
DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

Optimizing End-to-End test execution: Unleashing
the Resource Dispatcher - WiP

Cristian Augusto *1, Jesús Morán 2, Claudio de la Riva 3 and Javier Tuya 4
Computer Science Department, University of Oviedo

Campus de Viesques, Gijón, Asturias
1 augustocristian@uniovi.es

2 moranjesus@uniovi.es
3 claudio@uniovi.es

4 tuya@uniovi.es

Abstract—Continuous integration practices have transformed
software development, but executing test suites of modern
software developments addresses new challenges due to its
complexity and its huge number of test cases. Certain test levels,
like End-to-end testing, are even more challenging due to long
execution times and resource-intensive requirements, moreover
when we have many End-to-end test suites. Those E2E test suites
are executed sequentially and in parallel over the same
infrastructure and can be executed several times (e.g., due to some
tester consecutive contributions, or version changes performed by
automation engines). In previous works, we presented a
framework that optimizes E2E test execution by characterizing
Resources and grouping/scheduling test cases, based on their
compatible usage. However, the approach only optimizes a single
test suite execution and neglects other executions or test suites that
can share Resources and lead to savings in terms of time and
number of Resource redeployments. In this work, we present a
new Resource allocation strategy, materialized through a
Resource Dispatcher entity. The Resource Dispatcher centralizes
the Resource management and allocates the test Resources to the
different test suites executed in the continuous integration system,
according to their compatible usage. Our approach seeks efficient
Resource sharing among test cases, test suites, and suite
executions, reducing the need for Resource redeployments and
improving the execution time. We have conducted a proof of
concept, based on real-world continuous integration data, that
shows savings in both Resource redeployments and execution time

End-to-End Testing; E2E Testing; Test Suite Optimization;
System Testing; Testing Resources; Test Optimization; Testing

I. INTRODUCTION

Continuous integration (CI) practices that integrate and test
software code automatically are widely adopted in both
academia and industry, reducing the duration of development
cycles from years/months to weeks, or even days [1]. These
shortened cycles have impacted critical development stages
such as software testing, where validating modern software
developments is even more complex, due to longer and costly
test suites comprised of thousands of test cases that are executed
frequently [2], [3].

1 Henceforth, we will use the term "Resources" (capitalized)
when referring to the ones required by the E2E test suite.

Apart from the challenges faced by CI, the testing level End-
to-End testing (E2E) present additional challenges due their
high cost. E2E testing validates from the user iteration to the
low-level layers like persistence or networks and are costly due
to long execution times, expensive test Resources1 [4] or
requiring the entire system up for their execution. The
Resources are the physical (e.g. a mobile device or a physical
sensor), logical (e.g. a database or a webserver) or
computational (e.g. a lambda function or a container provided
in Azure containers) entities that are required by a test suite
during its execution. Although there are techniques that aim to
optimize the test suite execution, such as test prioritization,
selection, and minimization [5] that are effective in other testing
levels [6], [7]. However, in E2E testing these traditional
techniques are less effective because they continue to require
the same expensive Resources/system for their execution.

In previous works, we introduced RETORCH: Resource-
Aware End-to-End Test Orchestration [4], a framework that
optimizes the E2E test execution through a characterization of
the Resources used, a grouping and scheduling of the test cases
according to their usage. The groups of compatible test cases
are scheduled and executed against their Resources, exclusively
deployed and tear down for them. This grouping and scheduling
of test cases reduces the execution time and the number of
unnecessary Resource redeployments to execute the suite as it
enables test parallelization and concurrent execution over the
Resources. However, when several executions of the same test
suite (e.g., some repository changes committed closely, pull
requests opened to test several configurations or dependency
updates) are executed in the same CI system, there is still room
for improvement.

Throughout the life of a software project, these additional
Resource deployments during hundreds or even thousands of CI
executions impact the total project budget, especially in a Cloud
environment where you only pay for what you use—but you
pay for everything you use. [8].

In this paper, we propose an approach that extends the
RETORCH framework with a Resource Dispatcher that enables

89

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

E2E test Resource sharing between different test cases and suite
executions (e.g., two consecutive commits or pull requests
opened in the repository). The objective of this Resource
Dispatcher is to take advantage of already deployed Resources
and share those Resources between the test cases of different
test suites or test suite executions, whenever the tests perform a
compatible Resource usage (e.g., test cases that do not modify
the Resource or restore its original state after its execution). To
achieve this, we propose a Resource Dispatcher, that is
integrated with the RETORCH approach, centralizing the
Resource management, deploying and tearing down the
necessary Resources for the entire continuous integration
system.

The use of this Dispatcher has several scenarios. For
example, it can assign an already deployed Resource in the CI
(e.g., an ELK stack or a Selenoid Instance), one Resource that
previously belonged to another TJob and make a compatible
usage (e.g., a database that was cleaned before its usage).
Another feasible strategy could be allocate a Resource that is
being used concurrently by other TJobs belonging to other
execution plans. The Execution plans [4] are TJobs scheduled
in sequential or parallel aimed to reduce the execution time and
the number of Resource redeployments during the E2E test
execution. The Resource Dispatcher is applied over a case study
with the CI data of a real demonstrator that showcases
differences in Resource redeployments and execution time.

The rest of the paper is structured as follows: Section II
provides the necessary background, Section III presents the
approach, Section IV presents the proof of concept with the real
demonstrator CI data, and finally, Section V presents the
conclusions.

II. BACKGROUND

The RETORCH orchestration approach [4] is composed of
four processes: Resource identification, grouping, scheduling,
and deployment. In the Resource identification process, the
tester performs a smart characterization of the Resources with
different static and dynamic attributes that describe the
Resources and show how they are used by the test cases. For
instance, examples of these attributes are the maximum number
of Resources, their cost, the hierarchy relationships, or the
specific access mode (e.g., read, write, read-write). The output
of the Resource identification is used in the grouping and
scheduling processes that group and schedule the test cases with
the containerized SUT in the so-called TJobs that are arranged
sequentially and in parallel in the Execution Plan. The
Execution Plan is deployed during the deployment phase
generating the necessary pipelining and scripting code (e.g.,
Jenkins Jenkinsfile, GitHub actions YAML files, or Travis
travis.yml).

The TJobs execution follows a lifecycle composed of
different phases. First, a set-up is performed in which various
actions are required to deploy and configure the environment.
This set-up is followed by test execution (onwards exec), during
which one or several test cases with compatible Resource usage
are executed together. Finally, the tear-down phase performs

cleaning and release actions, as well as saving results and other
debugging information, such as different logs.

In RETORCH, the Resource management is handled by each
TJob, which is responsible for deploying and releasing
Resources. This strategy is efficient if the Execution Plan is
executed alone in the CI system and not executed frequently,
but there is room for improvement when the CI system has
already deployed Resources, other Execution Plans, or
executions of the same plan sequentially or in parallel. Some of
the Resources already deployed can potentially be used by other
TJobs that belong to another Execution Plan executed later or
in parallel.

III. RESOURCE DISPATCHER FOR E2E TESTING

The new approach aims to enable Resource sharing between
different Execution Plans, minimize the number of Resource
redeployments, and also to reduce the execution time, because
uses deployed Resources and not wait for its instantiation.

To enable this Execution Plan Resource sharing, the concept
of Resource is refined to include the possibility of sharing them
between different TJobs. In other words, the TJobs can take
advantage of already deployed Resources whereby their usage
does not impact their or other TJobs execution.

We propose to decouple this Resource management
(deployment and tear-down) of the TJob, through a Resource
Dispatcher (henceforth referred to as Dispatcher). The
Dispatcher introduces the role of test Resource manager who is
responsible for managing the Resources used within the CI
environment. The general process is depicted in Fig. 1, which
gives as input several pull requests (PR) opened with their
Execution Plans (that can be different or several executions of
the same plan). When the CI starts with the plan, the different
TJobs start their execution sequentially and in parallel,
requesting different Resources from the Dispatcher. The CI
executes the different TJobs until the last has ended, which
continues until the last TJob has finished.

Figure 1 General overview of the process

The Resource allocation process using the Dispatcher is
depicted in Fig. 2. The process starts with the TJob set-up, on
which the Resources are requested. If a compatible Resource is
already available, it is allocated. If not, a new Resource is
instantiated. Then the Resource is used during the test execution
phase and released before the end of the TJob in the tear-down
phase.

When a TJob starts its execution, it enters into the set-up
phase (in yellow), which requests a Resource from the
Dispatcher (1), who checks whether the Resource is already
deployed by other Execution Plans (2) by reviewing the

90

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

Resource Pool (3). If the Resource is not deployed, the
Dispatcher deploys a new Resource and registers it in the
Resource Pool (5), along with the type of access mode
performed and its attributes, e.g., if it is possible to be shared
with other TJobs or it can be accessed concurrently.

Figure 2 Resource Allocation process

If the Dispatcher has an already deployed Resource, it
verifies whether the intended usage by the TJob is compatible
with it (4). For example, two TJobs that use the same Resource
without modifying it are compatible and can share it for their
execution, saving the time of a new deployment. However, if
TJob 1 modifies and pollutes the Resource, it must be executed
with different Resources. If not, the Dispatcher proceeds with
the instantiation of a new Resource (e.g. turns on the hardware
device if it’s a physical Resource, instantiates it on the air if it’s
a logical Resource, or asks the service provider for a
computational Resource) and registers it within the Resource
Pool with the usage that is performing the TJob (5). Conversely,
if the Resource is compatible, it is assigned mapping this
assignation in the Resource of the Resource Pool (5). The
Dispatcher answers the TJob with the Resource (6), allowing
the TJob to continue with its execution (in orange). When the
TJob ends, during its tear-down phase (in violet), it notifies the
Dispatcher (7) that this Resource is no longer required, giving
to the Dispatcher the responsibility for the tear-down or its
reasignation to another TJob.

IV. EVALUATION

To assess the viability of the Resource Dispatcher, we carried
out a proof of concept using the FullTeaching test suite [9], part
of a demonstrator belonging to ElasTest Horizon 2020
European Project [10]. FullTeaching [11] is an online education
platform designed to simplify the creation of courses and virtual
classrooms, making remote teaching more accessible.
FullTeaching is composed of several Resources, such as web
and multimedia servers, relational databases, or web browsers.

RETORCH, with the information provided by the annotated
Resources and access modes in the test cases, provides an
Execution Plan composed of 12 TJobs deployed in parallel in
groups of 5 TJobs. For this proof of concept, we focused on
three different TJobs of this Plan: TJob-A, TJob-B, and TJob-
C, whose Resources, number of test cases, and access modes
performed are depicted in Table I:

TABLE I
TJOBS AND RESOURCES ACCESS MODES

Access Modes
TJob Database Web Server. Mult. Server

A R-W R R
B R-W R R
C R-W* R No-Access

All the TJobs A, B, and C modify the database, but TJob-C
restores its state before concluding (R-W*), allowing the
database to be used by subsequent test cases (albeit not
concurrently). TJob C is also characterized by not accessing to
the multimedia server, making it possible to mock it to provide
only the health check, which is lighter than the entire Resource.

We employ the continuous integration data of the Friday 1st

of March at 0:00 a.m. on which 5 pull requests were opened by
DependaBot with different version updates in the GitHub
repository [9]. This repository is integrated into our Jenkins
continuous integration system, executing the Execution Plan for
each new pull request created. The average times on which the
different TJob lifecycle phases start and end all pull requests are
shown in Table II:

TABLE II
AVERAGE TIMES FOR PR EXECUTION AND DEPLOYMENT TIME (RESOURCES)

Resources TJobs

ID

D
atabase

W
eb Server

M
ultim

edia Serv,

Set-up-start

Set-up-end

Exec-start

Exec-end

Tear-dow
n-start

Tear-dow
n-end

TJob-A 29 30 46 1 48 49 120 121 126

TJob-B 29 30 46 1 47 48 149 150 153

TJob-C 29 30 46 1 49 50 121 122 124

Each Resource set-up individually takes on average in the
different TJobs 28-29 seconds for the BD, 30.5 seconds for the
multimedia server, and 46.36 seconds for the webserver. Fig. 3
depicts the difference in execution time with 3 parallel
executions of the 5 different pull requests (from PR1 to PR5),
using RETORCH's original approach (in blue) against
RETORCH with the Dispatcher (in green).

For PR 2 and PR 3 executions, the Dispatcher alternative
takes the same amount of time to set up. Part of this time is spent
preparing the PR resources (indicated in yellow, with a 28-29
second BD setup wait), while the remaining 17-18 seconds are
spent waiting for the readiness of the PR1 Resources
(Multimedia Server). The reuse of the same Resources in TJob
A only requires instantiating/cleaning the database in the
different TJobs. PR 4 and PR 5 do not require waiting and the
execution time is reduced. On the other hand, the RETORCH
alternative requires instantiating the Resources for each TJob
and tearing them down when it finishes, using more time than
the other alternative in both phases and leading to a higher total

91

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

execution time, saving 21 seconds. These time savings are even
more important in the CI systems where the test suites are
executed hundred or even thousands of times at each repository
change.

Figure 3 Duration of the different PR

Fig. 4 depicts the number of Resource redeployments of both
alternatives during the whole PR, in blue RETORCH, and in
green the RETORCH + Dispatcher alternative.

The Dispatcher alternative redeploys 70% fewer Resources
(45 Resource re-deployments with RETORCH against 14 with
RETORCH + Dispatcher) to execute the PRs because the TJob
B and C share the multimedia and web servers of the first PR
and clean the database for each TJob, while the TJob A
instantiates its Resources in the first execution and reuses them
in the subsequent executions. The reduction of Resource
instantiations is useful when the Resources are limited (e.g.
physical limitations like the number of available devices) or
when the testing is carried out over the Cloud and each
instantiation impacts the total project budget.

Figure 4 Number of Resource redeployments

V. CONCLUSIONS

We have proposed the Resource Dispatcher, that evolves the
current RETORCH Resource allocation approach into a
centralized way to manage the Resources. The Dispatcher
enables Resource sharing between different Execution Plans or
executions of the same Execution Plan itself, which can be
performed when a pull request or several consecutive
contributions arrive at the repository.

Through a proof of concept using real-world continuous
integration data, we show the feasibility of our proposed
approach, showcasing benefits in terms of Resource savings
and execution time. This remarks the practical applicability of
our solution in addressing the challenges posed by modern
software development practices, where the complexity of test
suites and the need for frequent testing require innovative
solutions to streamline the testing process and continue
improving and enhancing the software quality.

As future work, we plan to evaluate our approach in more
demonstrators and test suites. Additionally, we intend to
combine RETORCH with other optimization techniques such
as test-batching. Another research line involves incorporating
the Resource Dispatcher into a bot engine and integrating it with
the RETORCH platform

ACKNOWLEDGMENTS

This work was supported by the project PID2022-
137646OB-C32 under Grant
MCIN/AEI/10.13039/501100011033/FEDER, UE

REFERENCES

[1] M. Meyer, “Continuous integration and its tools,” IEEE Softw., vol. 31,
no. 3, pp. 14–16, 2014, doi: 10.1109/MS.2014.58.
[2] H. Esfahani et al., “CloudBuild: Microsoft’s distributed and caching build
service,” in Proceedings - International Conference on Software Engineering,
in {ICSE} ’16. ACM, 2016, pp. 11–20. doi: 10.1145/2889160.2889222.
[3] A. Memon et al., “Taming google-scale continuous testing,” in
Proceedings - 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track, ICSE-SEIP 2017,
IEEE, May 2017, pp. 233–242. doi: 10.1109/ICSE-SEIP.2017.16.
[4] C. Augusto, J. Morán, A. Bertolino, C. de la Riva, and J. Tuya,
“RETORCH: an approach for resource-aware orchestration of end-to-end test
cases,” Softw. Qual. J., vol. 28, no. 3, pp. 1147–1171, Sep. 2020, doi:
10.1007/s11219-020-09505-2.
[5] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing Verification and Reliability, vol.
22, no. 2. John Wiley and Sons Ltd., pp. 67–120, Mar. 2012. doi:
10.1002/stv.430.
[6] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “Empirical study of
the effects of minimization on the fault detection capabilities of test suites,” in
Conference on Software Maintenance, 1998, pp. 34–43. doi:
10.1109/icsm.1998.738487.
[7] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini, “Test set size
minimization and fault detection effectiveness: A case study in a space
application,” J. Syst. Softw., vol. 48, no. 2, pp. 79–89, 1999, doi:
10.1016/S0164-1212(99)00048-5.
[8] A. Eivy, “Be Wary of the Economics of ‘Serverless’ Cloud Computing,”
IEEE Cloud Comput., vol. 4, no. 2, pp. 6–12, 2017, doi:
10.1109/MCC.2017.32.
[9] C. Augusto, J. Morán, C. de la Riva, and J. Tuya, “FullTeaching E2E Test
Suite.” 2023. [Online]. Available: https://github.com/giis-uniovi/retorch-st-
fullteaching
[10] B. Garcia et al., “A proposal to orchestrate test cases,” in
Proceedings - 2018 International Conference on the Quality of Information
and Communications Technology, QUATIC 2018, 2018, pp. 38–46. doi:
10.1109/QUATIC.2018.00016.
[11] ElasTest EU Project, “Fullteaching: A web application to make
teaching online easy.” Universidad Rey Juan Carlos, 2017. Accessed: Aug.
10, 2023. [Online]. Available: https://github.com/pabloFuente/full-teaching

92

