
DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

An Open-source HLS Fully Parameterizable
Matrix Multiplication Library for AMD FPGAs

Angelos Athanasiadis
School of Electrical and
Computer Engineering,

Aristotle University of Thessaloniki,
54124, Thessaloniki, Greece

angelathan@ece.auth.gr

Nikolaos Tampouratzis
Department of Industrial

Engineering and Management,
International Hellenic University,

57400, Sindos, Greece
ntampouratzis@ihu.gr

Ioannis Papaefstathiou
School of Electrical and
Computer Engineering,

Aristotle University of Thessaloniki,
54124, Thessaloniki, Greece

ygp@ece.auth.gr

Abstract—One common characteristic of High-Performance
Computing (HPC) and Cyber-Physical Systems (CPS) is their need
for heterogeneous energy-efficient solutions. In this work we
present a library for FPGA-accelerated dense matrix
multiplication which is flexible, open-source, written in purely
synthesizable C and has no dependencies on the actual hardware
implementation tools. Our library is designed so as to support
arbitrary array sizes and accuracy, making it a versatile and
adaptable solution that meets the diverse computational
requirements of applications all the way from CPS to HPC. Our
approach provides an adaptable solution that efficiently exposes
the flexibility and performance of the FPGAs to both novice and
expert developers which is not the case with the black-box libraries
provided by the FPGA manufacturers. Our approach has been
evaluated in a number of state-of-the-art AMD FPGAs; the end
results demonstrate that the presented implementations can
achieve 9x, 34x and 3x gains, in terms of energy efficiency, when
compared with embedded, high-end CPUs and GPUs respectively.
Moreover, our solution matches or slightly outperforms the most
advanced similar FPGA-tailored approach while also being much
more flexible and designer-friendly while also library-
independent.
Keywords-High-Performance; Computing; Neural Networks;
Matrix Multiplication; AMD FPGA; Vitis

I. INTRODUCTION

In recent years, the complete computing continuum has
undergone a significant transformation, fueled by the growing
demand for computing power in a range of domains, such as
scientific simulations, machine learning, and data analytics. At
the same time FPGAs have become a captivating solution to
tackle the increasing demand for computing power at a relatively
low power envelope, thanks to their parallel processing
capabilities and flexibility.

One very widely used function in numerous CPS and HPC
applications is the multiplication of dense matrices (e.g. crucial
for linear algebra computations). The efficient execution of
dense matrix multiplication on FPGAs has been the subject of
extensive research [1], [2] because it has a direct significant
impact on the overall computational throughput and energy
efficiency of FPGA-based HPC and embedded systems.

Although several optimization techniques for both CPU and
GPU architectures have been presented [3], [4], a comparable
set of guidelines and principles for code optimizations in High-
Level Synthesis (HLS) design flows has yet to be established.

1https://github.com/angelosathanasiadis/Gemm-HLS-Fully-Parametrizable

Furthermore, due to the low clock frequency, lack of cache, and
fine-grained configurability of FPGAs, naive HLS
implementations, very often, have low performance and
relatively high-power consumption and require significant
transformations so as to surpass the multi/many core CPUs and
GPUs in terms of speed and/or energy efficiency.

This paper presents a generic open-source solution for HLS
design flows allowing for the implementation of high-
performance dense matrix multiplication on modern AMD
FPGAs. Specifically, the contribution of this paper can be
summarized as follows:

An open-source library1 designed to accelerate dense
matrix multiplication of any size and datatype by
extracting parallelism in two dimensions. This purely
Synthesizable C library provides very high
configurability and flexibility in order to take full
advantage of the resources of modern AMD FPGAs
without any dependency on the hardware
implementation tool (e.g. version of the tools) or any
external library.
An innovative flow that enables designers to easily
develop FPGA-accelerated applications, that involve
matrix handling, using the presented fundamental
structures minimizing the development and verification
time while achieving high performance and energy
efficiency.
The effectiveness and performance of this library have
been rigorously and comprehensively evaluated when
implemented on both small and high-end FPGAs and it
has been proved that our solution outperforms CPUs,
GPUs and even relevant FPGA-tailored approaches.

The presented library will be part of a larger library for
efficient matrix handling (which is under development) while it
has already been used in a full-precision Convolutional Neural
Network (CNN) acceleration framework implemented in
multiple FPGAs.

II. RELATED WORK

Ahmad and Pasha [2] investigated several optimization
techniques for hardware-accelerated general matrix
multiplication on FPGAs, with a specific focus on CNNs. In
contrast to [2], our approach provides a comprehensive library

33

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

that empowers users to customize FPGA-based matrix
multiplication to their unique computational requirements,
irrelevant of the application domain. Although Haghi et al. [5]
present a reconfigurable FPGA assistant for in-network
computations, with an accompanying case study on distributed
matrix multiplication, their study focuses on reconfigurable
compute-in-the-network FPGA assistance for collective
support. Our work is orthogonal to this since it mainly aims at
taking full advantage of the hardware resources of a single
FPGA while providing adaptability for i) implementation in
different FPGA devices and ii) easy integration with design
flows which focus on distributed FPGAs.

De Fine Licht et al. [1], [6] presented their research results
on transformations of HLS code for HPC and flexible
communication respectively. However, their approach has
certain limitations : i) they are dependent on the HW
implementation tool (e.g. they can be used only up to AMD Vitis
2021.12), which limits their use and ii) they rely on a hardware
library developed by the authors, tailored to the FPGA
implementation tool, which introduces a certain tool dependency
and thus undermining the adaptability and scalability of their
approach, while they do not exploit state-of-the-art HBM2
memories. In comparison to those studies, we present a
methodology that is independent of specific hardware tools and
libraries and is implemented purely in C with HLS pragmas.
We, thus, establish a more robust and sustainable solution for
enhancing computational performance in HLS designed FPGA
systems.

Moving to the GPUs area, several studies have explored the
use of cuBLAS for efficient matrix multiplication on GPUs, as
well as optimizations for power efficiency and fault tolerance
[3]. For AMD GPUs, rocBLAS high-performance library has
been developed for matrix operations exploiting the specific
architectural features of AMD hardware. Authors in [4] present
a robust framework built on rocBLAS that efficiently handles
batched matrix multiplications, even with unbalanced input
sizes, showcasing rocBLAS's flexibility and efficiency. While
our performance metrics indicate slower computation times
compared to GPU-based solutions such as cuBLAS and
rocBLAS, our approach demonstrates significantly higher
energy efficiency. This makes our approach particularly
advantageous in power-constrained environments, where energy
consumption is critical.

III. IMPLEMENTATION

A. Reference Implementation
In order to demonstrate our optimization flow, we start with

a basic reference matrix multiplication implementation, in which
we adopt a simple effective HLS pipeline approach aiming at
maximizing the computational efficiency on the targeted
FPGAs. The algorithm comprises of nested loops that
meticulously traverse matrices A, B, and C, and calculate the dot
product of a row from matrix A with a corresponding column
from matrix B. The key element is the HLS pipeline directive,
which allows the execution of one multiplication and one
addition in a single clock cycle achieving a relatively high

2 https://github.com/spcl/gemm_hls/issues/25

throughput and performance. However, the main drawback of
this method is the excessive memory accesses to external
DRAMs & HBMs (i.e. in total M*N*K accesses in all arrays)
preventing further parallelization.
B. Vectorization

In traditional FPGA matrix multiplication implementations,
the frequent accesses to external DRAMs have been a serious
performance bottleneck since each DRAM access adds latency
and consumes valuable energy. In our approach we propose the
use of 512bit vector elements so as to dramatically reduce the
number of DRAM accesses. This reduction is achieved by
aggregating multiple data points into a single, wide uint512_t
element, effectively consolidating data transfers and parallel
computations. The use of uint512_t elements results in improved
FPGA Block RAM (BRAM) utilization since by using wider
data elements we increase the utilization of each BRAM
memory. In addition, since modern FPGAs are connected to
multiple memory banks with dedicated channels (e.g., multiple
DRAM modules or HBM lanes), we split data transfers into a
parameterizable number of memory banks/lanes to increase the
effective external memory bandwidth.
C. Innovative Optimization flow

Moreover, as illustrated in Figure 1, we utilize the internal
BRAMs in conjunction with HLS streams, to optimize also the
on-chip memory access patterns and further increase the
computational efficiency. We allocate BRAM resources for
matrix BRAM_B and use HLS streams for matrices A and C.
Stream_A and Stream_C_in are used to read matrices A and C
respectively from external memories (DRAMs/HBMs) and
Stream_C_out to transfer the data from the internal computation
modules back to the external memories.

Next
Step

Previous
Step

Write C

Read
C

Read
A

Stream_A

Stream_C_outSSCompute
Engine

Stream_C_in

BRAM_B

BU
FF

_N

BUFF_K

Read B

Figure 1: Architecture of Innovative Optimization flow
The aforementioned technique leads to a significant decrease

in the effective latency associated with off-chip memory
retrieval, thereby diminishing idle time caused by external
memory latency; Listing 1 presents the optimized external
memories total accesses which are at least 3 orders of magnitude
less than the reference implementation. In addition, streams
enable a continuous flow of data between processing elements,
without the need for intermediary storage in BRAMs,
minimizing the latency and resource overhead. By leveraging
streams, data are transferred directly between producer and
consumer processes, facilitating pipelined execution and

34

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

enhancing parallelism. This direct transfer mechanism reduces
the need for on-chip memory for temporary storage, leading to
more efficient resource utilization and higher throughput.
Furthermore, streams can handle variable data rates more
effectively ensuring that processes are not overwhelmed by the
rate of data production.

Our optimization approach is based on four (4) fully
configurable parameters: buffer sizes BUFF_K and BUFF_N,
which are used for the on-chip memory utilization for arrays B
and C, as well as loop unrolling parameters UNROLL_N and
UNROLL_K, which show the level of unroll that will happen in
each dimension. These parameters enable us to customize the
architecture to fully utilize any FPGA architecture/size and
memory technology/topology. Through the careful selection of
buffer sizes and unrolling factors, we can enhance memory
access patterns and computational parallelism, achieving an
optimal balance between resource usage, in case there are
additional modules that are also placed on the same device, and
throughput.

To provide further clarification, as illustrated in Figure 2,
Stream_A is read in uint512_t quantities in order to reduce
latency even further. After that, Stream_A and BRAM_B are fed
to the computational part in order to calculate the outcomes. The
outcomes for the whole BUFF_K dimension are stored in
BRAM_C array and then streamed through Stream_C_out in
WriteC-sized blocks.

Moreover, we strategically utilize the #pragma HLS pipeline
in the matrix multiplication computation tile. This directive
plays a critical role in enabling fully pipelined processing for the
entire tile. In terms of the implemented Synthesizable C code,
each iteration of the loops becomes a distinct processing step
executed within a single clock cycle. In that respect we reduce
pipeline stalls, guaranteeing an uninterrupted stream of data to
the multiplication and addition hardware and thus achieving
efficient parallel fully-parameterizable processing of
UNROLL_N*UNROLL_K*VECTOR elements in a single
(1) clock cycle. Finally, our library can further parallelize the
kernel operations by allocating matrices among the different
Sliced Logic Regions (SLRs) of the recent AMD Alveo devices
achieving even better performance and energy efficiency.

Stream_A

BRAM_B

Computational
Part

UN
RO

LL
_N

UNROLL_K

BRAM_B

Read_A
512bit

Stream_A

BRAM_B

Unrolled
Array

HL
S_

PI
PE

LIN
E

Next Step

UN
RO

LL
_N

UNROLL_K UNROLL_K

Stream_C_out

Figure 2: Architecture of Compute Engine

IV. EVALUATION
Table 1: Results with multiple matrix dimensions

We have evaluated the efficiency of our open-source, fully
parameterizable, purely-C library for dense matrix
multiplication when implemented in numerous FPGA boards. In
order to comprehensively evaluate the efficacy and robustness
of our proposed matrix multiplication approach, multiple
experimental runs were executed across varying dimensions as
presented in Table 1. The experimental results demonstrate that
we can achieve high performance in diverse dimensional
configurations which highlights the wide applicability of our
approach. The maximum performance achieved is 249 GFLOPS
for matrix sized of M=2048, K=16284 and N=4096 on a high-
end FPGA (AMD Alveo U55C) and 24 GFLOPS for matrix
sized of M=512, K=1024 and N=2048 on an embedded one
(Kria KR260), while the performance is also relatively high in
smaller matrix sizes, in contrast to the GPU implementations.

To demonstrate further the effectiveness of the presented
approach we compare the non-optimized reference model, the
fully optimized model on both a high-end FPGA (AMD Alveo
U55C) and an embedded one (Kria KR260), the parallel
execution of matrix multiplication using OpenMP in a multicore
CPU and using CUDA on an NVIDIA T4 GPU. In all
experiments the array dimensions which are M=2048, K=4096,
and N=16384 are selected so, as to be different from our optimal
configuration, demonstrating also the flexibility of our approach.
Furthermore, the results obtained from numerous experiments
with different dimensions are fully inline with those presented
in Figure 3. As illustrated in Figure 3, our implementation in
the embedded FPGA is two orders of magnitude faster than the
reference implementation and 9x times faster compared to the
fully parallelized algorithm executed on an embedded ARM 4-
core CPU (Cortex-A53); those numbers include all the memory
accesses and the external memory technologies and topologies
are exactly the same in both cases. Similarly, our fully optimized
approach when implemented on the Alveo U55C board is appro-

M K N U55
[GFLOPS]

U55
[Exec.]

KR260
[GFLOPS]

KR260
[Exec.]

512 1024 2048 207 0.0104s 24 0.89s
1024 2048 4096 215 0.08s 22.6 0.76s
1024 4096 2048 219 0.078s 22.6 0.76s
2048 2048 2048 215 0.08s 22.3 0.77s
2048 4096 16384 229 1.2s 22 12.5s
2048 16384 4096 249 1.1s 22 6.25s
4096 4096 4096 229 0.6s 22 12.5s

initialize BRAM_B[BUFF_K][BUFF_N]
initialize BRAM_C[BUFF_N]

for ex_k from 0 to K with step BUFF_K:
 for ex_n from 0 to N_512 with step BUFF_N:

 // Read B - K*N/VECTOR Accesses
 for k from 0 to BUFF_K, n from 0 to BUFF_N:

 BRAM_B[k][n] = DRAM_B512[];
#pragma HLS DATAFLOW

 // Read A - M*K*N/(VECTOR*BUFF_N) Accesses
 for m from 0 to M, k from 0 to BUFF_K/VECTOR:

 stream_A << DRAM_A512[]
 // Read C_in - M*K*N/(VECTOR*BUFF_K) Accesses
 for m from 0 to M, n from 0 to BUFF_N:

 stream_C_in << DRAM_C512[]
 // Main Loop
 for m from 0 to M:

 for k from 0 to BUFF_K/VECTOR:
 #pragma HLS pipeline
 //Perform Efficient Parallel MM Computation
 //UNROLL_N*UNROLL_K*VECTOR elem. in 1 cycle
 for n from 0 to BUFF_N:

 stream_C_out << BRAM_C[n]
 // Write C
 for m from 0 to M, n from 0 to BUFF_N:

 DRAM_C512[] << stream_C_in + stream_C_out

Listing 1: Innovative Memory Access

35

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

Table 2: Comparison to previous FPGA implementations

ximately three orders of magnitude faster than the reference
implementation and 10x times faster compared to the fully
parallelized algorithm executed on an Intel Xeon E5-2620 v4 (8
cores). In order to further compare the overall efficiency of the
presented approach with that triggered by the software
implementation, the GFLOPS/Watt for each implementation
were also measured. Based on our measurements we achieve
34x and 9x higher energy efficiency than the best CPU parallel
implementation in an Alveo U55C and a Kria KR260
respectively. Moreover, our design, when implemented on the
Alveo, is 3x more power efficient than the CUDA
implementation on an NVIDIA T4 GPU which is also
implemented on a better CMOS technology (12nm for T4 vs
16nm for U55c).

Table 2 presents the comparison of our approach with other
FPGA-tailored similar systems. From those, the only open
source widely used library for dense Matrix Multiplication is the
one in [6] so we tried to implement it in our reference modern
FPGAs. However, even though it is an open-source library, it
has rather limited applicability because it requires AMD Vitis
v2021.1 or older as also referred in Section II. As a result, we
implemented it in the largest FPGA supported by this version of
the tool we had available (i.e. Alveo U200). In addition, [6]
utilizes a specialized hardware library, which also makes it less
flexible, than our purely C-based approach. As shown in the
table, our design achieves 9.02 GFLOPS/Watt, while gemm_hls'
implementation triggers 8.49 GFLOPS/Watt for the same
utilization percentage (229 GFLOPS compared to 211 GFLOPS
from gemm_hls).3

More importantly, our methodology has been developed
with a focus on simplicity and wide compatibility, eliminating
the need for any specific external libraries and HW
implementation tools. The designer-friendliness and the
flexibility of our approach enables even non-advanced designers
to seamlessly develop matrix-multiplication modules, probably
within broader systems (e.g. CNNs or Deep Neural Networks).

V. CONCLUSIONS AND FUTURE WORK
This paper presents an open-source, FPGA-tailored library

for dense matrix multiplication that is implemented in purely
synthesizable C, thus providing very high flexibility and
adaptability. The easily customizable parameters allow users to
maximize resource utilization and performance and/or energy
efficiency for any given FPGA device from low resources to
high-end ones. Our evaluation demonstrates that our library
outperforms both embedded and high-end multi-threaded CPUs
and GPUs. The pioneering nature of the tool is highlighted by
the absence of a similar open-source solution, positioning it as a
valuable resource for those looking for easily programmed, yet
high-performing FPGA acceleration.

VI. ACKNOWLEDGEMENTS
This work is supported by the Key Digital Technologies

Joint Undertaking (KDT-JU) under the powers delegated by the
European Commission and its members, including the top-up
funding by National Authorities in the context of the REBECCA
(Reconfigurable Heterogeneous Highly Parallel Processing
Platform for safe and secure AI) project (grant agreement
#101097224).

VII. REFERENCES
[1] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler,

“Transformations of high-level synthesis codes for high-performance
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1014–
1029, May 2021.

[2] A. Ahmad and M. Pasha, “Optimizing hardware accelerated general
matrix-matrix multiplication for cnn on fpgas,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, pp. 1–1, 2020.

[3] S. Wu, Y. Zhai, J. Liu, J. Huang, Z. Jian, B. Wong, and Z. Chen,
“Anatomy of a high-performance semi-automatic fine-tuned tolerance on
gpus,” in Proceedings of the 27th International Conference on
Supercomputing, ser. ICS ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 360–372.

[4] R. Wang, Z. Yang, H. Xu, and L. Lu, “A high-performance batched matrix
multiplication framework for gpus under unbalanced input distribution,”
The Journal of Supercomputing, vol. 78, no. 2, p. 1741–1758, Jun 2021.

[5] P. Haghi, A. Guo, T. Geng, J. Broaddus, D. Schafer, A. Skjellum, and M.
Herbordt, “A reconfigurable compute-in-the-network fpga assistant for
high-level collective support with distributed matrix multiply: case
study,” IEEE Conference on Field Programmable Technology.

[6] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible
communication avoiding matrix multiplication on fpga with high-level
synthesis,” ser. FPGA ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 244–254.

[7] E. H. D’Hollander, “High-level synthesis optimization for blocked
floating-point matrix multiplication,” SIGARCH Comput. Archit. News,
vol. 44, no. 4, p. 74–79, Jan 2017.

[8] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “Fp-dnn: An automated framework for mapping deep neural
networks onto fpgas with rtl-hls hybrid templates,” 04 2017, pp. 152–159.

3 It is very difficult to compare the actual resources in each FPGA since AMD is listing differently the resources for the Alveo U200 and the U55c boards (i.e. CLBs
and Registers vs System Logic Cells).

Device Logic Util.
BRAM

Logic Util.
DSPs

Perf. FP32
[GFLOPS]

Perf. FP64
[GFLOPS]

Power Effic.
[GFLOPS/W]

Tool/Library
Independency Open Source

D’Hollander [7] Zynq 7000 32% 99% 5 - - × ×
Guan [8] Stratix V 67% 17% 100 - 2.92 × ×

gemm_hls [6] Alveo U200 58% 44% 211 74 8.49 ×
This work Alveo U55C 56% 44% 229 80 9.02
This work Kria KR260 94% 60% 22 10.1 2.44

Figure 3: Performance and Power Efficiency Analysis (FP32)

36

