
Using Architectural Abstractions in Embedded

System Design

Vasiliy Pinkevich

Computer Science Department

ITMO University

Saint-Petersburg, Russia

vpinkevich@niuitmo.ru

Alexey Platunov

Computer Science Department

ITMO University

Saint-Petersburg, Russia

platunov@lmt.ifmo.ru

Abstract— The conceptual part of complex embedded systems

design includes the following key stages: system analysis of initial

requirements, architectural and micro-architectural decisions

generation, evaluation of decisions. During these stages, many

important mechanisms of subsequent implementation are

defined. These are the stages that are the least formalized and

automated. The proposed method allows the design process to be

partially formalized by the usage of computational mechanism

concept as the central abstraction. The considered example

regards to analysis of languages used together in complex

embedded systems design with “immersion” to the level of

custom system on a chip design. The comparison of design

languages, carried out on the basis on the proposed approach,

allows the design means for subtasks and subsystems to be

chosen more effectively. The source code markup method is

proposed as a tool for automated processing of multi-language

projects targeted to work with design entities, which cannot be

adequately and directly expressed by the standard languages

means. In general, the demonstrated approach stimulates the

designers to concentrate on “cross-cutting” conceptual

mechanisms of a project and provides a way to monitor the

adequacy of their multi-stage implementation.

Keywords – embedded system; system level design; architectural

abstraction; design space exploration; multi-language design.

I. INTRODUCTION

Embedded systems (ES) design process in its conceptual
phase has to be based on methodologies of their complex
representation [1]. In the literature, this level of consideration is
typically attributed to electronic system-level (ESL) design [2,
3] or system-level design (SLD) fields, however, already in [4]
it is noted that activities in this design stage are wider. We call
these activities HLD – High Level Design. Abstract system
concepts are used at the stage of ES high-level design. They
largely form the ES project, but are not fixed in the ES
implementation. This greatly complicates the control over the
adequacy of system implementation in its “top-down”
transition from one level to another within design process.
Therefore, “cross-cutting” methods of working with conceptual
information, that cover all ES design phases, are needed.

II. DISCUSSED PROBLEM

Languages for design, programming, modeling and other
problems are critically important ES implementation

instruments. They are actually platforms containing abstraction
means to allow explicit allocation of conceptually important
design units – classes, functions, macros, modules and other
units. However, the serious problem with standard
programming languages is that they do not allow system
specification to be composed exactly in the same terms as
designer thinks about it. The examples of entities, which are
difficult to be expressed, include: cross-cutting mechanisms,
with support scattered over the entire specification code (means
of ensuring reliability, lower power consumption, etc.);
mechanisms that affect multiple levels of a system, described
in several languages (e.g. hardware description language and
software programming language); any significant logical
structures, unsupported by the language means. If developer
has used abstractions of higher level than the language and
standard library, these abstractions are typically left in his
mind. Thus, it is necessary to have an opportunity to establish
consistency between design abstractions, which are generated
by the developer “in free mode”, and constructions that are
directly provided by the languages used in the design. For this
purpose, both methodological framework and automation
toolset are needed to allow the developer to use this approach
in practice.

III. RELATED WORK

One of the known methods to solve the stated problem is
the usage of domain-specific languages (DSL) and related tools
[5]. However their usage may be limited due to the following
reasons:

 initial project of the system is not formalized enough to
be unambiguously realizable (synthesizable) from the
specification;

 architectural information is unavailable so the system
is considered only via its implementation;

 too much overhead for the creation or implementation
of the language and tools that provide the required
conceptual entities;

 legacy system support is required;

 manual optimization with the usage of low-level
language is required.

This work was partially financially supported by Government of Russian

Federation, Grant 074-U01.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 3 –

There are examples of allocation and classification of
conceptual elements for ES design and analysis in the
literature. Typically, several maximally independent axes in the
possible solution space is provided. Axes contain marks, which
designate possible problem solutions. The marks may represent
either various abstraction levels (see Fig. 1a, “design cube” –
model for VHDL language [6]) or technical decisions (see Fig.
1b, “design space evolution” [7]). Furthermore, axis may
represent the process that evolves in time within computer
system life cycle (see Fig. 1c, “rugby model” [8]). Also, the
known examples of this approach usage are VSIA taxonomy
and ESL taxonomy [9], which consider the properties of ES
structural units models. They can be applied for analysis of
programming and design languages properties [3, 10].
However, it is very important, that the presented models do not
consider the cross-cutting mechanisms problem.

IV. PROPOSED METHOD

Based on the concepts, models and principles of ES HLD-
methodology [11–14], the following method of analysis of
design entities and implementation languages is proposed.

ES design process should be carried out within aspect
approach [15–17]. In the initial step, system architect allocates
important design space segments (aspects). Each aspect reflects
a particular problem space in the project execution. Within a
single aspect, the sets of design space axes (subspaces) are
allocated. An axis is the certain problem within the project. On
each axis, the set of computational (and other) mechanisms,
ranged by the certain criteria, are located. The mechanisms
provide the means to solve design problems.

Computational mechanism (CM) is the central concept of
the proposed method. It is an architectural pattern that
demonstrates the principles of computational process
organization. In contrast with the popular concept of “design
pattern” that does not have fixed requirements for abstractness
of description and internals demonstration, CM has to
transparently provide with useful “computational” technical
principles without fixating of their implementation. Thus, CM
should be considered as a specific category of patterns of
computer systems design. Along with computational
mechanisms, other categories of mechanisms are used, e.g.
mechanisms of interaction, verification, debug. Thus, the
mechanism is the universal element that can be allocated both
within a single design language and across several layers,
which involve several languages to work with. The marks on
the axes that are proposed within the certain methodologies [6–
9], can be treated as the variants of the mechanisms, while the
proposed axes can be used as design space axes.

During ES implementation, the set of aspects, design space
axes and mechanisms within each axis is used by developers as
a library of design decisions, primarily, at the conceptual level
[18]. Also, the models that are constructed in these terms can
be used at the verification step [19].

Annotation of the source text of the project (primarily
multi-language) is proposed to enable the automated support
for this approach. The tag language, based on comments of the

special format, has been developed. Annotated code allows the
fast navigation through mechanisms implementation fragments
to be carried out that simplifies manual control over their
implementation correctness.

Figure 1. Variants of aspect and design spaces representation in embedded
systems design and analysis methodologies.

V. THE USE CASE OF THE METHOD

The proposed method has been applied to the typical set of
languages that are used for ES design and development with
utilization of programmable processors and dedicated hardware
units implemented in FPGA or ASIC (see Fig. 2 and Table 1).

The set of design space axes has been allocated for
analysis. This set includes four axes from ESL taxonomy [3, 9]
and two extra axes that have been added: data flow / control
flow ratio of structural unit functional implementation and axis

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 4 –

of functional verification mechanisms. Mechanisms of first
extra axis variously combine involvement of instruction and
data streams in computational process control. The second axis
contains the mechanisms that can be used for computer system
testing and verification during its design, depending on the
scale of the element under verification. The number of marks
on the concurrency and communication axes has been reduced
and only important mechanisms, which are not tied to specific
implementation, have been left.

Figure 2. Mechanisms of languages: a) SystemVerilog (synthesizable subset

+ verification) and b) generic assembler. Shaded outlined areas – built-in
mechanisms, outlined areas – mechanisms which can be implemented on the

basis of built-in mechanisms.

Generic assembler (assembler of abstract programmable
sequential processor core) reflects the capabilities of software
implementation and is not tied to specific architectures or
processor configurations. If needed, the set of language
mechanisms can be extended through processor specialization
(by redesign, IP-core configuration or custom extensions). The
examples are Microblaze (Xilinx), NIOS (Altera) and other
processor cores.

Languages have built-in support of the mechanisms of a
certain complexity (or abstractness) and, in most cases, means
for combining simple mechanisms to form complex ones. It is
assumed that the level of mechanisms’ complexity within
design space axis can be increased in case mechanism
implementation fits into language capabilities. Within this
approach, the languages have been analyzed from two
perspectives – from the viewpoint of the mechanisms that have
built-in support in the language and from the viewpoint of the

mechanisms that can be effectively realized by the language
means based on built-in mechanisms.

TABLE I. BUILT-IN MECHANISMS OF LANGUAGES.

Design

space

axes

Languages

System-

Verilog

(synthe-

sizable)

System-

Verilog

(for simu-

lation)

SystemC

(for simu-

lation

Generic

assem-

bler

SysML

(modeling

only)

Syn-
chroni-

zation

Cycle-

accurate

Cycle-
accurate,

system

events,
partially

ordered

Cycle-
accurate,

system

events,
partially

ordered

Instr.

cycle

Partially

ordered
(sequence,

activity

diagrams)

Data

ab-
strac-

tion

Bit and
format

(with wire

and reg

vectors)

All (with
enums

and

struc-

tures)

All (with

structures
and

classes)

Bit

From
format to

token

(package

diagrams)

Con-
cur-

rency

Signal and
block

parallelism

Signal

and block

paralle-
lism

Signal,

block,

software
processes

(with sc_

process_
handle)

Se-
quen-

tial

Signal,

block,
multi-

application

(with
internal

block

diagram)

Com-

muni-
cation

P to P and
buffered

(with wires

and regs)

Same as

synthesiz
able

P to P,

buffered,

memory
(with

pointers)

No
No specific

mechanism

Control
flow

Comb. and

register

logic

Same as

synthesiz

able

Same as

System-

Verilog

Pro-
process

or as a

plat-
form

FSM (state-
charts),

sequential

(sequence
diagrams)

Func.
veri-

fication

No

Assertion

-based,
const-

rained-

random

No No No

The example of using multi-language source code
annotation is demonstrated in Fig. 3.

Figure 3. Fragment of CRC implementation mechanism.

a)

b)

File: .\asm\boot.asm, line: 176

CALL P_LOAD_CRC # load from coprocessor to ACC

SUB CRC_REG # checking CRC

JEQ LABEL_BLOCK_CRC_OK

...

File: .\asm\asm.py, line: 198

"RWRK": [11, "R"], # read coprocessor cmd

"WWRK": [12, "R"], # write coprocessor cmd

...

File: .\hdl\wrk.sv, line: 236

if (ctrl_a == ADDR_CRC) begin

 ctrl_do <= crc;

end

...

File: .\hdl\crc32.sv, line: 35

always @* begin
 crc_new[0] = crc_old[0] ^ crc_old[6] ^ ...

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 5 –

Here, the fragment of cross-cutting implementation of
cyclic redundancy checksum (CRC) mechanism is
demonstrated. CRC is used for integrity control of bootable
software images for heterogeneous multiprocessor system. The
system has been implemented as system on chip (SoC).
Embedded boot manager is a specialized processor being
programmed in assembly language. The cut has been acquired
from the annotated code automatically. The source code has
been realized in assembly (program for the processor,
boot.asm), Python (compiler, asm.py), SystemVerilog (CRC
coprocessor, wrk.sv and crc32.sv).

VI. FUTURE WORK

The proposed approach is not formal, thus, quality of its
application depends greatly on expert’s qualification. Thus,
further refinement of the used concepts has to be carried out.
Also, extraction of individual subspaces with clearly defined
axes and mechanisms sets has to be done. Such axes could be
recommended as typical for certain class of projects and
problems. The mechanisms that require cross-level
implementation are of special interest.

CONCLUSION

The proposed method allows design process to be partially
formalized using HLD-methodology system of concepts.
Computational mechanism is the central abstraction. Design
languages comparison, carried out on the basis of the proposed
method and applied to the languages being used in complex
hardware-software projects, allows design tools to be chosen
more effectively for subtasks and subsystems. The
demonstrated approach makes the developers to concentrate on
“cross-cutting” conceptual mechanisms and enables control
over the adequacy of their multi-stage implementation.

REFERENCES

[1] J. Teich, “Hardware/software codesign: the past, the present, and
predicting the future”, Proceedings of the IEEE, 2012, vol. 100, pp.1411
– 1430.

[2] D. Densmore, R. Passerone, A. Sangiovanni-Vincentelli, “A Platform-
Based Taxonomy for ESL Design”, IEEE Design and Test of
Computers, September 2006.

[3] B. Bailey, G. Martin, “ESL models and their application”, New York:
Springer Publication, 2010.

[4] A. Sangiovanni-Vincentelli, “Quo vadis SLD: reasoning about trends
and challenges of system-level design”, Proceedings of the IEEE, 95(3),
2007, pp.467-506.

[5] M. P. Ward, “Language-Oriented Programming”, Software - Concepts
and Tools 15(4): 147-161 (1994)

[6] W. Ecker, M. Hofmeister, “The design cube - a model for VHDL
designflow representation”, Proceedings of the European Design
Automation Conference (EuroDAC), Hamburg 1992, 752-757.

[7] A. Chattopadhyay, “Ingredients of adaptability: a survey of
reconfigurable processors”, VLSI Design, 2013, vol. 2013, p.18.

[8] A. Jantsch, S. Kumar, A. Hemani, “A Metamodel for Studying Concepts
in Electronic System Design”, IEEE Design & Test of Computers, vol.
17, no. 3, pp. 78-85, Jul. 2000.

[9] B. Bailey, G. Martin, A. Piziali, “ESL Design and Verification: A
Prescription for Electronic System Level Methodology”, Elsevier
Morgan Kaufmann, 2007.

[10] Panagopoulos, G. Papakonstantinou, N. Alexandridis, and T. El-
Ghazawi, “A comparative evaluation of models and specification
languages for Embedded System design”, Languages, Compilers, and
Tools for Embedded Systems (LCTES-03), San Diego, Ca., June 11-13,
2003.

[11] A. Platunov, A. Nickolaenkov, and A. Penskoy, “Architectural
representation of embedded systems”, 2012 Mediterranean Conference
on Embedded Computing (MECO), June 2012, pp.80-83.

[12] A. Platunov, A. Kluchev, and A. Penskoi, “HLD Methodology: The
Role of Architectural Abstractions in Embedded Systems Design”, 14th
GeoConference on Informatics, Geoinformatics and Remote Sensing,
2014, pp. 209–218.

[13] Platunov A., Kluchev A., Penskoi A., “Expanding Design Space for
Complex Embedded Systems with HLD-methodology”, Proc. of the 6th
International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT) - 2014, pp. 253-260.

[14] A. Platunov, A. Penskoi, and A. Kluchev, “The Architectural
Specification of Embedded Systems”, 2014 3rd Mediterranean
Conference on Embedded Computing (MECO), June 2014, pp. 48-51.

[15] D. Broman, Ed. A. Lee, S. Tripakis, and M. Toerngren, “Viewpoints,
formalisms, languages, and tools for cyber-physical systems”, 6th
International Workshop on Multi-Paradigm Modeling - MPM'12,
October 2012, pp.49–54.

[16] A. Platunov, and A. Nickolaenkov, “Aspects in the design of software-
intensive systems”, 2012 Mediterranean Conference on Embedded
Computing (MECO), June 2012, pp.84-87.

[17] J. M. P. Cardoso, P. C. Diniz, J. G. de F. Coutinho, and Z. M. Petrov,
“Compilation and Synthesis for Embedded Reconfigurable Systems: An
Aspect-Oriented Approach (Google eBook)”, Springer, 2013, p. 215.

[18] Kustarev P., Bikovsky S., Antonov A., Yanalov R., “Process control and
synchronization patterns for SOC”, 14th GeoConference on Informatics,
Geoinformatics and Remote Sensing, 2014, Vol. 1, No. 2, pp. 287-294.

[19] Kustarev P., Bikovsky S., Pinkevich V., “Functional monitoring of SoC
with dynamic actualization of behavioral model”, unpublished.

4th Mediterranean Conference on Embedded Computing MECO – 2015 Budva, Montenegro

Works in Progress in Embedded Computing

– 6 –

