
DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

Many a Little Makes a Mickle: On Micro-
Optimisation of Containerised Microservices

Zheng Li
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
Belfast, United Kingdom

ORCID: 0000-0002-9704-7651

Abstract— Performance optimisation is a key to the success of
microservices architecture. Correspondingly, many studies have
been conducted on optimising orchestration or composition of
multiple microservices within different application contexts.
Unlike the existing efforts on the global optimisation, we are
concerned with the internal optimisation of individual
microservices. Considering the loosely coupled nature of
individual microservices, their performance improvements could
be independent of each other and thus would naturally bring
benefits to their composite applications. Driven by such intuitive
ideas together with the de facto tech stack, we have been working
on micro-optimisation of containerised microservices at the
Operation side (i.e., Ops-side optimisation) against the
Development side. Based on both theoretical discussions and
empirical investigations, our most recent work delivered three
micro-optimisation principles, namely just-enough
containerisation, just-for-me configuration, and just-in-time
compilation (during containerisation). Our current research
outcomes have not only offered new ideas and practical strategies
for optimising microservices, but they have also expanded the
conceptual scope and the research field of software micro-
optimisation.

Keywords-containerisation; DevOps; micro-optimisation;
microservice; Ops-side optimisation; performance engineering

I. INTRODUCTION

Since microservice-based applications may suffer from
intrinsic performance penalties due to their distributed nature
[1], it has been identified that performance optimisation is a key
to the success of microservices architecture [2]. Unlike the
existing studies that directly aim at application-level
optimisation (e.g., through resource provisioning [3] or
microservice placement [4]), we wonder if there are
opportunities to focus on every single microservice to optimise.
Intuitively, and depending on the application topology, a many-
microservice application may obtain enormous benefits if every
microservice contributes a little performance improvement.
Even if the eventual application benefits are only “small
efficiencies” [5], the microservice-level optimisation will still be
worth it, because modern (Web) applications are generally
performance sensitive, e.g., “every drop of 20 ms... latency will
result in a 7–15% decrease in page load times” [6].

Driven by these intuitive ideas, we defined the following
research question to unfold concrete investigations and to
distinguish from the application-level optimisation studies:

RQ: Can we, and if yes, how do we conduct application-
agnostic optimisations to improve the performance of
individual microservices?

Inspired by the single-purpose feature of microservices, our
current investigation efforts are paid to the micro-optimisation
opportunities. Traditionally, low-level optimisation may not be
considered as a good idea because it tends to be platform-centric
[7]. When it comes to the containerised microservices, the
containerisation mechanism encapsulates microservice
components and their runtime environment all together, which
means that the microservices’ platform details (e.g., the OS
kernel, word size, and CPU instruction set architecture) are all
settled in advance. Then, there will be nothing wrong to conduct
platform-centric optimisations in this situation.

Moreover, given the convergence of infrastructure as code
and container technologies [8], containerised microservices
should be able to enjoy more micro-optimisation opportunities,
not only at the Development side (i.e., Dev-side optimisation in
source code files) but also at the Operation side (i.e., Ops-side
optimisation in Dockerfile, shell scripts, and machine-readable
definition files). To verify this new idea, we further narrow
down our focus to micro-optimisation with respect to
containerisation. At the time of writing, our ongoing work has
developed three micro-optimisation principles, and we name
them as just-enough containerisation, just-for-me configuration,
and just-in-time compilation (during containerisation). By
reporting and justifying these principles, this paper makes a
twofold contribution:

In theory, this work expands the conceptual scope of,
and reveals new research opportunities in the field of,
software micro-optimisation. To our best knowledge,
this is the first study that advocates and investigates the
low-level, Ops-side optimisation.
In practice, this work suggests new strategies to
optimise containerised microservices. These strategies
would be increasingly applicable, along with the fast-
growing DevOps ecosystem that heavily leverages
infrastructure as code and container technologies.

II. RELATED WORK

A. Microservices Optimisation
Exploring “microservice(s) optimisation” in the literature

will bring a tremendous number of studies on optimising

68

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

orchestration or composition of multiple microservices, within
different application contexts. By distinguishing between
scalable (e.g., cloud) and restricted (e.g., user device) runtime
environments, the existing studies generally formulate
microservices optimisation either as resource-provisioning
problems or as microservice-placement problems, with different
objectives and different solution proposals.

In particular, we have observed a broad range of optimisation
objectives including, for example, minimising response
time/latency [4], resource consumption/cost [3], [9], energy
consumption [10], failure rate [10], etc.; and maximising
reliability [4], [9], resource utilisation efficiency [3], network
throughput [10], load balancing [4], [9], etc. Correspondingly,
the proposed solutions also vary hugely, such as particle swarm
optimisation, non-dominated sorting genetic algorithm III
(NSGA-III), fine-tuned sunflower whale optimisation
algorithm, ant colony algorithm, knowledge-driven evolutionary
algorithm, Lagrangian multipliers, etc.

It is worth noting that although some researchers claim to
have worked on the performance tuning [11] and configuration
adjustment [12] of individual microservices, their research work
still measures and refers to the application indicators to conduct
the optimisation. In contrast, our research focuses on the
application-agnostic optimisation of microservices; and more
distinctively, we aim to optimise microservices during their
containerisation process before the runtime execution.

B. Software Micro-Optimisation
Since we have not found any study on micro-optimisation of

microservices, we consider the generic software micro-
optimisation as a related topic to our research.

Software micro-optimisation is generally defined as the
source code-level optimisation (e.g., using StringBuilder instead
of String in Java) without changing the software architecture,
design, and algorithms [13]. According to the literature, the
community seems to have opposite opinions about software
micro-optimisation. By citing Sir Tony Hoare’s famous quote
“premature optimisation is the root of all evil” (popularised by
Donald Knuth) [5], “we should forget about small efficiencies”
has been argued as a best practice of software engineering and
even as a rule of programming [7]. Except for the unawareness
of software micro-optimisation by some practitioners, the main
concern is that micro-optimisation may not be a worthwhile
investment of time compared to macro-optimisation [13], [14].

In the meantime, there are also advocates of software micro-
optimisation. A direct response to the aforementioned concern is
that it is always worth investing developers’ time to save
software users’ time [5]. Another investigation empirically
justifies how worthwhile the micro-optimisation can be, by
tweaking a piece of code that is responsible for a substantial
proportion of the execution time [14]. After all, given the
software crisis behind the continuously growing CPU power, it
is never enough to emphasise the optimisation of software
systems.

We are also convinced of the value of software micro-
optimisation, because “any (even small) performance
improvement will matter” in modern computing paradigms (e.g.,
IoT, edge, fog, cloud) [6]. Particularly, we are further concerned
with the micro-optimisation at the Ops side instead of Dev side.

III. THREE MICRO-OPTIMISATION PRINCIPLES

To better introduce the three micro-optimisation principles,
we particularly highlight the justification for each principle
description, in separate subsections.

A. Just-enough Containerisation
1) Principle Description: When wrapping up target

functionalities into a containerised microservice, the
containerisation should include just-enough software
components and minimise the installation of just-in-case
programs and middleware.

2) Justification: When it comes to deploying a
microservice-based application, it has been widely discussed
that the co-located microservices in a multi-tenant environment
can interfere with and slow down each other due to the
competition for non-partitionable resources, and the resource
competition may eventually cause unpredictable behaviour and
performance degradation of the microservice-based application
[15], [16].

In fact, if zooming into an individual microservice, we can
also expect to see the resource competition among its co-located
components. Recall that each microservice is a (single-purpose)
software application and controls its own data [17]. Since a
single-purpose application is still composed of multiple
components (e.g., codebase modules and a database
management system), a containerised microservice can include
multiple containers, and each container encapsulates a software
component together with the component’s entire runtime
environment. Therefore, such a multi-container microservice
should naturally be recognised as a multi-tenant system.

Furthermore, to support the main functionalities, each
containerised software component may also install its enabling
services, registry entries, background tasks, drivers, shared
libraries, etc. on the fly during the image building process. Thus,
the containerisation of any software component would incur
extra performance overhead. Even if there is no resource
competition by those inactive software components at runtime,
the unneeded installations will unnecessarily increase the size of
the corresponding microservice, and it has been empirically
identified that the unused stuff is the major cause of memory
waste [13].

B. Just-for-me Configuration
1) Principle Description: Without changing the codebase

and the predefined tech stack, it is worth customising the
configurations of microservice components during the
containerisation, to better support the microservice’s non-
functional features.

2) Justification: Aligning with the single-responsibility
principle “do one thing and do it well”, the loosely coupled
microservices are supposed to work (largely) independently on
different single purposes, even within the same application
context. Since each microservice may have its own and unique
runtime characteristics, there does not exist a one-size-fits-all
configuration to maximise the potentials of different
microservices. For example, without understanding the data
needs of individual microservices and accordingly planning
respective strategies, the efficient cache configurations for one

69

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

microservice (e.g., Django’s caching framework and MySQL
query cache) could result in inefficient caching and
performance degradation for another microservice [18].

Another typical example is when containerising
microservices that involve database systems, a microservice can
achieve higher performance by optimising its database
performance against its specific workload and dataset [19]. For
instance, we can create additional indexes to expedite data
retrieval for stateless queries. Besides the existing database
tuning tips, in this paper we particularly report our experience in
tweaking read-only database containers to exemplify and justify
the micro-optimisation’s effectiveness and efficiency.

According to Docker, the official mechanism of
containerising a read-only database is to use the read-only
parameter to specify a mounted data volume as read-only. 1

However, mounting data volumes “by punching a hole through
the container” has been considered unreliable [20], and thus it
has been argued that containers cannot be a secure candidate
solution for database [21]. In our project, we advocate pre-
baking read-only data into container images to avoid mounting
external volumes. By making such a customisation, this
unofficial mechanism can not only intrinsically enable read-
only databases (because the pre-baked data are immutable in
image) but also improve the reliability of database containers
(because no “hole” exists through the container).

We have also compared the data retrieval performance
between these two mechanisms of containerising read-only
databases. The testbed was set up on a clean HP OMEN laptop
of model 17-an003la (with Intel’s four-core CPU Core™ i7-
7700HQ at 2.8 GHz base frequency). After re-installing 64-bit
Ubuntu 20.04 as the operating system (OS), we further installed
Docker 20.10.2, Python 3.8.5, and Jupyter Notebook 3.8.5. To
facilitate observation, we intentionally employed large-size
datasets (up to about 160 MB) to measure the latency of data
retrieval from MySQL 5.7.34, in order to magnify the
performance difference.

Given the experimental results2 as shown in Figure 1, it is
clear that pre-baking data into image can even achieve
performance advantage over mounting data volumes. In other
words, this micro-optimisation can bring multiple non-
functional benefits to read-only database containers as well as
their supported microservices

C. Just-in-time Compilation (during Containerisation)
1) Principle Description: When applicable, it is worth

compiling the interpreted microservice components during the
containerisation process, to avoid (or at least minimise) the
interpretation overhead in the runtime of containerised
microservices.

2) Justification: Driven by the needs of reducing
development costs cross heterogeneous platforms, “write once,
run anywhere” has become a standard practice in software
industry. Despite various implementations of this standard
practice, the essential enabling technique is to equip the
development with a pervasively installed middleware (e.g., a
runtime framework or a code interpreter) that abstracts the

1 https://docs.docker.com/storage/volumes/
2 The experimental source files and documentation are shared at https://doi.org/10.5281/zenodo.8341856

underlying details of different platforms. Nevertheless,
constrained by the No-Free-Lunch theorem of optimisation
[22], it is also well known that the middleware-aided code
translation will impose a performance penalty whenever it runs.

To alleviate the performance penalty, there emerges a
runtime compilation strategy, i.e., translating source code or
bytecode into machine code during the first-time execution of a
program. However, this will meanwhile introduce a warm-up
latency to the executables due to the extra computational
overhead for interpreting, compiling, and linking the code.

Recall that one of the best practices of containerisation is to
not only import an OS base image but also specify the OS
version [23], while the container images must have targeted one
or more specific platforms (processor architectures) [24]. In
other words, a container’s production environment is already
(pre-)fixed when preparing its image. Therefore, we shall be able
to compile the to-be-containerised microservice components just
in time when building container images. In this way, we can
further avoid the aforementioned warm-up latency of the
relevant microservice components, and ultimately improve the
overall microservice performance at runtime.

In addition to the codebase components, the database part of
a microservice also has similar micro-optimisation
opportunities. Conventionally, given a SQL query, the database
system will first convert the query into an execution plan (i.e., a
sequence of data access steps) and then execute the plan via
interpretation. Since the performance of modern query engines
is increasingly dominated by the memory access and CPU usage,
there is an emerging trend in dropping interpretation in favour
of compilation [25]. As demonstrated by a quantitative study on
compiling a set of selected benchmark queries [26], although the
performance advantage varies case by case, the query execution
after compilation generally outperforms the query execution via
interpretation.

Similarly, the execution performance advantage also comes
with an extra overhead of compilation, which may make the
overall query processing take even longer time. To address this
problem, unlike the current research efforts that dominantly aim

Figure 1. Data retrieval performance comparison between two mechanisms
of read-only database containerisation.

70

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

to expedite runtime and session-specific compilation of dynamic
user queries [27], we argue to natively compile the pre-known
microservice-specific queries just in time during
containerisation, because this will extinguish the runtime
compilation overhead when executing the containerised queries.
In fact, we have seen promising techniques that are aligned with
this idea, e.g., SQL Server supports native compilation of tables
and stored procedures into DLLs.3

IV. CONCLUSIONS AND FUTURE WORK

Performance optimisation is crucial and valuable for the
implementation of microservices architecture. In addition to
globally optimising microservice-based applications by
adjusting resource provisioning and/or microservice placement,
we argue that the internal micro-optimisation of individual
microservices would also bring enormous benefits to
microservice-based applications. Although still at an early stage,
our theoretical discussions and empirical trials have led to a set
of micro-optimisation principles with initial validation of their
effectiveness and efficiency, at least at the Operation side for
containerised microservices.

On the other hand, there are clearly needs to enrich empirical
evidence for strengthening our developed principles and for
proposing new ones. Therefore, this early-stage research points
out two directions toward the immediate future work. Firstly, it
is worth keeping trying different micro-optimisation techniques
and quantitatively studying their effects in the context of a single
microservice. Secondly, it will be helpful to use the third-party
application benchmarks 4 to observe and investigate the
combined and overall effects of micro-optimising multiple
microservices.

REFERENCES
[1] S. Baškarada, V. Nguyen, and A. Koronios, “Architecting microservices:

Practical opportunities and challenges,” J. Comput. Inf. Syst., vol. 60, no.
5, pp. 428–436, 2020.

[2] Firdavs, “Quality Attribute Analysis in Microservices Architectures”
https://dev.to/firdavsm1901/quality-attribute-analysis-in-microservices-
architectures-33li, 13 Apr. 2024.

[3] M. Kumar, J. K. Samriya, K. Dubey, and S. S. Gill, “QoS-aware resource
scheduling using whale optimization algorithm for microservice
applications,” Softw.: Pract. Exper., vol. 54, no. 4, pp. 546–565, Apr.
2024.

[4] G. Fan, L. Chen, H. Yu, and W. Qi, “Multi-objective optimization of
container-based microservice scheduling in edge computing,” Comput.
Sci. Inf. Syst., vol. 18, no. 1, pp. 23–42, Jan. 2021.

[5] R. Hyde, “The fallacy of premature optimization,” ACM Ubiquity, vol.
10, no. 3, Feb. 2009, art. no. 1.

[6] Z. Li and J. Galdames-Retamal, “On iot-friendly skewness monitoring for
skewness-aware online edge learning,” Appl. Sci.-Basel, vol. 11, no. 16,
Aug. 2021, art. no. 7461.

[7] B. Smaalders, “Performance anti-patterns: Want your apps to run faster?
here’s what not to do.” ACM Queue, vol. 4, no. 1, pp. 44–50, Feb. 2006.

[8] J. Das, “Making infrastructure as code a better framework with
containers,” https://blog.aspiresys.com/infrastructure-managed-
services/making-infrastructure-as-code-a-better-framework-with-
containers/, 28 Sept. 2022.

[9] M. Lin, J. Xi, W. Bai, and J. Wu, “Ant colony algorithm for multi-
objective optimization of container-based microservice scheduling in
cloud,” IEEE Access, vol. 7, pp. 83 088–83 100, Jun. 2019.

[10] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled IoT,” IEEE Internet Things J., vol. 7, no. 7, pp.
6164–6174, Jul. 2020.

[11] V. M. Mostofi, D. Krishnamurthy, and M. Arlitt, “Fast and efficient
performance tuning of microservices,” in Proc. CLOUD 2021. Chicago,
IL, USA: IEEE Press, 05-10 Sept. 2021, pp. 515–520.

[12] H. Dinh-Tuan, K. Katsarou, and P. Herbke, “Optimizing microservices
with hyperparameter optimization,” in Proc. MSN 2021. Exeter, United
Kingdom: IEEE Press, 13-15 Dec. 2021, pp. 685–686.

[13] M. Linares-Vásquez, C. Vendome, M. Tufano, and D. Poshyvanyk, “How
developers micro-optimize Android apps,” J. Syst. Soft., vol. 130, pp. 1–
23, Aug. 2017.

[14] A. Trotman and M. Crane, “Micro- and macro-optimizations of SaaT
search,” Softw.: Pract. Exper., vol. 49, no. 5, pp. 942–950, May 2019.

[15] Y. D. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee, Z.
Kang, H. Sun, and A. Gokhale, “FECBench: A holistic interference-aware
approach for application performance modeling,” in Proc. IC2E 2019.
Prague, Czech Republic: IEEE Press, 24-27 Jun. 2019, pp. 211–221.

[16] D. Masouros, S. Xydis, and D. Soudris, “Rusty: Runtime interference-
aware predictive monitoring for modern multi-tenant systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 184–198, Jan. 2021.

[17] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan,
“A dataflow-driven approach to identifying microservices from
monolithic applications,” J. Syst. Softw., vol. 157, Nov. 2019, art. no.
110380.

[18] S. K. Shivakumar, “Web performance monitoring and infrastructure
planning,” in Modern Web Performance Optimization: Methods, Tools,
and Patterns to Speed Up Digital Platforms. Berkeley, CA: Apress, Nov.
2020, ch. 7, pp. 175–212.

[19] K. Kanellis, R. Alagappan, and S. Venkataraman, “Too many knobs to
tune? towards faster database tuning by pre-selecting important knobs,”
in Proc. HotStorage 2020. USENIX Association, 13-14 July 2020, art. no.
16.

[20] J. Tobin, “Are docker containers good for your database?” https://
www.percona.com/blog/2016/11/16/is-docker-for-your-database/, 16
Nov. 2016.

[21] S. Shirinbab, L. Lundberg, and E. Casalicchio, “Performance evaluation
of containers and virtual machines when running Cassandra workload
concurrently,” Concurrency Comput. Pract. Exper., vol. 32, no. 17, Feb.
2020, art. no. e5693.

[22] F. Rabhi, M. Bandara, A. Namvar, and O. Demirors, “Big data analytics
has little to do with analytics,” in ASSRI 2015, ASSRI 2017: Service
Research and Innovation, ser. Lect. Notes Bus. Inf. Process., A. Beheshti,
M. Hashmi, H. Dong, and W. E. Zhang, Eds. Cham: Springer, Mar. 2018,
vol. 234, pp. 3–17.

[23] Y. Wu, Y. Zhang, T. Wang, and H. Wang, “Characterizing the occurrence
of dockerfile smells in open-source software: An empirical study,” IEEE
Access, vol. 8, pp. 34 127–34 139, Feb. 2020.

[24] A. Mouat, “Multi-platform docker builds,”
https://www.docker.com/blog/multi-platform-docker-builds/, Mar. 2020.

[25] T. Neumann, “Evolution of a compiling query engine,” Proc. VLDB
Endow., vol. 14, no. 12, pp. 3207–3210, Jul. 2021.

[26] A. Rayabhari, “Compilation-based execution engine for a database,”
https://www.cs.cornell.edu/courses/cs6120/2020fa/blog/db-compiler/, 18
Dec. 2020.

[27] H. Funke and J. Teubner, “Low-latency compilation of SQL queries to
machine code,” Proc. VLDB Endow., vol. 14, no. 12, pp. 2691–2694, Jul.
2021.

3 https://learn.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/native-compilation-of-tables-and-stored-procedures?view=sql-server-ver16
4 https://github.com/delimitrou/DeathStarBench

71

