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Abstract — Machine learning (ML)-equipped critical systems such 
as collaborative artificial intelligence systems (CAISs), where 
humans and intelligent robots work together in a shared space are 
increasingly being studied and implemented in different domains. 
The complexities of these systems raise major concerns for safety 
risks because decisions for controlling the dynamics of the robot 
during the interaction with humans must be done quickly driving 
the detection of potential risks in form of collision between a robot 
and a human operator using information obtained from sensors 
such as camera or LIDAR. In this work, we explore and 
compare the performance of two You Only Look Once 
(YOLO) models - YOLOv3 and YOLOv8 - which rely on 
convolutional neural networks (CNNs) for real-time object 
detection in a case study collaborative robot system simulation 
example. The preliminary results show that both models achieve 

-time performance albeit requiring 
a GPU to run at such speed as 40FPS. The results indicate the 
feasibility of real-time object detection in a CAIS simulation 
implemented with CoppeliaSim software. 

Keywords - collaborative robot, object detection, simulation, 
machine learning, risk analysis 

I.  INTRODUCTION

Artificial intelligence (AI), inculcating its fast-growing 
branch, machine learning (ML) has become a mainstay in many 
aspects of human life. From its integration in simple non-
intrusive systems such as a movie recommendation system to 
those deployed to reduce human effort, for example, GitHub 
Copilot1  which can simplify tedious programming tasks. 
Moreover, AI models dynamically evolve by learning from large 
datasets obtained from sensor readings, text corpus as well as 
continuous interaction with humans. Therefore, their 

1 https://github.com/features/copilot 
This work was partially supported by the Austrian Science Fund (FWF), 

under grant I 4701-N 

development varies significantly from conventional software 
systems [1]. 

This presents a new challenge as software engineers and 
researchers consider AI engineering as a standalone endeavour 
from software engineering process. Surely, software engineering 
is broader and involves tasks such as designing, developing, 
testing, and maintaining software applications across many 
application domains e.g., education, finance, healthcare, 
entertainment among others. Yet, AI engineering, which is a 
specialism within software engineering, is dedicated to the 
development of systems equipped with human-like intelligence 
and that are capable of learning from data and making informed 
decisions or predictions based on that data [2]. 

Furthermore, in conventional software systems, defects and 
malfunctions can and do occur, they are not harmful. However, 
malfunctions due to the application of ML solutions in safety-
critical domains can have devastating impacts on lives, property 
and systems, like robotic systems that work together with 
humans in a shared physical space to reach a common goal i.e., 
collaborative artificial intelligence systems (CAISs) [3]. These 
systems rely on ML components to process external data, decide 
on the next action and learn from observations. 

Several properties, such as safety, robustness and accuracy 
are crucial in CAISs [4]. Safety risk assessment in industrial 
collaborative robots is guided by the ISO/TS 15066 which 
specifies safety requirements for collaborative industrial robot 
systems and the work environment. The standard provides four 
modes of operation to ensure safety within the system: safety-
rated monitored stop, hand guiding, speed and separation 
monitoring, and power and force limiting. The safety risk 
management of CAISs covered by the ISO 10218-1/ISO 
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102182/TS 15066 standards [5] aligns with the tenets of Industry 
5.0 [6] which aims at a human-centric industry. This can be 
achieved with CAISs by ensuring that workers are supported by 
autonomous intelligent machines in a safe manner.

Testing and safety analysis of these complex systems 
requires new approaches that are both efficient and effective 
because testing takes up a large chunk of software system 
development budgets. Simulation testing [7] has been used 
extensively to this end to conduct quick and less costly analysis 
of different complex systems since simulators present a simpler 
and more inexpensive way to test systems.

To address the challenges above, we demonstrate an 
approach that leverages a simulated CAIS where a human 
operator works alongside a roof-mounted ML-enabled robotic 
arm. Since the simulation is within a virtually controlled 
environment, the experimentation can be done with no risk to 
human life. Compared to a real-world CAIS system, it is way 
cheaper, changes and modifications to the system can be added 
quickly and most importantly, there is no risk for real persons 
and the physical system. For safety risk management in the 
simulated system, we employ a safety-rated monitored stop in 
which the identification of a hazard – in the form of a human 
hand close to a moving robot arm – initiates an emergency stop 
(IEC 60204-1 category 2 stop and IEC 61800-5-2 SOS)2. 

The robotic arm is equipped with a vision sensor mounted at 
its tip for obtaining continuous image streams and detecting
potential risks for the human operator and stops the robot, if 
necessary, via a control script. As a risk measure in the 
simulation, the distance between the operator’s hand and the tip 
of the robotic arm is used. Specifically, two different YOLO [8] 
models for object detection methods are applied and both rely 
on a deep convolutional neural network (CNN) architecture 
trained from scratch as well as via transfer learning i.e., using a 
testing a model pre-trained on real life data on data generated 
from the simulation and compared in terms of speed and 
prediction accuracy.

CONTRIBUTIONS. Through this paper, we contribute to 
the existing literature in the safety analysis on ML-enabled 
systems through the following:

We highlight the need for real-time object detection as
a safety function based on ISO 10218-1/ISO 10218-
2/TS 15066 safety risk management standards in
collaborative ML-enabled systems.

We explore the potential of transfer learning of existing
object detection models from real to virtual as way to
quickly validate the models.

We present an argument for the use of simulators in
safety analysis of ML-enabled systems.

We carry out an experimental campaign on a simulated
industrial CAIS to demonstrate our approach which to

2 https://www.controlengeurope.com/article/109959/EN-
61800-5-2--more-than-just-Safe-Torque-Off.aspx  

the best of our knowledge is a pioneer example in the 
safety analysis of ML-enabled systems.

We evaluate the performances of the selected object
detection approaches.

The remaining part of the paper is structured as follows: 
Section II introduces the theoretical background of the applied 
methods, in Section III, our approach is explained in detail, a 
brief discussion of the preliminary results ensues in Section IV 
and finally, in Section V, a summary of this work and an outlook 
for the future are highlighted

II. BACKGROUND
Making sense of a scene, real or virtual, comes rather 

naturally to humans and they can decipher objects within an 
image more easily. Teaching a computer to identify objects 
usually requires thousands of training samples. With object 
detection, machines can localize objects within an image. 
Indeed, a high predictive performance and real-time discernment 
of objects are necessary for human-like object detection in 
computers. Accordingly, real-time means that the objects in an 
image must be detected within the time it takes until another
frame surfaces (i.e., consecutive frames of a video stream [9]).

AI researchers have developed different approaches for 
object detection. Section II-A provides the basis for a popular 
network in artificial intelligence on which complex systems such 
as convolutional neural networks (Section II-B), learning and 
decision-making tasks are built. Section II-C introduces to the 
usage of (convolutional) neural networks for object detection

A. Neural network
The first proposal of artificial neurons predates the invention 

of electrical computers and goes back to McCulloch and Pitts 
[10]. Their neurons have a set of input and control signals, and 
one output signal. This simple neuron only works with binary 
data. It is possible to create logical AND, OR and NOT gates, 
which build a functionally complete set. Therefore, every 
Boolean function can be built from McCulloch-Pitts neurons.

Figure 1. Neuron and fully connected neural network. Left: Model of a single 
neuron. The output of the neuron is the activation of the weighted sum of all 
inputs ( ). Right: Example of a fully connected neural network. 
Each circle represents a neuron. The network has one input layer, four hidden 
layers and one output layer.

A neural network can be constructed from multiple neurons 
by arranging them in layers and using the outputs from one layer 
as the input for the next layer. The first layer is called the input 
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layer, the last one output layer and all layers in between are 
hidden layers. More details about how neural networks work can 
be found in Werbos [11] and Rumelhart et al. [12].  

A simple network is shown in Figure 1. It is called fully 
connected since every output of a layer is an input of every 
neuron in the next layer.

The evaluation of a fully connected neural network is done 
via forward propagation (i.e. evaluate the first layer, use the 
output to evaluate the second one and so on). The output oi of 
layer i is calculated as follows:

Note that W(i) is the matrix obtained by stacking all the (row) 
weight vectors for each neuron (w in (1)) in the i-th layer and 
that gmai(·) is applied element-wise. The activation function for 
different layers can be different. Typical nonlinear activation 
functions that are used are:

If a linear activation function is used at each layer, for 
example, the identity function, then one can always find an 
equivalent neural network without a hidden layer, since all the 
matrix multiplications can be simplified to one.

B. Convolutional neural network
The task of image recognition can also be performed with a

fully connected network, where the different pixel values are 
used as input for the neural network. However, in images nearby 
pixels are stronger related than distant ones and object features 
are present in local parts of an image. Therefore, fully connected 
networks have many unnecessary connections. Furthermore, the 
exact position of an object within the image is most of the time 
irrelevant. Building those principles into a neural network was 
first done by LeCun et al. [13], where they trained a neural 
network to recognize handwritten digits in zip codes.

To extract the local features in an image, a convolutional 
layer is used. In difference to a fully connected layer, it is only 
connected locally in a regular pattern. The result after the 
convolution is a large feature vector. Since the exact location is 
often not important, a pooling layer can be used for 
simplification, where values are aggregated over a 

neighbourhood, e.g. via max- or mean-pooling. Neural networks 
which include one or more convolutional layers are called 
convolutional neural networks (CNNs).

Over the past decade, the accuracy of CNNs has been greatly 
improved by adding more layers, creating so-called deep CNNs. 
One of those models, AlexNet by Krizhevsky et al. [14], won 
the ImageNet Large Scale Visual Recognition Challenge [15] 
with a big lead over the second place. Since then, classification 
tasks are dominated by neural networks over the classical 
approaches.

C. Object detection with convolutional neural networks
Different approaches for object detection with CNNs have

been developed and improved, each trying to outperform the 
other. Prominent examples are YOLO (you only look once) [8], 
SSD (single shot detector) [16] and RetinaNet [17]. 
Improvements made to YOLO (YOLOv3) [18] led to a huge 
performance increase, outperforming the other networks [18] as 
shown in Figure 2. Over the years, many modifications have 
been added to the YOLO architecture, with the most recent 
version being YOLOv8 introduced by Jocher et al. [19]. 

However, many implementations still use YOLOv3 due to 
its reliability. 

Figure 2. Runtime comparison of different CNN models for object detection. 
Figure taken from [18].

Object detection is that the latter finds the bounding box of 
an object within the image. In the case of YOLO, the bounding 
box annotations are defined in a text file, each line contains 5 
numbers (without <>): 

< label > < cx > < cy > < wx > < wy > (3) 

The label is an integer starting from 0. It is up to the user to keep 
track of what real label (e.g. dog, cat, hand, ...) the number 
corresponds to. Usually, all labels are defined in an extra text 
file, in the first line is the name of the 0th object, in the second 
line of the 1st object and so on. The floating-point numbers cx 
and cy are the bounding box centre coordinates, normalized by 
the image width and image height respectively. wx and wy are 
floating point numbers of the bounding box width and height, 
again normalized by the image width and image height 
respectively.

(1)

o1 = 1 W(1)x

o2 = 2 W(2)o1

...

oi = i W(i)oi-1

(2)

x) =
1

1+ e-x : logistic sigmoid

tanh(x) =
ex - e-x

ex + e-x : hyperbolic tangent

max (0, x) : rectified linear unit (ReLU)

H(x) = 1    x > 0 : Heaviside step function
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III. APPROACH
The workflow applied in this work is illustrated in Figure 3. 

As shown, the tester (domain expert) defines relevant domain 
features that would be serve as parameters for a test case 
generator (a random search algorithm). Next, the search 
algorithm creates a set of randomly generated test data that is fed 
into the simulator to create different scenarios for which the 
vision sensor my capture different image frames of the scene. 
When the simulation is run, the vision sensor captures images of 
within its point-of-view (POV) and saves them. From the 
images, a training dataset is created which is used to train a 
model for object detection. This model is then used to stop the 
simulation if an emergency is detected.

Figure 3. Illustration of the workflow used to implement the real-time object 
detection campaign in a simulator. 

Overall, there are two major parts, the simulator (explained 
in Section III-B) where the simulation itself runs and the control 
package, from where the flow of the simulation is controlled. In 
the latter the object detection is implemented, see Section III-C
for details. 

A. Runtime System Specification
All the programs and libraries used for the implementation

are available for Windows and Linux operating systems. Table I
shows the system properties and libraries inculcated in the 
implementation used. NOTE: the libraries may depend on 
additional requirements. 

Table I. System and Simulation Environment Properties

Feature Description/Component
Operating system Windows 10 Pro (64bit)
CPU Intel Core i7-2600, 3.40GHz
GPU NVIDIA GeForce GTX 970 (4GB)
Simulation software CoppeliaSim Edu 4.4.0
Control 
environment 

Python 3.9.0; NumPy1.24.2; OpenCV 
4.7.0.72; PyTorch 2.0.1+cu118; ImageAI 
3.0.3; PyZMQ 25.0.0; Ultralytics 8.0.111

B. Simulation
The simulation itself is implemented with the robot

simulation software CoppeliaSim [20]. A snapshot of the 

3 https://zeromq.org/

working example of the simulated system is shown in Figure 4. 
The CAIS in the simulation consists of two protagonists, the 
human operator (called Bill) and a robotic arm. Both have the 
task to grab a green cube that lies on the conveyor belt. The 
robotic arm has a visual sensor at its tip and takes images with a 
resolution of 256 × 256 px.

Figure 4. Overview of the simulated CAIS. Bill, the human operator stands next 
to a table with a conveyor belt. A green cube is placed on top of it. On the ceiling 
is a robotic arm mounted. At its tip, a vision sensor is placed. The viewing 
frustum of the vision sensor is outlined by the blue lines.

1) Simulation environment: The simulation environment
typically has properties and parameters defined as part of a
scene and runs in discrete time steps that may be altered e.g., dt 
= 50ms. By default, a scene must have a main script 
(programmed with Lua [21]) and contains the fundamental code 
that allows a simulation to run through a collection of four 
callback functions: sysCall init, sysCall actuation, sysCall 
sensing and sysCall cleanup. The main script can interact with 
a simulation ”control” script also directly programmed within 
the simulation scene as a child script or as an external script. 
The two main actors in the simulation are Bill and the robotic 
arm.

Both actors aim to pick and move the cube away from the 
collaborative space, as they proceed on each timestep. In total, 
seven (7) free parameters (domain features) in the simulation are
randomly assigned values from an automated control script: 

1:  Actuation delay for Bill
2:     Hand movement speed for Bill
3:     Actuation delay for the robotic arm
4:     Movement speed of the robotic arm
5-7:  RGB colour values of the ambient light

2) Control system: The simulation parameters and
evaluation of a run are implemented in Python programs. To
connect to CoppeliaSim the ZeroMQ3 remote API is used. 

simulator

object
detection

emergency stop

simulation
status

tester

domain
features

safety requirement
( )( )safety zone

object detection
results 

vision
sensing

training
dataset

model
training 

test case
generator
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ZeroMQ is a high-performance asynchronous messaging 
library which is available for many different programming 
languages and operating systems. The simulation software 
opens a TCP port (default 23000) which can then be accessed 
to get the state of the simulation, set parameters and advance 
the time steps. Since the communication is TCP based, the 
control environment does not have to run on the same system 
as the simulation; an own dedicated machine can be used. 

C. Implementation
Two versions of the YOLO object detection models4 were

deployed in our work. They were implemented as part of the 
control script in Section III-B2 and linked to the simulation from 
where continuous images are sent from a vision sensor 
connected to the tip of the robotic arm. 

1) Dataset: The first step towards training both methods
was to generate two datasets of images. One for training and
one for testing. To generate the images, the simulation was run
500 times with random parameters and the images captured by
the vision sensor were saved. Then the images were sorted
manually into the ones with a hand present and those without a
hand. From the total number of available images, 2960 images
were selected for the training set and 500 for the test set each
with and without a hand respectively.

Figure 5. Three example images from the training for different light conditions 
and hand positions. The images have a resolution of 256 × 256px. 

The neural network approach only needs the training 
samples with a hand, called positive samples. However, those 
images must be labelled according to the YOLO label format 
(see (3)). LabelImg [22] was used to label the images since it 
provides a convenient graphical user interface (GUI) to quickly 
label a set of images. A rectangular box can be drawn around the 
object one wants to label, and the label of the object can be 
selected - in our case, the object of focus is Bill’s hand within an 
image frame. 

The labels are saved into a text file with the same name as 
the image (except for the file extension). During the labelling 
process, a few misclassified images were noticed and removed 
from the data set. This resulted in the datasets listed in Table II. 
Examples of the images are shown in Figure 5. In total, the 
labelling took roughly 6 hours. 

4 The object detection models have been packaged as a Python 
library at https://github.com/PatrickAschenbrenner/cais_rtod. 

Table II. Number of images in the training dataset and the testing dataset.

Images with hand Images without 
hand 

Training dataset 2960 2960 
Testing dataset 500 500 

2) Object detection using YOLOv3: For YOLOv3, the
ImageAI [23] Python library was used and relies on PyTorch 
[24]. The library implements the YOLOv3 architecture and has 
pre-trained models available. There are different ”sizes” of 
YOLO available with different numbers of weights. In this 
work, only the tiny-YOLOv3 version was used because GPU 
resource constraints. For the training process, the dataset is 
required to follow a strict directory structure where the 
generated images are named similarly as their annotations as in 
imagexxx.jpg should have a corresponding imagexxx.txt. 

The names of the parent directory and the images do not 
matter. However, the annotations must have the same name as 
the images, except for the file extension. Note that the images 
for training and validation are both from the training dataset 
described in Section III-C1, 20% of the images are taken for the 
validation process and 80% for training. The tiny-YOLOv3 
model was trained with an upper limit of 1000 epochs with a 
batch size of 16. 

The YOLOv3 source code was modified to stop model 
training since there is no method for early stopping (and to 
prevent overfitting) of the training process in the ImageAI 
implementation of YOLOv3 if the model performance on the 
validation set no longer increases for 50 consecutive epochs. 
While training a neural network from scratch can take quite 
some time, transfer learning may be used leverage the 
knowledge of already trained networks by initializing the 
weights of a new network with the solution of a different 
network (that solves a similar problem) [25] - in our case, 
moving from real to virtual. A more recent discussion can be 
found in the work of Zhuang et al. [26]. To investigate the 
different behaviours, the networks were both trained from 
scratch and as well implemented in a transfer learning paradigm. 

3) Object detection using YOLOv8: YOLOv8 is the most
recent version of the YOLO model available in a Python library 
from Ultralytics [19]. Its implementation is similar to 
YOLOv3, as described in the previous section. Two small 
differences for the training process are, that the directory 
annotations must be renamed to labels and that the location of 
the training images must be specified in a separate YAML file 
[27]. Otherwise, the same training images, batch size and 
number of training epochs were used. YOLOv8 also comes in 
different model sizes: nano, small medium, large and extra-
large. In this work, the nano and small versions were trained, 
both from scratch and with transfer learning. 
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D. Object Detection Integration
The A simple example of how different detection methods is

shown in Listing 1. 
1 from cais_rtod.detector import YOLOv3, YOLOv8
2 
3 img_file = "random/image.jpg"
4 # image can also be an in-memory opencv image
5 # img_file = cv2.imread("random/image.jpg")
6 
7 # YOLOv3
8 yolov3_detector = YOLOv3()
9 prediction = yolov3_detector.predict(img_file)
10 if prediction == 1:
11  print("Hand detected with YOLOv3") 
12
13 # YOLOv8
14 yolov8_detector = YOLOv8()
15 prediction = yolov8_detector.predict(img_file)
16 if prediction == 1:
17 print("Hand detected with YOLOv8")

Listing 1. Example of how the different detectors can be used in Python to 
predict if a hand is present in an image. Note that the detectors should only be 
called once (lines 8 and 14 in the code above) if multiple images are analysed. 
The library can also be used to draw bounding boxes around the detected hands, 
an example can be found in the repository containing the Python library.

IV. PRELIMINARY EVALUATION
In this section, we demonstrate how the different approaches 

performed with the testing dataset using common evaluation 
metrics [28], [29] according to the following image 
classification definitions:

True positive (TP): Number of images with hand,
correctly classified
True negative (TN): Number of images with no hand,
correctly classified
False positive (FP): Number of images with no hand,
incorrectly classified
False negative (FN): Number of images with hand,
incorrectly classified

The values resulting from determining how the different 
images are classified by the object detection models are then to 
calculate the metrics in (4). 

The above metrics are useful for classification tasks. 
However, in object detection, one wants to also know how well 
the predicted bounding box fits. To compare the true box with 

5 https://github.com/OlafenwaMoses/ImageAI/releases/download/3.0.0-
pretrained/tiny-yolov3.pt

the predicted one, the intersection over union (IoU) is used. It is 
defined as the ratio of the intersection of the two bounding boxes 
over the area of their union.

A common metric to measure how well bounding boxes are 
predicted is the mean average precision (mAP, mAP@50 if IoU 

A 
detailed explanation of how it is calculated can be found in [30]. 
However, since our focus is on assessing safety risk, it is 
sufficient that the models identify an arm fully or in part within 
an image frame to trigger an emergency stop.

A. YOLOv3
The YOLOv3 network was trained from scratch and with

transfer learning. For the former, the network was trained from 
scratch for 2000 epochs without early stopping. This number 
was chosen as it is significantly higher than the number chosen 
for early stopping and training could still be completed in a 
reasonable amount of time. However, training for more epochs 
decreased the accuracy of the network. The training time for 
early stopping was below 1h, while the full 2000 epochs took 
30h. The evaluation of the full test dataset was about 22.3 ± 0.3s 
on the GPU and 129.1 ± 0.6s on the CPU. For the latter, the 
weights were initialized with those from a pre-trained model on 
the COCO dataset [31] provided by ImageAI5. 

Figure 6. YOLOv3 example images. Top: Four false negatives from the test 
sample. Bottom: Selection of correctly identified images.

The results for the different models are listed in Table III. 
The minimum confidence level for detection is set to 40%. The 
best performance is obtained from the transfer learning model. 
From the test set only five images with a hand were misclassified 
(FN = 5) and none of the images without a hand (FP = 0). 
Examples of detected hands are shown in Figure 6. 

B. YOLOv8
Similar to YOLOv3, the YOLOv8 networks were trained

from scratch and with transfer learning, both with early stopping 
enabled. The nano and small implementations of the YOLOv8 
architecture were used to achieve the best framerate. For transfer 
learning the pre-trained model provided by Ultralytics, which 
was originally trained on the COCO dataset, was used. The 
minimum confidence level for detection is set to 40%. 
Compared to YOLOv3 the training time per epoch is faster. The 

(4)

True negative rate (TNR): 
TN

TN+FP

Precision: 
TP

TN+FP

Recall (True positive rate (TPR)): 
TP

TP+FN

Accuracy: 
TP+TN

TP+FP+TN+FN
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evaluation of the complete test dataset for nano-YOLOv8 (12.0 
± 0.1s) and small-YOLOv8 (13.0 ± 0.1s) models are 
approximately twice as fast as that of the tiny-YOLOv3 model 
as shown in Table III. Expectedly, the nano models have a higher 
frame rate than the small models. The small pre-trained model 
achieved the best accuracy, with FN = 3 and FP = 7. In Figure 7 
some example images are shown. 

Figure 7. YOLOv8 example images. Top: Misclassified images. From left to 
right are two false negatives and then two false positives Bottom: Selection of 
correctly identified images. 

C. Implication of the Results
In terms of the actual performances of the models, the results 

are consistent with findings from a similar work on real-world 
datasets which compares variants of YOLOv3 and YOLOv5 
[32]. Although in our implementation there weren’t significant 
differences in the accuracy, precision and recall of the models, 
the differences are more noticeable in terms of speed of 
detection whereby YOLOv8 variants have faster detection rates 
that YOLOv3.  

The results in the previous sections showcase promising 
potential for proactive identification of potential safety hazards 
before deploying the CAIS in the real world allowing for 
adjustments to be made to the system or the environment to 
mitigate risks. For instance, if the performances of the models 
were to be low in general or lower than a certain set threshold, 
additional models can quickly be implemented, or the existing 
models modified and tested until a desired outcome is obtained. 

Additionally, the simulation testing process can be extended 
for real world systems with minimal cost implications either 
financially or in terms of human effort needed. For instance, 
while in this work, we have relied on using transfer learning of 
object detection models trained on real-world data, for use in a 
virtual domain, the reverse is also possible i.e., training the 
models on synthetic data and then transferring them for use in 
real-world systems with little adjustments made to system. 

Furthermore, it is important to bear in mind that simulated 
environment may not perfectly reflect the real world. Several 
environmental and system factors like lighting variations, sensor 
noise, and unexpected object appearances may be difficult to 
obtain in a simulator. Therefore, discrepancies may occur 
between simulation results and real-world performance, and 
these must be accounted for. 

V. CONCLUSION & OUTLOOK
In this work, we argue for the need for safety risk analysis in 

critical ML-enabled systems using simulations. Accordingly, we 
present two different YOLO models for real-time object 
detection: YOLOv3 and YOLOv8 which rely on a deep CNN in 
a CAIS simulation. The models have been composed into an 
easy-to-use Python library and can be added to an existing 
simulation control environment without the need to rewrite the 
existing code. The simulation showcases a collaboration 
between a human operator and a robotic arm equipped with 
vision sensor detect a potential risk for the operator (Bill), 
completing a simple pick and move task. 

Both models achieved similar accuracy ( ) and 
precision ( ). However, YOLOv8 achieves higher 
detection rate of about 83FPS (12.0ms inference time) nearly 
twice the evaluation speed of YOLOv3 with 44FPS (22.7ms 
inference time) although both required dedicated GPU for 
training and testing. For early stopping, both models were 
trained in approximately 1-2 h. Noticeably, longer training did 
not result in better performance. 

For future use cases, the implementations must be tested for 
robustness. This work only considered 7 domain features and the 
models were trained based on the assigned of random values to 
the various features. Additional parameters and changes in the 
scenery may alter the look of the captured images to an extent 
where they differ too much from the training images. 

One may also use the size information from the predicted 
bounding box to estimate the distance between the robotic arm 
and the hand of the operator so that a more fine-grained risk 
estimation can be applied in combination with applicable safety 
assessment standards. For example, a speed and separation 
monitoring (SSM) based risk management process may be used 
instead of the safety-rated monitored stop. 

Future work would explore if a model trained on synthetic 
data only can be tested on real-world data by initially training 
with a large set of simulated data, and afterwards, only a small 
training sample from the real world is needed. However, 
additional parameters such as shadows and occlusion which are 
practical phenomena in the real world must be considered. 
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TABLE III. Summary of the different metrics for the YOLOv3 & YOLOv8 implementation. The models are trained with transfer learning and from scratch. 
The training stopped if the performance (mAP@50 of the validation dataset) did not increase for 50 epochs. For comparison, one YOLOv3 model was trained 

for 2000 epochs. 

tiny- 
YOLOv3 
pretrained 

tiny- 
YOLOv3 
pretrained 

tiny- 
YOLOv3 
scratch 

nano- 
YOLOv8 
scratch 

small- 
YOLOv8 
pretrained 

nano- 
YOLOv8 
scratch 

small- 
YOLOv8 
scratch 

Training time 54min 55min 30.6h 0.81h 1.2h 1.9h 1.7h 
Epochs 59 55 2000 117 118 274 177
Model size 33.1MB 33.1MB 33.1MB 5.9MB 21.4MB 5.9MB 21.4MB 
FPS (GPU) 44.8 44.8 44.8 83.1 76.7 83.1 76.7 
FPS (CPU) 7.7 7.7 7.7 18.5 8.8 18.5 8.8 
TNR 1 0.996 0.972 0.968 0.986 0.976 0.98 
Precision 1 0.996 0.972 0.969 0.986 0.976 0.98 
Recall 0.99 0.982 0.99 0.998 0.994 0.996 0.99 
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Accuracy 0.995 0.989 0.981 0.983 0.99 0.986 0.985 




