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Abstract—Simulation-based safety testing provides a cost-
effective method for testing Automated Driving Systems (ADS) 
across diverse scenarios. However, prioritizing or selecting test 
scenarios for simulation-based safety testing remains challenging 
due to the infinite variety of scenarios that ADS may encounter. In 
this study, we conducted a literature review to identify approaches 
for selecting or prioritizing scenarios for ADS safety testing. We 
compare the six identified approaches in a tabular form across 
various aspects. We discuss one approach in detail, illustrating 
how it could complement the other selected approaches through an 
example. Our ongoing work involves extending the comparative 
analysis to cover all approaches comprehensively. 

Keywords - Automated Driving System (ADS); Simulation- 
based Testing; Safety Testing, Scenario Selection; Scenario Pri- 
oritization. 

I. INTRODUCTION
Automated Driving Systems (ADS) represent a much-

advanced technology that has the potential to revolutionize the 
automotive and transportation industry [1]–[3]. An ADS is a 
safety-critical system that can perform Dynamic Driving Tasks 
(DDTs) without human driver assistance [4], [5]. An ADS is 
loaded with advanced technologies that can independently 
control the vehicle and make decisions regarding steering, 
acceleration, deceleration, braking, maneuver planning, and 
object detection [6], [7]. These control decisions are operational 
and depend upon the level of automation1. As automation levels 
increase, human driver involvement in driving decreases, with 
complete ADS control achieved at level 5. 

Despite many advancements in ADS, thorough testing and 
validation remain critical for ensuring their safety [9], [10]. 
Moreover, in the context of safety, even a single failure made by 
one manufacturer affects its reputation and undermines public 

1 The Society of Automotive Engineers defines six levels of automation for 
on-road automated vehicles. These levels are described in SAE safety standard 
J3016 [8] 

trust in the entire automotive industry, diminishing confidence 
in ADS. Thus, rigorous testing is required to build and maintain 
trust in ADS. 

Generally, there are two common methodologies for testing 
ADS: real-world testing [11], [12] and simulation-based testing 
[13]–[15]. In real-world testing, the ADS would have to be 
driven hundreds of billions of miles to prove that it is safer than 
a typical human-driven vehicle (HDV) [16], which is costly and 
risky. In contrast, simulation-based testing is a cost-effective 
way to assess ADS’s safety in various scenarios. [17]–[19]. A 
scenario refers to a specific situation the ADS under test 
(typically called an ‘ego vehicle’) might encounter during its 
operation. A scenario is defined through various components, 
including the ego vehicle itself, the static environment (such as 
roads, buildings, and infrastructure), the dynamic environment 
(such as other vehicles, pedestrians, and objects), and specific 
conditions (such as weather light, etc.) [20], [21]. These scenario 
components have specific elements and sub-elements [22]. For 
example, in the scenario, “An ego vehicle changes lanes on a 
highway during the night in rainy weather”, the sub-elements 
associated with the dynamic environment are the “ego vehicle” 
and “changes lanes”. “Highway” is the sub-element associated 
with the static environment while “rainy” and “night” are sub-
elements associated with conditions. 

An ADS could encounter infinite scenarios depending upon 
various factors, such as dynamic objects (pedestrians, vehicles, 
animals, etc.), static objects (traffic lights, sign boards, etc.), 
road typologies, weather, and lighting conditions. Combining 
these factors leads to infinite scenarios, and testing every 
scenario is not feasible, even in a simulator. 
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In this study, we aim to identify and compare the approaches 
defined in the literature for prioritization or selection of test 
scenarios to see how these approaches could help select test 
scenarios for simulation-based safety testing of ADS. This 
comparison could benefit both the automotive industry and 
academic research. The contributions of our study are: 

A literature review to identify the studies related to the
selection or prioritization of test scenarios for simulation-
based safety testing of ADS.
A comparison of selected approaches w.r.t the purpose and
scope of testing, input data type, input data content type,
datasets used, number of steps involved, scenario
components, supported simulator, tool support, open
source, and limitations.
A preliminary comparison via an illustrative example of
one of the selected approaches (SSTSS) could complement
other selected approaches. Detailed comparisons among the 
selected approaches are a work in progress.

The rest of this paper is organized as follows. Section II 
presents the related work. Section III presents the methodology. 
Section IV presents the results of the comparative analysis. 
Section V presents the discussion, and the conclusion and future 
work are given in Section VI. 

II. RELATED WORK
To the best of our knowledge, no similar study exists in the 

literature whose goal is to compare the approaches of scenario 
selection or prioritization for safety testing of ADS. However, in 
this section, we present related secondary studies focused on the 
testing of ADS. We also highlight how the automotive industry 
tests ADS safety and compares it to human drivers as a 
benchmark. 

A. Simulation-based Safety Testing of ADS
Tang et al. [23] presented a survey focused on module and

system-level testing of ADS. They analyzed how different 
modules are affected by various technical factors and 
highlighted issues during ADS’s development or deployment. 
Khan et al. [5] conducted a systematic literature review to 
identify safety features, testing methods, tools, and datasets used 
for the safety testing of ADS. Lou et al. [24] presented a 
comprehensive study to understand current ADS testing 
practices and needs by conducting interviews with companies 
and developers. They further analyzed the gap between ADS 
research and practitioners’ and suggested future directions, such 
as developing test reduction techniques to accelerate simulation-
based testing of ADS. [25] presented a survey focusing on the 
algorithms and tools used to generate critical scenarios in 
automated driving. They further identified challenges in existing 
approaches regarding safety-critical scenario generation 
approaches. 

2 https://waymo.com/blog/2022/09/benchmarking-av-safety 

B. Industry Practices for ADS Safety Testing
In the automotive industry, simulation-based testing of ADS

is widely used as an alternative to real-world testing [24]. In a 
recent study2, Waymo compared the simulated performance of 
its autonomous Waymo driver to human drivers involved in fatal 
crashes in Chandler, Arizona, between 2008-2017. They 
modeled and simulated a non-impaired human driver (NIEON). 
The Waymo driver consistently did better than this high 
benchmark by avoiding 100% of crashes, except when struck 
from behind. Additionally, in collision simulations, the Waymo 
driver surpassed the NIEON model, avoiding 75% of crashes 
and reducing severe injury risk by 93%. 

Cruise3  also evaluated the safety performance of ADS by 
comparing their collisions with those of human drivers. 
However, assessing human driving performance remains 
challenging due to limited data. Particularly, there’s a lack of 
information regarding significant collisions or violations despite 
the abundance of data on AV safety collected through advanced 
sensors and data logging. Our study aims to identify and 
compare scenario selection or prioritization approaches for 
simulation-based safety testing of ADS. 

III. METHODOLOGY
In this section, we present our methodology to identify studies 

related to scenario selection or prioritization approaches for 
simulation-based safety testing of ADS and their comparison. 
We formulate our research question and conduct a literature 
review to find relevant studies. We explain the formulation of 
the search string, the execution of the search query, and the 
exclusion/inclusion criteria. These steps were guided by K. 
Petersen et al. [26]. Finally, we present the criteria for comparing 
the approaches developed for test scenario selection or 
prioritization for simulation-based safety testing of ADS. 

A. Research Questions
The goals of the study are to identify relevant literature on

scenario selection or prioritization for simulation-based safety 
testing of ADS and to compare these approaches to identify 
strengths and weaknesses. To end this, we formulated two 
research questions (RQs) as follows: 

RQ1: What scenario selection or prioritization approaches 
exist in simulation-based safety testing? 

RQ2: How do the identified approaches compare to one 
another? 

B. Search Query
We searched the online repositories (IEEE, ACM, Springer,

Science Direct) to find publications to answer the research 
questions. To maximize the coverage of the literature, we 
selected search terms from the research questions. We used the 
keyword “AND” for the concatenation of search terms and the 
keyword “OR” for combining synonyms of the search terms to 

3 https://getcruise.com/news/blog/2023/cruises-safety-record-over-one-million-driverless-miles/ 
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 maximize coverage. Since we are only interested in the 
prioritization or selection of test scenarios for simulation-based 
safety testing of ADS, therefore we used search terms such as 
“Test scenario selection”, “Test reduction”, and “Test scenario 
prioritization”. We also used the search terms “Autonomous 
Driving Systems” and “Self-driving cars” as synonyms to ensure 
that the search query produces results related to testing scenarios 
for ADS. We did not explicitly use the term “On-road testing” 
or “Test scenario generation” with the keyword “NOT” to filter 
the search query results because we noticed that it would filter 
out many relevant publications. Search terms related to our 
research questions, e.g., “Simulation”, were also not added to 
the search query because they make the research query too 
specific and might not capture relevant publications. We also 
used “*” with some search terms to capture all variations of 
search terms. We show the general search query below4: 

((Test scenario select*) OR (Test reduction) OR (Test 
scenario prioritize*)) AND ((Autonomous Driving Systems) OR 
(Self-driving car*)) 

C. Additional Filters
We entered the search query into the advanced search of the

online databases and applied the filters mentioned in Table I. We 
consider primary studies published in journals and conferences 
from the year 2000 onwards. 

TABLE I: FILTERS APPLIED TO SEARCH QUERY RESULTS 

Filter Value

Year 2000-2024
Content Type Journal Articles and Conference Papers 

Language English
Discipline Computer Science, Engineering 

D. Exclusion/Inclusion Criteria
To select the publications focused on the selection or

prioritization of test scenarios for simulation-based safety 
testing of ADS, we performed the following steps: (i) We read 
the titles, abstracts, and keywords to analyze the relevance of the 
publications. If the decision is not made, we read the 
introduction, methodology, results, and conclusions and 
download the relevant ones. (ii) We made an Excel sheet of the 
downloaded papers and removed the duplicates. If a duplicate is 
found, we include the most recent and comprehensive versions 
of duplicated papers. (iii) We included (I1) journal articles or 
conference papers only whose primary goal is to select, 
prioritize or reduce test scenarios for simulation-based safety 
testing of ADS. We excluded all publications meeting at least 
one of the following criteria: (E1) the publication is written in a 
language other than English, (E2) the publication is not 
accessible or unavailable, (E3) the publication lacks sufficient 
details such as methods, contributions, etc., (E4) the publication 
falls into categories such as magazine, doctoral symposium 

4 The query was entered in databases on 22 April 2024 

paper, thesis, secondary studies position paper, keynote 
presentation, or abstract. 

E. Data Extraction
RQ1 can be answered based on the final set of selected studies 

because each study will describe at least one scenario selection 
or prioritization approach. 

Related to RQ2, we need to extract data items from the 
selected studies that inform the comparison of existing 
approaches. The following extracted data items were used as 
criteria for the comparison: 

1) Purpose of Testing: We compare the selected approaches
based on their testing purpose as follows: (i) compare ego car vs 
human-driven car accident, (ii) compare ego car vs human-
driven car without accidents, (iii) explore ego car behavior for 
testing new/improved autonomy software features (for 
developers), (iv) expose ego car behavior to the scenario 
typically used in driver tests, (v) expose simulate ego car 
behavior to provide feedback for the real-world test plan. 2) 
Scope of Testing: We compare the scope of testing based on 
whether the selected testing approach is specific to test (i) full 
ADS, (ii) specific ADS feature or its subset. 3) Input Data Type 
of Approach: We also extract the information regarding the 
initial input(s) data type of each selected approach, which 
includes: (i) text, (ii) video, (iii) image, (iv) audio, (v) 
combination of any of above. 4) Input Data Content of 
Approach: We further compare the content of input data used in 
each selected approach, which includes: (i) human-driven car 
accident data, (ii) human-driven car data without accidents, (iii) 
simulator recorded ADS driving, (iv) ADS from real-world 
recording. 5) Number of Steps: To determine the ease of 
application of each selected approach, we compare the number 
of steps involved in each method 6) Scenario Component: We 
extract the information regarding the scenario components 
considered as a proof of concept in selected approaches. (i) 
Static Environment, (ii) Dynamic Environment, (iii) Weather, 
(iv) Light conditions. 7) Supported Simulator: Considering that
each simulator has its unique limitations and capabilities, we
extract the information about which simulator each approach
supports. 8) Tool Support: We compare the maturity of each
approach based on tool availability. 9) Open Source: We also
check whether the selected approach is open source, making it
easier for researchers and practitioners to access, utilize, and
replicate the approach. 10) Limitation: Finally, we present each
selected approach’s possible limitation(s) for ADS simulation-
based safety testing.

To extract data items used in selected approaches, we read 
each selected publication’s abstract, introduction, methodology, 
and results sections and organized the data in a tabular format. 
Each table row recorded the data for predefined criteria, as 
discussed above. During data extraction, conflicts (if any) are 
discussed and resolved among the authors. We identified the key 
terms and their synonyms. We removed duplicate terms and 
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applied the bottom-up merging method to merge key terms to 
get high-level categories. 

IV. RESULTS
In this section, we present the results of each RQ. For RQ1, 

the results of the selection procedure, selected publications, and 
their approaches are presented. For RQ2, we present the 
comparison of selected approaches based on predefined criteria 
(cf. Section III-E). 

RQ:1 What scenario selection or prioritization approaches 
exist in simulation-based safety testing? 

A. Results of the Selection Procedure
The number of publications after each selection step is given

in Table II. We found 1438 publications identified in the initial 
search at step 1. In step 2, we downloaded 31 publications and 
found one duplicate in step 3. In step 4, we selected only six 
publications after applying inclusion and exclusion criteria. The 
results were recorded in an Excel sheet available online5. Table 
III shows the count of conference papers and journal articles 
selected from each online repository. 

TABLE II: NUMBER OF PUBLICATIONS FOR EACH STEP IN THE SELECTION 
PROCEDURE 

Screening Steps No. of Publications 

Initial Search 1438 
Downloaded Publications 31 

Duplicate Removal 1 
Included Publications 6 

TABLE III: DISTRIBUTION OF SELECTED PUBLICATIONS PER REPOSITORY 

Database Conference 
Paper 

Journal 
Article 

Total Publications 

IEEE 2 0 2
ACM 1 1 2

Springer 2 0 2
Science Direct 0 0 0 

B. Selected Publications and their Approaches
Table IV shows the selected publication and their approaches

for selecting or prioritizing scenarios for simulation-based 
testing for safety testing of ADS. We presented an overview of 
each approach shown in Table IV. 

1) SSTSS: stands for (simulation-based safety testing
scenario selection). This approach uses a human driver car crash 
dataset to prioritize and select test scenarios through the 
following eight steps: (i) Scenario catalog selection: Initially, a 
publicly available scenario catalog that is comprehensive and 

5 https://github.com/ScenarioSelectionApproaches 
6 https://rosap.ntl.bts.gov/view/dot/6281/dot_6281_DS1.pdf? 
7 Euro NCAP 

published by a reputable organization is chosen such as National 
Highway Traffic Safety Administration - (NHTSA) 6 , Euro 
NCAP7. (ii) Enumerating ODD of ADS: enumerate the ODD8 
of Vehicle Under Test (VHT) in terms of spatial, temporal, and 
environmental conditions9. (iii) Filtering scenarios based on 
ODD of ADS: exclude scenarios that do not fall within the ODD 
enumerated in the previous step. (iv) Scenario grouping: 
categorize the scenarios into groups based on similar critical 
actions of the ego vehicle or the target object, such as 
pedestrians, cyclists, animals, etc. (v) Removing duplicates 
within a scenario group: identify the duplicate scenarios within 
scenario groups. (vi) Prioritizing scenario groups: prioritize the 
scenario based on common crash scenario statistics and assign 
the highest priority to scenario groups where more accidents 
occur. (vii) Filtering scenarios based on simulator limitations: 
choose a simulator that can replicate the real world closely and 
analyze data on performance metrics such as travel time, 
crashes, etc. After simulator selection, exclude the scenarios that 
cannot be implemented due to simulator limitations. (viii) 
Prioritizing and selecting scenarios for testing ADS - assign a 
score based on the scoring technique to each scenario within the 
scenario group based on the availability of car crash data 
statistics for scenario each element, such as actors, weather, etc. 
The final output of the SSTSS process is a ranked list of 
prioritized scenario groups in descending order of priority. 
Testing starts with the scenarios from the top-prioritized 
scenario group in sequence. After all scenarios within the top-
prioritized scenario group are tested, the process proceeds to 
subsequent prioritized scenario groups. 

TABLE IV: SELECTED PUBLICATIONS OVERVIEW 

Sr.# Publication Approach Online Repository 

1 [27] SSTSS Springer
2 [28] SDC-Scissor IEEE
3 [29] SDC-Prioritizer ACM
4 [30] STRaP ACM
5 [31] SPECTRE Springer
6 [32] J. Bach et al. IEEE 

2) SDC-Scissor: stands for self driving cars-cost-
effective test selector. This approach [28] utilizes machine 
learning (ML) models to select scenarios based on five 
components, which are as follows: (i) SDC-Test Generator: 
generates random test using Frenetic and AsFault tool [36], [37]. 
(ii) SDC-Test Executor: executes the generated simulation-
based tests and records the resultant output to categorize tests as 
safe or unsafe. (iii) SDC-Features Extractor: extracts various
road features (distance, turns, angles, etc.) and road statistics
from driving scenarios. (iv) SDC-Benchmarker: uses these
features and corresponding labels to train the ML models and
determine the most effective model for predicting test outcomes. 

8 The specific conditions and environments under which a particular driving automation system is 
designed to operate [33] 

9 ODD covers spatial (geography, road types, lanes, speed limits, etc.), temporal (day/night), and 
environmental conditions (weather). [8], [34], [35] 
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(v) SDC-Predictor: identifies simulation-based test scenarios
that are unlikely to detect faults in the ego vehicle and excludes
them from execution.

3) SDC-Prioritizer: This approach [29] is similar to
SDC-Scissor; however, it uses single-objective and multi-
objective genetic algorithms to prioritize test scenarios. The 
steps are as follows: (i) Initially, a random test scenario is 
generated using the tool AsFault [37]. Each generated test 
scenario has information (JSON file) on the start and destination 
points for the ego car on the map, the entire road network, and 
the chosen driving path. (ii) Two sets of road features are 
extracted. i.e., road characteristics (road length and direct 
distance between the start and destination points, number of 
turns, angles) and the road segment statistics to identify safe and 
unsafe scenarios even before executing them. (iii) The extracted 
features serve as inputs to two black-box scenario prioritization 
approaches, i.e., SO-SDC-Prioritizer and MO-SDC-Prioritizer, 
which utilize single and multi-objective GA to prioritize test 
cases. 

4) STRaP: stands for Scenario-based Test Reduction
and Prioritization. This approach [30] is developed to reduce 
and prioritize the testing scenarios using data recordings of 
previous versions of ADS under test. The steps are as follows: 
(i) the semantic information from each frame of ADS video
recordings is extracted via the ADS’s communication channels
under test and converted into vectors. The semantic information
includes static (e.g., traffic lights, crosswalks, etc.) and dynamic
objects (e.g., vehicles, cyclists, actions of vehicles, etc.). (ii) The
driving recordings are divided into continuous and redundant
segments to cut length. (iii) The remaining segments are
prioritized based on their coverage of driving scene elements
and the rarity of elements such as traffic lights, pedestrians, etc.

5) SPECTRE: stands for selection and prioritization of
test scenarios for autonomous driving systems. This multi-
objective search-based approach [31] was developed to 
minimize testing costs for newer versions of ADS by utilizing 
historical test data from previous versions. The steps are as 
follows: (i) Initially, each scenario is characterized by a set of 
properties of the ADS under test, such as speed and 
environmental factors such as weather and obstacles. (ii) Each 
scenario is executed in simulations, which yields four key output 
values, resulting in four objective functions: collision 
occurrence, collision probability, ADS demand, and scenario 
diversity. (iii) Four optimization objectives are defined based on 
the results obtained in the previous step. (iv) Finally, multi-
objective evolutionary algorithms are used as optimization 
techniques to prioritize driving scenarios. 

6) J. Bach et al.: In this study [32], a two-step selection
concept was introduced for selecting scenarios for the safety 
testing of ADS. The steps are as follows: (i) Initially, scenarios 
are categorized into abstract groups based on specified system- 
level requirements. This includes segmentation by geolocation 
(e.g., different countries with varying traffic rules) or road 

category (e.g., motorways, rural roads, urban streets), as well 
as criteria such as the ego vehicle’s state and surrounding 
traffic density. A classification-tree approach is employed 
to systematically preselect scenarios, ensuring coverage of 
relevant use cases for the targeted regions. (ii) Repetitive 
information and situations are removed by looking at the 
two-dimensional histograms of frames. These histograms are 
visual sources for how scenarios are spread out and connected. 
Only scenarios that fill empty areas in the histograms are 
kept, while others are removed.  

RQ2: How do the identified approaches compare to one 
another? 

To answer RQ2, we compare the selected approaches w.r.t the 
purpose and scope of testing, input data type, input data content 
type, datasets used, number of steps involved, scenario 
components, supported simulator, tool support, open source, 
and limitations. Table V compares six selected approaches per 
the criteria defined in Section III-E. All the selected approaches 
prioritize test scenarios to reduce the number of testing scenarios 
in simulation-based testing. However, the testing purpose and 
the scope of the selected approaches differ. Therefore, it would 
be interesting to discuss if these approaches could complement 
one another (by combining testing from different perspectives) 
for a more comprehensive, effective, and efficient testing of 
ADS. 
In this study, we present the preliminary results of the 
comparison. Using an illustrative example, we demonstrate how 
SSTSS could complement or be combined with selected 
approaches. Detailed comparisons among selected approaches 
are a work in progress. 

Comparison of the SSTSS process (via  illustrative example): 
The selected five approaches differ from SSTSS as they are 
based on simulation data. The SSTSS process would 
complement simulation-based approaches in different ways. 

(i) The SSTSS process could be used as the first step for the
pre-selection of scenarios before employing other approaches. 
Since the SSTSS process prioritizes statistically significant 
scenarios using real-world car crash statistics, it could be used 
to optimize the initial selection of scenarios and driving routes. 
The STRaP and SPECTRE approaches select testing scenarios 
from available driving routes within the simulator. However, 
solely relying on a specific driving loop may overlook various 
real-world situations, leading to potential gaps in scenario 
coverage. Furthermore, there could be scenarios of lower 
significance in a specific driving loop, and allocating resources 
to test them might not be cost-effective. Once the driving route 
containing prioritized testing scenarios is selected using the 
SSTSS process, STRaP or SPECTRE approaches could be used 
to reduce the test scenarios further. Using such a hybrid 
approach could reduce the number of test scenarios, making the 
testing more efficient, cost and resource-effective. 
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Let’s consider an example. Suppose we want to test a BOLT car 
(ego vehicle) from the Autonomous Driving Lab at the 
University of Tartu, Estonia. The BOLT car has the following 
ODD: It can follow the traffic flow, detect pedestrians, and give 
way to them. Given the ODD, we apply the SSTSS process to 
select prioritized scenarios for simulation-based testing from a 
list of 111 scenarios. Given the sorted list of scenarios generated 
from the SSTSS process (see a sample output in Table VI), a 
specific driving route could be selected. In the sample output 
shown in Table VI, the top three prioritized scenario groups are 
Following Lead Vehicle 10 , Crossing Path 11 , and Pedestrian 

Interaction12. As a result, the “Tartu loop” could be selected, 
which includes seven regulated pedestrian tracks, four 
unregulated pedestrian tracks, two regulated intersections, one 
right turn, and one roundabout, and multi-lane roads where the 
ego vehicle can closely follow another vehicle and encounter 
pedestrians. Furthermore, it includes intersections to encounter 
crossing paths scenarios. For the selected “Tartu loop”, a digital 
twin is available online13, which can be used as input for STRaP. 
The STRaP extracts the semantic information from video 
recordings of the selected “Tartu loop” to reduce the number of 
testing scenarios. Then, the driving recordings are segmented to

TABLE V: COMPARISON OF APPROACHES 

Sr.# Features SSTSS SDC-Scissor SDC-Prioritizer STRaP SPECTRE J. Bach et al. 

01 Purpose of 
Testing 

compare ego car 
vs human-driven 

car accidents 

explores ego car 
behavior to test 
new/improved 

autonomy 
software features 

explore ego car 
behavior to test 
new/improved 

autonomy 
software features 

explore ego car 
behavior to test 
new/improved 

autonomy 
software features 

explore ego car 
behavior to test 
new/improved 

autonomy 
software features 

expose simulate 
ego car behavior 

to provide 
feedback for the 
real-world test 

plan 
02 Scope of Testing Full ADS Specific Feature 

(LDW) 
Specific Feature 

(LDW) 
Full ADS Full ADS Specific

Featur
e (PCC) 

03 Input DT Text Video Video Video Video Video
04 Input Data 

Content of 
Approach 

Human-driven 
car accident data 

Simulator 
recorded ADS 

driving 

Simulator 
recorded ADS 

driving 

Simulator 
recorded ADS 

driving 

Simulator 
recorded ADS 

driving 

Read-world and 
Simulator 

recorded ADS 
driving 

05 # of steps 8 5 3 3 4 3
06 Scenario

Components 
Static & 

Dynamic Env., 
Weather & Light 

condition. 

Static 
Environment 
(only Roads) 

Static 
Environment 
(only Roads) 

Static & 
Dynamic Env., 

Weather 

Static & 
Dynamic Env., 

Weather & Light 
conditions 

Static 
Environment 

(Roads and 
Location) 

07 Sup. Simulator Carla BeamNG BeamNG LGSVL LGSVL - 
08 Tool Sup. No Yes No Yes No No
09 OS Yes Yes Yes Yes Yes No

10 Limitations -Solely relies on
the availability of 
human-driver 
accident dataset,
overlooking ADS 
data 
-Requires
Manual effort to
execute each step. 

-Solely relies on
simulation
driving data for
scenario
selection, thus 
potentially
missing critical
scenarios that
arise from real-
world human
driving behavior - 
Handles limited
driving scenarios,
e.g., road shapes 
only 

-Solely relies on
simulation
driving data for
scenario
selection, thus 
potentially
missing critical
scenarios that
arise from real-
world human
driving behavior - 
Handles limited
driving scenarios,
e.g., road shapes 
only 

Solely relies 
on simulation 
driving data for 
scenario 
selection, thus 
potentially 
missing critical 
scenarios that 
arise from real-
world human 
driving behavior 

-Requires
manual feature 
extraction 
of scenario 
elements from 
driving videos 

-Solely relies on
simulation
driving data for
scenario
selection, thus 
potentially
missing

critica
l scenarios that 
arise from real-
world

huma
n 
driving behavior 
-Relies on
optimization
objectives, which
could lead to
overfitting

Relies on 
predefined 
selection criteria, 
which could 
overlook

critica
l scenarios that 
do not fit within
predefined 
criteria, which
may limit the
selection of 
diverse scenarios 

(LDW = Lane Departure Warning, PCC = Predictive Cruise Control, DT = Data Type, Env.= Environment, Sup.= Support, OS = Open Source) 

10 The Following Lead Vehicle scenario group includes the situations where the ego vehicle is driving 
behind another vehicle referred to as the “lead vehicle” 

11The Crossing Path scenario group includes the situations where the paths of ego vehicle or more 
vehicles intersect or cross each other at an intersection or junction. 

12 The Pedestrian Interaction scenario group includes the situation where ego vehicle encounters 
pedestrians while driving. 

13 https://adl.cs.ut.ee/lab/simulation
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eliminate redundancy and excessive length. The remaining 
segments are prioritized based on the coverage and the rarity of 
driving scenes to select the crucial test scenarios for effective 
and efficient testing. 

(ii) The SSTSS process could be combined with other
approaches to test specific features of an ADS. Since the SSTSS 
process prioritizes scenario groups, and each scenario group 
corresponds to specific ADS feature(s), indicating a need to 
focus on testing these features. The prioritized scenario groups 
using SSTSS could suggest which ADS features to focus on, and 
further thorough testing of these features can be performed using 
feature-specific approaches such as SDC-Scissor, SDC-
prioritizer, etc. For example, in the lane change 14  scenario 
group, approaches like SDC-Scissor or SDC-prioritizer could be 
further used to select or prioritize safe or unsafe scenarios for 
testing ADS's Lane Departure Warning (LDW) feature. 

In ADS testing, one potential question is determining how 
safe is safe enough. One answer could be that if an ADS is safer 
than a human driver, it is secure enough to deploy. In line with 
this, the SSTSS process uses human driver car crash datasets (as 
one of the inputs) to select test scenarios. Testing the ADS in 
these scenarios can directly compare its safety performance to 
that of human drivers. Also, it could be helpful for stakeholders 
to confirm if the ADS meets or exceeds the safety standards set 
for human drivers. Therefore, the SSTSS process could 
complement other approaches for the initial selection of test 
scenarios. 

The main strength of the SSTSS approach is that it uses real-
world car crash statistics for scenario selection, which prioritizes 
statistically significant yet often overlooked scenarios. 
However, the reliance on the availability and quality of car crash 
datasets may restrict the applicability in scenarios not well-
represented in the data or geographic regions with sparse data 
collection. If the data is not up-to-date, infrastructure, 
technological developments, or other changes in driving 
behavior might not be reflected in the data and could affect the 
output of the process. 
The SSTSS process selects and prioritizes scenarios based on 
the ODD of ADS under test (as one of the inputs). By 
considering ODD, on the one hand, SSTSS ensures that the 
selected scenarios reflect the intended use cases and 
environments for which the ADS under test is designed. This 
increases the probability of identifying potential safety-critical 
issues in those specific operating conditions. On the other hand, 
if manufacturers do not clearly define or convey the ODD, the 
selection of relevant scenarios may be less accurate. 

V. THREATS TO VALIDITY
In this section, we discuss the possible threats to the validity 
of our study and the measures taken to mitigate them. 

14 The lane change scenario includes the situation where the ego vehicle or other adjacent vehicle is 
merging or switching lanes in the same direction without maintaining an appropriate distance and speed 
with adjacent vehicle. 

TABLE VI: A SAMPLE SSTSS PROCESS OUTPUT 

Sr. # 
Prioritized 
Scenario 
Groups 

Selected 
Scenario 
Identifier 

Scenario Priority 

01 Following 
Lead Vehicle 

S17 1
S18 2
S19 3
S20 3

02 Crossing Path 

S25 4
S29 4
S28 5
S30 6
S31 6
S33 6
S34 6
S26 7

03 Pedestrian 
Interaction 

S27 8
S32 8
S36 9
S37 9
S41 9
S45 9
S39 10
S40 10
S42 11
S43 11
S38 12
S44 13

The description of scenario identifiers is available online15

      Researcher bias: The first two authors chose the keywords 
and selected publications, which might have introduced 
subjective bias. We tried to mitigate this threat by explicitly 
defining inclusion and exclusion criteria for selecting studies to 
select publications objectively. 
    Search string validity: The search query string either 
generates too few results (false negatives) or too many (false 
positives). For both conditions, we tried to mitigate threats. We 
used wild card (*) to widen the coverage and the keyword 
“AND” to minimize the false positive. We tried to keep the 
search query the same across all online repositories, but we 
slightly varied it due to the constraints of each repository. We 
reviewed the search query results to see if they contained studies 
we knew already. We were aware of 4 relevant papers, and the 
search string retrieved 3 of them. However, we found the 
missing paper’s conference version in another searched online 
repository. Furthermore, the results of the search strings were 
also manually checked, and false positives were removed. We 
did not manually add the missing publications to the results 
because we wanted to follow the procedure defined for strictly 
reviewing the literature. Furthermore, the studies using the 

15 https://github.com/ScenarioSelectionApproaches
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synonyms of the keywords used in the search query in the title 
might have been missed. We mitigate this threat by using 
synonyms of the keywords used. 

VI. CONCLUSION AND FUTURE WORK
ADS requires exhaustive testing before its deployment on real 

roads. Simulation-based testing provides a cost-effective 
approach to test ADS and requires test scenarios. In this study, 
we identify the approaches used to select or prioritize test 
scenarios for simulation-based safety testing of ADS and 
compare them. We also illustrate an example of how one 
approach complements or could be combined with other 
approaches for improving testing effectiveness and efficiency. 
In the future, we aim to demonstrate via examples how the 
remaining five selected approaches can complement or combine 
with each other to enhance testing effectiveness and efficiency. 
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