 X1,4 0.93 P3 = A No – 

Figure 2. Approximated CDF of the project duration obtained with three methods
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