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Abstract—One common characteristic of High-Performance 
Computing (HPC) and Cyber-Physical Systems (CPS) is their need 
for heterogeneous energy-efficient solutions. In this work we 
present a library for FPGA-accelerated dense matrix 
multiplication which is flexible, open-source, written in purely 
synthesizable C and has no dependencies on the actual hardware 
implementation tools. Our library is designed so as to support 
arbitrary array sizes and accuracy, making it a versatile and 
adaptable solution that meets the diverse computational 
requirements of applications all the way from CPS to HPC. Our 
approach provides an adaptable solution that efficiently exposes 
the flexibility and performance of the FPGAs to both novice and 
expert developers which is not the case with the black-box libraries 
provided by the FPGA manufacturers. Our approach has been 
evaluated in a number of state-of-the-art AMD FPGAs; the end 
results demonstrate that the presented implementations can 
achieve 9x, 34x and 3x gains, in terms of energy efficiency, when 
compared with embedded, high-end CPUs and GPUs respectively. 
Moreover, our solution matches or slightly outperforms the most 
advanced similar FPGA-tailored approach while also being much 
more flexible and designer-friendly while also library-
independent. 
Keywords-High-Performance; Computing; Neural Networks; 
Matrix Multiplication; AMD FPGA; Vitis 

I.  INTRODUCTION

In recent years, the complete computing continuum has 
undergone a significant transformation, fueled by the growing 
demand for computing power in a range of domains, such as 
scientific simulations, machine learning, and data analytics. At 
the same time FPGAs have become a captivating solution to 
tackle the increasing demand for computing power at a relatively 
low power envelope, thanks to their parallel processing 
capabilities and flexibility. 

One very widely used function in numerous CPS and HPC 
applications is the multiplication of dense matrices (e.g. crucial 
for linear algebra computations). The efficient execution of 
dense matrix multiplication on FPGAs has been the subject of 
extensive research [1], [2] because it has a direct significant 
impact on the overall computational throughput and energy 
efficiency of FPGA-based HPC and embedded systems.  

Although several optimization techniques for both CPU and 
GPU architectures have been presented [3], [4], a comparable 
set of guidelines and principles for code optimizations in High-
Level Synthesis (HLS) design flows has yet to be established. 

1https://github.com/angelosathanasiadis/Gemm-HLS-Fully-Parametrizable  

Furthermore, due to the low clock frequency, lack of cache, and 
fine-grained configurability of FPGAs, naive HLS 
implementations, very often, have low performance and 
relatively high-power consumption and require significant 
transformations so as to surpass the multi/many core CPUs and 
GPUs in terms of speed and/or energy efficiency. 

This paper presents a generic open-source solution for HLS 
design flows allowing for the implementation of high-
performance dense matrix multiplication on modern AMD 
FPGAs. Specifically, the contribution of this paper can be 
summarized as follows: 

An open-source library1 designed to accelerate dense
matrix multiplication of any size and datatype by
extracting parallelism in two dimensions. This purely
Synthesizable C library provides very high
configurability and flexibility in order to take full
advantage of the resources of modern AMD FPGAs
without any dependency on the hardware
implementation tool (e.g. version of the tools) or any
external library.
An innovative flow that enables designers to easily
develop FPGA-accelerated applications, that involve
matrix handling, using the presented fundamental
structures minimizing the development and verification
time while achieving high performance and energy
efficiency.
The effectiveness and performance of this library have
been rigorously and comprehensively evaluated when
implemented on both small and high-end FPGAs and it
has been proved that our solution outperforms CPUs,
GPUs and even relevant FPGA-tailored approaches.

The presented library will be part of a larger library for 
efficient matrix handling (which is under development) while it 
has already been used in a full-precision Convolutional Neural 
Network (CNN) acceleration framework implemented in 
multiple FPGAs. 

II. RELATED WORK

Ahmad and Pasha [2] investigated several optimization 
techniques for hardware-accelerated general matrix 
multiplication on FPGAs, with a specific focus on CNNs. In 
contrast to [2], our approach provides a comprehensive library 
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that empowers users to customize FPGA-based matrix 
multiplication to their unique computational requirements, 
irrelevant of the application domain.  Although Haghi et al. [5]
present a reconfigurable FPGA assistant for in-network 
computations, with an accompanying case study on distributed 
matrix multiplication, their study focuses on reconfigurable 
compute-in-the-network FPGA assistance for collective 
support. Our work is orthogonal to this since it mainly aims at 
taking full advantage of the hardware resources of a single 
FPGA while providing adaptability for i) implementation in 
different FPGA devices and ii) easy integration with design 
flows which focus on distributed FPGAs. 

De Fine Licht et al. [1], [6] presented their research results 
on transformations of HLS code for HPC and flexible 
communication respectively. However, their approach has 
certain limitations : i) they are dependent on the HW 
implementation tool (e.g. they can be used only up to AMD Vitis 
2021.12), which limits their use and ii) they rely on a hardware 
library  developed by the authors, tailored to the FPGA 
implementation tool, which introduces a certain tool dependency 
and thus undermining the adaptability and scalability of their 
approach, while they do not exploit state-of-the-art HBM2 
memories. In comparison to those studies, we present a 
methodology that is independent of specific hardware tools and 
libraries and is implemented purely in C with HLS pragmas. 
We, thus, establish a more robust and sustainable solution for 
enhancing computational performance in HLS designed FPGA 
systems. 

Moving to the GPUs area, several studies have explored the 
use of cuBLAS for efficient matrix multiplication on GPUs, as 
well as optimizations for power efficiency and fault tolerance
[3]. For AMD GPUs, rocBLAS high-performance library has 
been developed for matrix operations exploiting the specific 
architectural features of AMD hardware. Authors in [4] present 
a robust framework built on rocBLAS that efficiently handles 
batched matrix multiplications, even with unbalanced input 
sizes, showcasing rocBLAS's flexibility and efficiency. While 
our performance metrics indicate slower computation times 
compared to GPU-based solutions such as cuBLAS and 
rocBLAS, our approach demonstrates significantly higher 
energy efficiency. This makes our approach particularly 
advantageous in power-constrained environments, where energy 
consumption is critical.

III. IMPLEMENTATION

A. Reference Implementation
In order to demonstrate our optimization flow, we start with

a basic reference matrix multiplication implementation, in which 
we adopt a simple effective HLS pipeline approach aiming at 
maximizing the computational efficiency on the targeted 
FPGAs. The algorithm comprises of nested loops that 
meticulously traverse matrices A, B, and C, and calculate the dot 
product of a row from matrix A with a corresponding column 
from matrix B. The key element is the HLS pipeline directive, 
which allows the execution of one multiplication and one 
addition in a single clock cycle achieving a relatively high 

2 https://github.com/spcl/gemm_hls/issues/25

throughput and performance. However, the main drawback of 
this method is the excessive memory accesses to external 
DRAMs & HBMs (i.e. in total M*N*K accesses in all arrays) 
preventing further parallelization.
B. Vectorization

In traditional FPGA matrix multiplication implementations,
the frequent accesses to external DRAMs have been a serious 
performance bottleneck since each DRAM access adds latency 
and consumes valuable energy. In our approach we propose the 
use of 512bit vector elements so as to dramatically reduce the 
number of DRAM accesses. This reduction is achieved by 
aggregating multiple data points into a single, wide uint512_t 
element, effectively consolidating data transfers and parallel 
computations. The use of uint512_t elements results in improved 
FPGA Block RAM (BRAM) utilization since by using wider 
data elements we increase the utilization of each BRAM 
memory. In addition, since modern FPGAs are connected to 
multiple memory banks with dedicated channels (e.g., multiple 
DRAM modules or HBM lanes), we split data transfers into a 
parameterizable number of memory banks/lanes to increase the 
effective external memory bandwidth.
C. Innovative Optimization flow

Moreover, as illustrated in Figure 1, we utilize the internal
BRAMs in conjunction with HLS streams, to optimize also the 
on-chip memory access patterns and further increase the 
computational efficiency. We allocate BRAM resources for 
matrix BRAM_B and use HLS streams for matrices A and C. 
Stream_A and Stream_C_in are used to read matrices A and C 
respectively from external memories (DRAMs/HBMs) and 
Stream_C_out to transfer the data from the internal computation 
modules back to the external memories.
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Figure 1: Architecture of Innovative Optimization flow
The aforementioned technique leads to a significant decrease 

in the effective latency associated with off-chip memory 
retrieval, thereby diminishing idle time caused by external 
memory latency; Listing 1 presents the optimized external 
memories total accesses which are at least 3 orders of magnitude 
less than the reference implementation. In addition, streams 
enable a continuous flow of data between processing elements, 
without the need for intermediary storage in BRAMs, 
minimizing the latency and resource overhead. By leveraging 
streams, data are transferred directly between producer and 
consumer processes, facilitating pipelined execution and 
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enhancing parallelism. This direct transfer mechanism reduces 
the need for on-chip memory for temporary storage, leading to 
more efficient resource utilization and higher throughput. 
Furthermore, streams can handle variable data rates more 
effectively ensuring that processes are not overwhelmed by the 
rate of data production.

Our optimization approach is based on four (4) fully 
configurable parameters:  buffer sizes BUFF_K and BUFF_N, 
which are used for the on-chip memory utilization for arrays B 
and C, as well as loop unrolling parameters UNROLL_N and 
UNROLL_K, which show the level of unroll that will happen in 
each dimension. These parameters enable us to customize the 
architecture to fully utilize any FPGA architecture/size and 
memory technology/topology. Through the careful selection of 
buffer sizes and unrolling factors, we can enhance memory 
access patterns and computational parallelism, achieving an 
optimal balance between resource usage, in case there are 
additional modules that are also placed on the same device, and 
throughput. 

To provide further clarification, as illustrated in Figure 2, 
Stream_A is read in uint512_t quantities in order to reduce 
latency even further. After that, Stream_A and BRAM_B are fed 
to the computational part in order to calculate the outcomes. The 
outcomes for the whole BUFF_K dimension are stored in 
BRAM_C array and then streamed through Stream_C_out in 
WriteC-sized blocks.  

Moreover, we strategically utilize the #pragma HLS pipeline 
in the matrix multiplication computation tile. This directive 
plays a critical role in enabling fully pipelined processing for the 
entire tile. In terms of the implemented Synthesizable C code, 
each iteration of the loops becomes a distinct processing step 
executed within a single clock cycle. In that respect we reduce 
pipeline stalls, guaranteeing an uninterrupted stream of data to 
the multiplication and addition hardware and thus achieving 
efficient parallel fully-parameterizable processing of 
UNROLL_N*UNROLL_K*VECTOR elements in a single 
(1) clock cycle. Finally, our library can further parallelize the
kernel operations by allocating matrices among the different
Sliced Logic Regions (SLRs) of the recent AMD Alveo devices
achieving even better performance and energy efficiency.
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Figure 2: Architecture of Compute Engine

IV. EVALUATION
Table 1: Results with multiple matrix dimensions

We have evaluated the efficiency of our open-source, fully 
parameterizable, purely-C library for dense matrix 
multiplication when implemented in numerous FPGA boards. In 
order to comprehensively evaluate the efficacy and robustness 
of our proposed matrix multiplication approach, multiple 
experimental runs were executed across varying dimensions as 
presented in Table 1. The experimental results demonstrate that 
we can achieve high performance in diverse dimensional 
configurations which highlights the wide applicability of our 
approach. The maximum performance achieved is 249 GFLOPS 
for matrix sized of M=2048, K=16284 and N=4096 on a high-
end FPGA (AMD Alveo U55C) and 24 GFLOPS for matrix 
sized of M=512, K=1024 and N=2048 on an embedded one 
(Kria KR260), while the performance is also relatively high in 
smaller matrix sizes, in contrast to the GPU implementations.

To demonstrate further the effectiveness of the presented 
approach we compare the non-optimized reference model, the 
fully optimized model on both a high-end FPGA (AMD Alveo 
U55C) and an embedded one (Kria KR260), the parallel 
execution of matrix multiplication using OpenMP in a multicore 
CPU and using CUDA on an NVIDIA T4 GPU. In all 
experiments the array dimensions which are M=2048, K=4096, 
and N=16384 are selected so, as to be different from our optimal 
configuration, demonstrating also the flexibility of our approach.
Furthermore, the results obtained from numerous experiments 
with different dimensions are fully inline with those presented 
in Figure 3.  As illustrated in Figure 3, our implementation in 
the embedded FPGA is two orders of magnitude faster than the 
reference implementation and 9x times faster compared to the 
fully parallelized algorithm executed on an embedded ARM 4-
core CPU (Cortex-A53); those numbers include all the memory 
accesses and the external memory technologies and topologies 
are exactly the same in both cases. Similarly, our fully optimized 
approach when implemented on the Alveo U55C board is appro-

M K N U55 
[GFLOPS]

U55 
[Exec.]

KR260 
[GFLOPS]

KR260 
[Exec.]

512 1024 2048 207 0.0104s 24 0.89s
1024 2048 4096 215 0.08s 22.6 0.76s
1024 4096 2048 219 0.078s 22.6 0.76s
2048 2048 2048 215 0.08s 22.3 0.77s
2048 4096 16384 229 1.2s 22 12.5s
2048 16384 4096 249 1.1s 22 6.25s
4096 4096 4096 229 0.6s 22 12.5s

initialize BRAM_B[BUFF_K][BUFF_N]
initialize BRAM_C[BUFF_N]

for ex_k from 0 to K with step BUFF_K:
    for ex_n from 0 to N_512 with step BUFF_N:

  // Read B - K*N/VECTOR Accesses
  for k from 0 to BUFF_K, n from 0 to BUFF_N:

  BRAM_B[k][n] = DRAM_B512[];
#pragma HLS DATAFLOW

  // Read A - M*K*N/(VECTOR*BUFF_N) Accesses
  for m from 0 to M, k from 0 to BUFF_K/VECTOR:

  stream_A << DRAM_A512[]
  // Read C_in - M*K*N/(VECTOR*BUFF_K) Accesses
  for m from 0 to M, n from 0 to BUFF_N:

  stream_C_in << DRAM_C512[]
  // Main Loop
  for m from 0 to M:

  for k from 0 to BUFF_K/VECTOR:
  #pragma HLS pipeline
  //Perform Efficient Parallel MM Computation
  //UNROLL_N*UNROLL_K*VECTOR elem. in 1 cycle
  for n from 0 to BUFF_N:

  stream_C_out << BRAM_C[n]
  // Write C
  for m from 0 to M, n from 0 to BUFF_N:

    DRAM_C512[] << stream_C_in + stream_C_out

Listing 1: Innovative Memory Access
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Table 2: Comparison to previous FPGA implementations

ximately three orders of magnitude faster than the reference 
implementation and 10x times faster compared to the fully 
parallelized algorithm executed on an Intel Xeon E5-2620 v4 (8 
cores). In order to further compare the overall efficiency of the 
presented approach with that triggered by the software 
implementation, the GFLOPS/Watt for each implementation 
were also measured. Based on our measurements we achieve 
34x and 9x higher energy efficiency than the best CPU parallel 
implementation in an Alveo U55C and a Kria KR260 
respectively. Moreover, our design, when implemented on the 
Alveo, is 3x more power efficient than the CUDA 
implementation on an NVIDIA T4 GPU which is also 
implemented on a better CMOS technology (12nm for T4 vs 
16nm for U55c).

Table 2 presents the comparison of our approach with other 
FPGA-tailored similar systems. From those, the only open 
source widely used library for dense Matrix Multiplication is the 
one in [6] so we tried to implement it in our reference modern 
FPGAs. However, even though it is an open-source library, it 
has rather limited applicability because it requires AMD Vitis 
v2021.1 or older as also referred in Section II. As a result, we 
implemented it in the largest FPGA supported by this version of 
the tool we had available (i.e. Alveo U200). In addition, [6]
utilizes a specialized hardware library, which also makes it less 
flexible, than our purely C-based approach. As shown in the 
table, our design achieves 9.02 GFLOPS/Watt, while gemm_hls' 
implementation triggers 8.49 GFLOPS/Watt for the same 
utilization percentage (229 GFLOPS compared to 211 GFLOPS 
from gemm_hls).3  

More importantly, our methodology has been developed 
with a focus on simplicity and wide compatibility, eliminating 
the need for any specific external libraries and HW 
implementation tools. The designer-friendliness and the 
flexibility of our approach enables even non-advanced designers 
to seamlessly develop matrix-multiplication modules, probably 
within broader systems (e.g. CNNs or Deep Neural Networks).

V. CONCLUSIONS AND FUTURE WORK
This paper presents an open-source, FPGA-tailored library 

for dense matrix multiplication that is implemented in purely 
synthesizable C, thus providing very high flexibility and 
adaptability. The easily customizable parameters allow users to 
maximize resource utilization and performance and/or energy 
efficiency for any given FPGA device from low resources to 
high-end ones. Our evaluation demonstrates that our library 
outperforms both embedded and high-end multi-threaded CPUs 
and GPUs. The pioneering nature of the tool is highlighted by 
the absence of a similar open-source solution, positioning it as a 
valuable resource for those looking for easily programmed, yet 
high-performing FPGA acceleration.
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Device Logic Util. 
BRAM
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DSPs

Perf. FP32 
[GFLOPS]

Perf. FP64 
[GFLOPS]

Power Effic. 
[GFLOPS/W]

Tool/Library 
Independency Open Source

D’Hollander [7] Zynq 7000 32% 99% 5 - - × ×
Guan [8] Stratix V 67% 17% 100 - 2.92 × ×

gemm_hls [6] Alveo U200 58% 44% 211 74 8.49 ×
This work Alveo U55C 56% 44% 229 80 9.02
This work Kria KR260 94% 60% 22 10.1 2.44

Figure 3: Performance and Power Efficiency Analysis (FP32)
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