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Abstract—The synthesis strategy for quantum oracles is based
on a reversible logic synthesis and a quantum compilation step.
In reversible logic synthesis it is important to obtain a compact
reversible circuit in order to minimize the size of the final quan-
tum circuit. Projected Sum Of Product, PSOP, decomposition is
an EXOR based technique that can be applied to any Boolean
function as a very fast pre-processing step for further minimizing
the circuit area in standard logic synthesis. In this paper, we
exploit PSOP decomposition in quantum synthesis. In particular,
we describe a new technique for the quantum synthesis of PSOP
decomposed functions. The experimental results validate the
proposed pre-processing method in quantum synthesis, showing
an interesting gain in area, within the same time limit.

Index Terms—Circuit decomposition, reversible logic, quantum
circuits

I. INTRODUCTION

The recent technological improvement in quantum archi-

tectures has led to renewed and growing interest in quantum

computing and in the design of secure cryptographic protocols.

Therefore, the research in the field of quantum logic synthesis

has attracted considerable new attention. In particular, many

quantum algorithms, including Grover’s search algorithm, usu-

ally require computing oracles [13], i.e., subroutines given as

classical logic functions. The standard method for synthesizing

quantum oracles generally consists of two steps: reversible

logic synthesis and quantum compilation. This is due to the

fact that, in general, the evolution of quantum systems is

described by reversible unitary operators.

Recently, new techniques and tools have been proposed

for quantum synthesis [10], [14], [18]. Moreover, several pre-

processing methods have been proposed for further enabling

reversible synthesis and quantum compilation. Indeed, such

methods exploit structural regularities of the input function [1],

[4]. Therefore, just “regular functions” can benefit from this

pre-processing strategies (i.e., autosymmetric and D-Reducible

functions). In this paper we propose a new pre-processing

strategy that have the following characteristics:

1) The method can be exploited for any Boolean function

(not just regular ones);

2) The method consists in a decomposition of the original

function f and a re-composition after the quantum

compilation;

3) The decomposition procedure has a linear-time complex-

ity and the re-composition phase is constant in time.

These characteristics make the proposed method a possi-

bly useful and fast pre-processing strategy before reversible

synthesis and quantum compilation. The method is based on

a structural non-disjoint decomposition of the input function

called Projected Sum of Products (PSOP), which is an EXOR

based non-disjoint decomposition. PSOP forms are a general-

ization of the standard Shannon decomposition. We consider

this particular decomposition since it is EXOR based (i.e.,

the reconstruction has a very low quantum cost), and the

decomposition process is vary fast (i.e., exhibits a linear time

complexity). Figure 3 shows the standard quantum synthesis

methods and the new proposed one.

The theoretical part of this paper describes the proposed

pre-processing method and the reconstruction strategy. In

particular, we show that after the PSOP decomposition and

the quantum synthesis of the components, it is possible to

reconstruct the original function f adding a constant number

of Toffoli gates (2 or 3) that correspond to 8 or 12 T-gates [10].

Finally, we test the quantum synthesis of PSOP decomposed

functions and we compare the results with the ones obtained

by the classical quantum compilation. The experimental results

show that the proposed pre-processing phase gives better

results for the 61% of the benchmarks with an average gain of

about 22% in terms of T-gates, using the XAG-based quantum

compilation described in [10].

The paper is organized as follows: the preliminary concepts

of projections of functions, PSOP forms, along with reversible

circuits and quantum compilations, are outlined in Section II.

Our proposed new pre-processing strategy for quantum re-

versible synthesis is presented in Section III. We discuss the

evaluation of the proposed method and report our experiments

on a set of benchmarks in Section IV. Finally, the conclusion

of this work is given in Section V.

II. PRELIMINARIES

A. Projections of Functions

PSOP decomposition, originally introduced for logic synthe-

sis in CMOS technology, can be exploited to enable quantum

compilation, as proposed and discussed in Section III. In

this preliminary section, we review some basic concepts of

Boolean space partitioning and we present the projections

exploited in this particular decomposition.

On Exploiting PSOP Decomposition for Quantum 
Synthesis
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Fig. 1. The Boolean space {0, 1}4 partitioned into the two distinct sets
Bx1=p (black points) and Bx1 �=p (white points), with p = x2 · (x3 + x4).

Let us consider the Boolean space with variables

x1, x2, . . . , xn and let xi be one of these variables. Let p
represent a function over a subset of variables excluding

xi, denoted by {x1, . . . , xi−1, xi+1, . . . , xn}. The Boolean

space B = {0, 1}n can be partitioned into two distinct

subsets: the set Bxi=p, where xi equals the function p, and

the set Bxi �=p, where xi is not equal to the function p.

Formally, we have Bxi=p = {(v1, . . . , vn) ∈ {0, 1}n | vi =
p(v1, . . . , vi−1, vi+1, . . . , vn)}, and Bxi �=p = {(v1, . . . , vn) ∈
{0, 1}n | vi �= p(v1, . . . , vi−1, vi+1, . . . , vn)}, respectively.

Example 1: Let us consider the function p = x2 · (x3 + x4)
and the variable x1 in the Boolean space {0, 1}4, which

can be partitioned into two sets. The first set consists the

subspace where x1 = p and the second one consists of the

subspace where x1 �= p. Figure 1 depicts a Karnaugh map

illustrating these two sets, the black points correspond to

Bxi=p = {0000, 0001, 0010, 0011, 0110, 1100, 1101, 1111},

while the white points correspond to Bxi �=p = {0100, 0101,
0111, 1000, 1001, 1010, 1011, 1110}.

It is noteworthy that the Boolean space divides evenly

into these two sets, demonstrating the following general

property [3]: When xi is a Boolean variable and p is a

function represented as p : {0, 1}n−1 → {0, 1} on variables

{x1, . . . , xi−1, xi+1, . . . , xn}, the sets Bxi=p and Bxi �=p are

such that:

1) Bxi=p ∪Bxi �=p = {0, 1}n
2) |Bxi=p| = |Bxi �=p| = 2n−1

3) Bxi=p ∩Bxi �=p = ∅
In the Boolean space B = {0, 1}n, the simplest partitioning

occurs when p equals 1 (or 0). In this scenario, Bxi=1 and

Bxi �=1 represent the subspaces of B where xi equals 1 and

xi equals 0, respectively. The characteristic functions xi and

xi can represent these subspaces [3]. Observe that Bxi=1 and

Bxi �=1 represent the basic partitions of the classical Shannon
decomposition

f = xif |xi=1 + xif |xi �=1

where f |xi=1 and f |xi �=1 denote the two cofactors obtained

from f replacing xi with 1 and 0, respectively.

In [6], [8], a Boolean functional decomposition method is

presented, generalizing the classical Shannon decomposition:

f = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi �=p. This method projects

the function f onto the two complementary subsets Bxi=p and

Bxi �=p of the Boolean space B = {0, 1}n. The expressions

xi⊕p and xi⊕p denote the characteristic functions of Bxi=p

and Bxi �=p, respectively. It should be noted that the Shannon

decomposition is a specific case of this partition, where xi⊕1
equals xi and xi ⊕ 1 equals the variable xi.

Example 2: Figure 2 illustrates the Karnaugh map of the

function f = {0000, 0001, 0111, 1011, 1100, 1101, 1111}, in

the right side. Consider Bx1=p and Bx1 �=p as two project-

ing sets with p = x2 · (x3 + x4). As shown in the left

side of this figure, the function f can be projected onto

the two spaces Bx1=p and Bx1 �=p. The resulting projected

functions depend on x2, x3, x4 and can be represented by

f |x1=p = {000, 001, 100, 101, 111} and f |x1 �=p = {011, 111},

respectively.
It is important to point out that Hamming distances can

change when points are projected onto different subspaces.

As a result, they may be combined into larger terms and may

reveal new implications not present in the original function.

For instance, consider the two points in Example 2 represented

by the minterms x1x2x3x4 and x1x2x3x4. We can notice that

their Hamming distance is equal to 2. After the projection onto

the space where x1 �= p, their Hamming distance is reduced

to 1 as they become more similar; thus it is possible to merge

them into the larger product (x3) in f |x1 �=p.

B. PSOP forms
The PSOP decomposition and synthesis approach involves

constructing a circuit for f by exploiting p and the two

projected functions f |xi=p and f |xi �=p. The synthesis for the

projected functions is simpler, compared to f , as they involve

at least one fewer variable, leading often to more compact

circuits. The functions p, f |xi=p and f |xi �=p can be synthesized

using any logic minimization methodologies, including SOP

synthesis and also quantum synthesis. When represented as

sums of products, they form the Projected Sum of Products
form, abbreviated as PSOP(f) and defined as follows [3].

Definition 1: Let f |xi=p and f |xi �=p indicate the projections

of f onto Bxi=p and Bxi �=p, respectively. The PSOP of f with

respect to p is expressed as

PSOP(f) = (xi ⊕ p)f |x1=p + (xi ⊕ p)f |x1 �=p ,

where p, f |xi=p, and f |xi �=p are expressed as SOP forms.
It is worth mentioning that in order to minimize the overall

form, it is possible to further minimize the SOP for p as

well as the two projected SOP forms f |xi=p and f |xi �=p after

projection.
Definition 2: Let p̃ be a minimal SOP form for the function

p and let the minimal SOP expressions for the projections of f
onto the sets Bxi=p and Bxi �=p be represented by f̃ |xi=p and

f̃ |xi �=p, respectively. The minimal PSOP of f with respect to

p is expressed as:

PSOP(f) = (xi ⊕ p̃)f̃ |x1=p + (xi ⊕ p̃)f̃ |x1 �=p .
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Fig. 2. Karnaugh maps of a function f (left) and its corresponding projections onto f |x1=p and f |x1 �=p (right), with p = x2 · (x3 + x4)..

Example 3: Consider the function f = x1x2x3x4 +
x1x2x3x4+x1x2x3x4+x1x2x3x4+x1x2x3x4+x1x2x3x4+
x1x2x3x4 described in Example 2. The minimal SOP form

of this function is x1x2x3 + x2x3x4 + x1x2x3 + x1x3x4.

As shown in Figure 2, the function f is projected onto the

two sets. The minimal SOP forms for the sets Bx1=p and

Bx1 �=p, can be represented by f̃x1=p = x3 + x2x4 and

f̃ |x1 �=p = x3x4, respectively. As the minimal SOP form of p is

p̃ = x2x3+x2x4, the overall minimal PSOP form for f is then

(x1⊕(x2x3+x2x4))(x3+x2x4)+(x1⊕(x2x3+x2x4))(x3x4).
Another useful form is the Pr-SOP for the function f , which

is also known as the PSOP with remainder [3]. It includes a

remainder, containing all products in the SOP expression of

f that intersect both projection sets. These products are called

crossing products, whereas products entirely included in one

of the two projection sets are called non-crossing products.

Definition 3: Let f |xi=p and f |xi �=p denote the projections

of all non-crossing products in a SOP representation of f , and

let r denote the sum of all crossing products. The Pr-SOP of

f with respect to p is expressed as:

Pr-SOP(f) = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi �=p + r .

Minimizing all SOP expressions, we derive a minimal PSOP
with remainder.

Definition 4: Let p̃ and r̃ be minimal SOPs form for the

function p and the remainder r, respectively. Let the minimal

SOP expressions for the projections of all non-crossing prod-

ucts of f onto Bxi=p and Bxi �=p be represented by f̃ |xi=p and

f̃ |xi �=p, respectively. The minimal Pr-SOP of f with respect

to p is expressed as:

Pr-SOP(f) = (xi ⊕ p̃)f̃ |x1=p + (xi ⊕ p̃)f̃ |x1 �=p + r̃ .

Algorithms and heuristic methods for minimizing PSOP

expressions have been proposed and analyzed in [3], [5].

C. Reversible Circuits and Quantum Compilation

Reversible circuits have one-to-one correspondence between

their inputs and outputs, ensuring that the number of outputs

is always equal to the number of inputs. In order to assess the

efficiency of such circuits, metrics like the number of ancilla
inputs and garbage outputs are crucial. The number of ancilla

inputs refers to the number of additional input bits required

to make logic gate irreversibles. The number of garbage

outputs signifies the outputs generated to maintain one-to-

one mappings but contain unimportant values. Decreasing

these important features enhances the efficiency of designing

reversible circuit.

Reversible circuits are normally based on Mixed-polarity
Multiple Control (MPMC) Toffoli gates. All functions can

be implemented with these reversible gates. In Figure 6, the

realization of three MPMC Toffoli gates are illustrated, the

notation ⊕ indicates the target line, while the notations • and ◦
denote positive and negative control connections, respectively.

This gate is known as a NOT gate when there are no control

connections. It is classified as a Controlled-NOT (CNOT)
gate when there is only one positive connection, and as a

Multiple-Control Toffoli gate when there are only positive

connections [13].

The synthesis of quantum circuits begins with the design of

reversible circuits. An additional quantum compilation step is

then required to transform reversible circuits, which utilize

gates like MPMC Toffoli gates, into quantum circuits with

functionally equivalent gates.

This process involves decomposing each reversible gate into

elementary quantum gates, based on standard quantum gate
libraries [9], [12]. Adding a quantum compilation step to a

reversible circuit with MPMC Toffoli gates can transform it

into a functionally equivalent quantum circuit that can be im-

plemented on quantum hardware. A quantum circuit as a result

of this transformation maintains the same logical operations as

the original reversible circuit while using quantum gates.

In this work, this mapping will be based on the Clifford+T
library. It includes Pauli, Hadamard, and CNOT gates as

well as T-gate [13]. Since the T-gate is considered as the

most expensive quantum gate, the cost efficiency of quantum

circuits is evaluated in terms of the number of T-gates required.
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Fig. 3. Classical and new minimization strategies without SOP synthesis.

The classical cost in terms of T-gates for the realization of a

2-controlled MPMC Toffoli gates is 4, in accordance with the

algorithm described in [10].

A detailed information on reversible circuits as well as an

overview of efficient quantum compilation methods can be

found in [10], [18].

III. QUANTUM CIRCUITS SYNTHESIS BASED ON PSOP

DECOMPOSITION

In this section, we describe how the PSOP decomposition

of a Boolean function f can be exploited to ease its quan-

tum compilation. More precisely, we show how to combine

quantum circuits for the two projected functions f|xi=p and

f|xi �=p, the function p, and the remainder r, if present, in

order to derive a quantum circuit for the original function f ,

following the strategies depicted schematically in Figure 3.

Potential benefits of this approach are a reduced compilation

time, and a final quantum circuit of reduced area with respect

to the quantum circuit derived compiling directly the function

f without leveraging its PSOP decomposed forms.

As already observed, this new quantum compilation strategy

can be applied to any Boolean function, after the fast PSOP

decomposition step, whose cost is linear in the initial SOP

representation of the target function.

Let f be a Boolean function depending on n binary vari-

ables, and let PSOP(f) and Pr-SOP(f) denote its PSOP forms,

without and with remainder r:

PSOP(f) = (xi ⊕ p)f|xi=p + (xi ⊕ p)f|xi �=p ,

Pr-SOP(f) = (xi ⊕ p)f|xi=p + (xi ⊕ p)f|xi �=p + r ,

where xi is one input variable, p is a function that does not

depend on xi, f|xi=p and f|xi �=p are the two projections of the

SOP expression of f , and r is the remainder. Recall that both

forms can be derived in linear time.

Before the quantum synthesis step, a heuristic SOP mini-

mization step could be performed to facilitate quantum compi-

lation and possibly derive more compact circuits, as shown in

Figure 4. This step can be performed by applying polynomial

time SOP heuristics on all components of the PSOP(f) and

Pr-SOP(f) expressions, which are generally smaller functions,

Classical Minimization Strategy with SOP synthesis

f SOP Synthesis
(Heuristic

Minimization)

(Polynomial Complexity)

f̃ Quantum
Synthesis

Q-Circuit for f

New Minimization Strategy with SOP synthesis

f
Decomposition

(Linear Complexity)

f |x=p

f |x �=p

r
p

SOP Synthesis
(Heuristic

Minimization)

(Polynomial Complexity)

f̃ |x=p

f̃ |x �=p

r̃
p̃

Quantum
Synthesis

Q-Circuit for f

Quantum
Circuit for

Reconstruction

Fig. 4. Classical and new minimization strategies with SOP synthesis.

that depend on fewer variables and contain fewer minterms

than the target function f . Notice that a similar step in the stan-

dard quantum compilation flow, not based on decomposition,

would require the more costly heuristic SOP minimization of

the whole function f . This preliminary minimization is not

mandatory and can be avoided in case of large benchmarks,

whose SOP minimization could result too time demanding.

After the optional SOP minimization step, quantum compi-

lation is applied independently onto the subfunctions p, f|xi=p,

f|xi �=p, and the remainder r (if present).

Finally, we derive a quantum circuit for the overall function

f using the quantum circuits for p, f|xi=p, f|xi �=p, and the

remainder r as building blocks, as shown in Figures 5 and 6.

Before describing how to derive a quantum circuit for a

function f from PSOP decomposition, we state and prove a

proposition that allows to ease the reconstruction strategy.

Proposition 1: Let f be a Boolean function depending on

n binary variables, and let PSOP(f) and Pr-SOP(f) be its

PSOP decomposition without and with remainder, respectively.

The disjunction between the first two terms in both algebraic

expressions can be replaced with an Exclusive Or:

PSOP(f) = (xi ⊕ p)f|xi=p ⊕ (xi ⊕ p)f|xi �=p ,

Pr-SOP(f) =
(
(xi ⊕ p)f|xi=p ⊕ (xi ⊕ p)f|xi �=p

)
+ r .

Proof. Observe that the first two terms in both PSOP(f) and

Pr-SOP(f) represent disjoint sets of points. Indeed, the two

subspaces Bxi=p and Bxi �=p do not intersect, and the product

of their characteristic functions (xi ⊕ p) and (xi ⊕ p) is the

zero function. This immediately implies that the disjunction

can be replaced with an exclusive OR.

This result is important for the reconstruction procedure

since an EXOR can be easily implemented in a quantum circuit

using a CNOT instead of a Toffoli gate.

We now describe the reconstruction procedure of a quantum

circuit for f , considering first the case of PSOP decomposition

without remainder.

The overall quantum circuit for f in this case is obtained

concatenating the two quantum subcircuits for the projections,

that depend on all variables but xi, with the quantum circuit

for (xi ⊕ p), possibly depending on all input variables. The
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Fig. 5. Quantum circuit based on PSOP without remainder.

quantum circuit for (xi⊕p) can be derived inserting a CNOT,

controlled by xi, on the output line of a quantum circuit for

p. Note that four additional lines (and therefore four new

qubits) are needed: one for f|xi=p, one for f|xi �=p, one for

(xi ⊕ p) and finally one output line for f . The overall circuit

structure is shown in Figure 5, where two swap gates are used

to bring the qubits for the intermediate results closer to the

corresponding subcircuits. Eventually, two Toffoli gates are

inserted for computing the AND between the projections and

the corresponding subspaces, one described by the subcircuit

for (xi ⊕ p) and the other by its complement. Both Toffoli

gates act on the output line for f , thanks to the fact that

the OR operator in the PSOP expression has been replaced

with an EXOR. The overall methodology is summarized in

the algorithm in Figure 7, and its cost in terms of elementary

quantum T-gates is discussed in the following proposition.

Proposition 2: The number of T-gates required to synthesize

the PSOP-based quantum circuit for f is given by the overall

number of T-gates occurring in the subcircuits for f|xi=p,

f|xi �=p, and (xi ⊕ p), plus 8 additional T-gates.

Proof. Observe from Figure 5 that the three quantum subcir-

cuits for f|xi=p, f|xi �=p, and (xi⊕p) are combined using only

two additional swap gates and two Toffoli gates. Since swap

gates are implemented using CNOTs, only 8 additional T-gates

are required, four for each Toffoli gate [10].

Figure 6 shows the circuit for f based on the PSOP decom-

position with remainder. As already noted in Proposition 1, the

first disjunction can be replaced by an EXOR. Moreover, using

De Morgan’s laws, we can replace the remaining OR with a

NAND. Thus the form becomes

Pr-SOP(f) =
(
(xi ⊕ p)f|xi=p ⊕ (xi ⊕ p)f|xi �=p

)
) ∧ r

The overall quantum circuit for f is thus obtained concatenat-

ing the subcircuits for the projections, for the characteristic

function (xi ⊕ p) of the projection subspace, and for the

remainder r, possibly depending on all input variables.

This time, six additional lines are used: two for f|xi=p and

f|xi �=p, one for (xi⊕p), one for the remainder, one for storing

the intermediate result (xi⊕p)f|xi=p⊕(xi⊕p)f|xi �=p, and one

as output line for f . As before, swap gates are used to bring the

|xi〉

Quantum
Circuit

for
(xi ⊕ p)

Quantum
Circuit
for rall other variables Quantum

Circuit
for

f |xi=p

Quantum
Circuit

for
f |xi �=p

|0〉 remainder r

|0〉 (xi ⊕ p)

|0〉 f |xi �=p

|0〉 f |xi=p

|0〉

|1〉 f

Fig. 6. Quantum circuit based on PSOP with remainder.

qubits for the intermediate results closer to the corresponding

subcircuits.

Two Toffoli gates, both acting on the same line, are then

used for computing the EXOR of the products between the

projections and the corresponding subspaces. A third Toffoli

gate on the output line for f , inizialized with a qubit in

state |1〉, is finally used to compute the NAND between the

complement of the EXOR of the two products on the second

to last line, and the complement of the remainder r.

The overall methodology, summarized in the algorithm in

Figure 8, requires a constant number of additional T-gates for

combining the four quantum subcircuits, as stated and proved

in the following proposition.

Proposition 3: The number of T-gates required by the

quantum circuit based on PSOP decomposition with remainder

is given by the overall number of T-gates occurring in the sub-

circuits for f|xi=p, f|xi �=p, (xi ⊕ p), and r, plus 12 additional

T-gates.

Proof. Observe from Figure 6 that the four quantum subcir-

cuits for f|xi=p, f|xi �=p, (xi ⊕ p), and r are combined using

three additional swap gates, implemented using CNOT gates

only, and three Toffoli gates. Thus, only 12 additional T-gates

are required, four for each Toffoli gate [10].

The overall computational cost of the proposed approach

includes the cost of the projections (linear in the initial SOP

of f ), the cost of the optional heuristic SOP minimization

of f|xi=p, f|xi �=p, p, and r (polynomial), the cost of their

quantum compilation, and the (constant) cost for combining

the quantum subcircuits into a quantum circuit for f .

The cost of the standard quantum compilation would include

the cost of the optional heuristic SOP minimization of f and

the cost of its quantum compilation.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the effectiveness of the proposed

method for the quantum synthesis of PSOP-decomposed func-

tions. We, then, present the computational results achieved

by constructing PSOP expressions for Boolean functions,

and comparing these expressions to their standard quantum

synthesis forms. In order to assess reversible circuits derived
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INPUT
f /* Function in SOP form depending on n variables {x1, . . . , xn} */
xi /* An input variable */
p /* Function in SOP form depending on all input variables, but xi */
f|xi �=p /* Projection of f onto the subspace (xi ⊕ p) */

f|xi=p /* Projection of f onto the subspace (xi ⊕ p) */

OUTPUT
Q /* Quantum circuit for f */

OPTIONAL: Heuristic SOP minimization of p, f|xi �=p, f|xi=p;

Qf�= = QuantumSynthesis(f|xi �=p);

Qf= = QuantumSynthesis(f|xi=p);

Qp = QuantumSynthesis(xi ⊕ p);

Q = Toffoli(Qf�= , Qp) ⊕ Toffoli(Qf= , Qp);

return Q

Fig. 7. Quantum synthesis based on PSOP decomposition without remainder.

from PSOP decomposition and compare them with standard

synthesis derived circuits, we have measured their number of

qubits and also evaluated their cost in terms of elementary

quantum T-gates. Specifically, we mapped each MPMC Tof-

foli gate into elementary quantum gates. This mapping was

performed based on the Clifford+T library and the algorithm

detailed in [10]. Since the T-gate is considered the most

expensive gate in the library, usually the cost of a Toffoli gate

is expressed in the number of T-gates needed for its realization.

For this reason we report the number of T-gates in the tables.

All computational experiments have been run on a In-

tel i7-8550U CPU of 1.80GHz with 16GB of RAM. The

benchmarks utilized are classical benchmarks in PLA form

(classical Espresso and LGSynth’89 benchmark suite [19]).

This choice is due to the fact that the computation of the

function p described in [2] derives from a statistical analysis

of the initial SOP (or PLA) form. The benchmarks in other

classical sets (such as EPFL benchmark suite [16], [17]) are,

unfortunately, not given in PLA form. We further discuss this

point in the concluding section. As representative indicators

of our experiments, we report only a significant subset of the

functions.

The experiments has been conduct using the SOP mini-

mization as described in the strategy depicted in Figure 4,

using ESPRESSO [7] in the heuristic mode for the SOP syn-

thesis. The experimental results are obtained by applying the

XAG-based quantum compilation heuristic proposed in [11].

In particular, we are interested in evaluating experimentally

whether this recent technique could benefit from the PSOP

decomposition of the target function.

The decomposition phase is extremely fast, coherently with

the linear time complexity of the corresponding algorithm [2].

Therefore, the computational times of the standard mini-

mization and the decomposed one are extremely similar. For

this reason the comparison of computational times is not

interesting, and we do not report them in the tables.

In Table I, the names of a significant set of benchmarks,

included in our experiments, are listed in the first column.

The following four columns provide details on the number of

T-gates, which determine the cost, and the number of qubits

required for the quantum circuits obtained from standard

synthesis and PSOP expressions of the benchmarks. As can

INPUT
f /* Function in SOP form depending on n variables {x1, . . . , xn} */
xi /* An input variable */
p /* Function in SOP form depending on all input variables, but xi */
f|xi �=p /* Projection of the non-crossing products of f onto the subspace (xi ⊕ p)*/

f|xi=p /* Projection of the non-crossing products of f onto the subspace (xi ⊕ p)*/

r /* Sum (OR) of the crossing products of f */

OUTPUT
Q /* Quantum circuit for f */

OPTIONAL: Heuristic SOP minimization of p, f|xi �=p, f|xi=p, r;

Qf�= = QuantumSynthesis(f|xi �=p);

Qf= = QuantumSynthesis(f|xi=p);

Qp = QuantumSynthesis(xi ⊕ p);
Qr = QuantumSynthesis(r);

Q1 = Toffoli(Qf�= , Qp) ⊕ Toffoli(Qf= , Qp);

Q = 1 ⊕ Toffoli(Qr , Q1);
return Q

Fig. 8. Quantum synthesis based on PSOP decomposition with remainder.

be seen, we investigate three scenarios for PSOP expressions:

the projection of f with respect to p is first explored as an

AND of two variables (PSOP with AND), secondly as a simple

Boolean variable (PSOP with variable), and lastly as an EXOR

of two variables (PSOP with EXOR). In each scenario, we

examine PSOP expressions both with and without remainder.

As shown in Table I, it is clear that some benchmarks

experience significant advantages from PSOP expressions in

terms of the number of T-gates and the number of qubits

compared to standard synthesis. For instance, the benchmarks

rd73 and sym10 achieve a significant reduction in T-gates and

qubits when utilizing PSOP with EXOR ( with remainder) and

PSOP with EXOR (without remainder), respectively. Specif-

ically, rd73 shows a 49% reduction in T-gates and a 45%

reduction in qubits, while sym10 shows a 47% reduction in

T-gates and an 46% reduction in qubits. However, in some

cases, standard synthesis results in circuits with fewer T-gates

and qubits compared with PSOP-based synthesis. For example,

the addm4 benchmark.

Overall, we can note that the best strategy seems to be the

one where p is a single variable (with or without remainder).

Moreover, the one that uses p as an AND gate is less useful.

This is probably due to the fact that an AND gate has

an expensive (in terms of T-gates) quantum representation.

Meanwhile, the single variable or the EXOR gates require less

expensive quantum gates.

Table II reports a subset of all the benchmarks used in

our experiments. The first column lists the name of each

benchmark. The next group of 2 columns detail the cost and

the number of qubits for the the quantum circuits derived

from standard synthesis and the best PSOP expressions of the

benchmarks. Finally, the last column reports the gain in the

number of T-gates.

According to the results shown in Table II, it is evident that

some benchmarks benefit greatly from the proposed strategy.

For instance, the benchmarks newapla and newxcpla1 achieve

a 71% and 75% reduction in T-gates, respectively. However,

the gain is much less significant for some benchmarks, such

as in0 and in2. In some cases, the best PSOP strategy results

in circuits with a higher number of T-gates, for example adr4
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PSOP with AND PSOP with variable PSOP with EXOR
Standard synthesis Without remainder With remainder Without remainder With remainder Without remainder With remainder

Benchmark T -count # qubits T -count # qubits T -count # qubits T -count # qubits T -count # qubits T -count # qubits T -count # qubits
addm4 1680 429 2048 521 2156 548 2240 569 2244 570 2352 597 2352 597
adr4 108 35 264 74 120 38 216 62 216 62 352 96 440 118
amd 1244 325 1096 288 1128 296 1124 295 1132 297 1140 299 1140 299
apla 404 111 776 204 824 216 724 191 748 197 616 164 632 168
b3 1220 338 1320 363 1200 333 1304 359 1340 368 1272 351 1272 351
b10 1520 396 1424 372 1428 373 1436 375 1468 383 1552 404 1524 397
b12 280 85 344 101 260 80 260 80 236 74 408 117 256 79
bench 228 63 280 76 296 80 264 72 260 71 332 89 332 89
br1 504 138 580 157 496 136 444 123 504 138 524 143 524 143
br2 348 99 348 99 388 109 360 102 368 104 432 120 436 121
co14 192 62 244 75 224 70 192 62 192 62 172 57 180 59
dc2 328 90 424 114 364 100 328 90 328 91 424 114 424 115
exp 1132 292 1280 329 1284 330 1192 307 1208 311 1208 311 1272 327
f51m 454 121 412 111 400 108 508 135 508 135 420 113 416 112
fout 820 211 932 239 928 238 916 235 916 235 900 231 900 231
gary 1716 444 1792 463 1488 387 1612 418 1592 413 1692 438 1440 375
in0 1720 445 1656 429 1668 432 1712 443 1708 442 1720 445 1744 451
in2 1352 357 1632 427 1340 354 1316 348 1352 357 1328 351 1332 352
in3 1284 356 1164 326 1256 349 1224 341 1272 353 1280 355 1240 345
in4 1344 368 1384 378 1288 355 1372 375 1380 377 1344 368 1320 363
in5 1216 328 1160 314 1072 293 1052 287 956 264 1168 316 1088 297
in7 480 146 536 160 348 114 592 174 332 110 432 134 316 106
inc 364 98 444 118 444 118 380 102 384 103 388 104 388 104
m3 1024 264 936 242 948 245 1008 260 1052 271 888 230 912 236
m4 2128 540 1692 431 1592 406 1680 428 1836 467 1944 494 1932 491
max128 1392 356 1196 307 1232 316 1220 313 1260 323 1496 382 1496 382
mlp4 1264 324 1336 342 1308 335 1388 355 1388 355 1316 337 1316 337
newapla 136 46 196 61 72 31 140 47 40 23 200 62 76 32
newcpla1 336 93 464 125 248 72 280 79 320 90 364 100 260 75
newcpla2 228 64 216 61 148 45 236 66 168 49 240 67 152 46
newxcpla1 508 136 528 141 184 56 368 101 128 42 584 155 184 56
p3 632 167 736 193 720 189 584 155 592 157 628 166 620 164
p82 292 78 328 87 320 85 320 85 328 87 368 97 372 98
rckl 520 162 864 248 568 175 544 168 296 107 528 164 568 175
rd73 352 95 344 93 344 93 388 104 312 85 300 82 180 52
root 516 137 520 138 524 139 452 121 452 121 468 125 452 121
spla 2536 650 2720 696 2828 723 3356 855 3464 882 3308 843 3484 887
sqr6 404 108 408 109 416 111 392 105 392 105 440 117 428 114
sym10 1420 365 1080 280 1080 280 804 211 804 211 748 197 756 199
t1 568 163 792 219 792 219 572 164 592 169 816 225 816 225
t3 252 75 244 73 228 69 276 81 272 80 320 92 272 80
tms 744 194 828 215 840 218 704 184 744 194 680 178 692 181
vg2 444 136 440 135 360 116 512 153 364 116 348 112 292 99
x6dn 1112 317 1224 345 1180 334 1080 309 1092 312 1248 351 1308 366
x9dn 408 129 428 134 348 115 436 136 348 115 320 107 256 92
Z5xp1 456 121 380 102 392 105 512 135 520 137 356 96 352 95
Z9sym 828 216 804 210 788 206 692 182 692 182 680 179 680 179

and apla. Overall, the T cost of the best PSOP-based quantum

circuit is significantly lower than that of circuits derived from

standard synthesis.

It is also crucial to minimize the number of qubits in

quantum circuit design. As can be observed in Table II, it

is clear that the best PSOP strategy has a significant effect

on some benchmarks in terms of the number of qubits. For

example, the benchmark newapla and newxcpla1 experiences

more that 50% reduction in qubit numbers. However, the

improvement is much smaller for some benchmarks like b3
and sqr6. In some instances, the best PSOP strategy leads to

circuits with a higher number of qubits, such as in the case

of adr4. In general, we can see that the number of qubits in

quantum circuits based on the best PSOP is notably fewer

compared to the circuits obtained through standard synthesis.

In summary, we have that the proposed strategy gives better

results for the 61% of the benchmarks with an average gain

of about 22% in terms of T-gates, within the same time limit.

Some benchmarks particularly benefit from this strategy, since

their cost gain is more than the 70%.

V. CONCLUSION

This paper has described a pre-processing procedure and

a reconstruction method to ease quantum synthesis. The pro-

posed strategy is given by a PSOP decomposition based on

the expression xi ⊕ p. Moreover, the algorithms have been

experimentally tested on decompositions where p is a variable,

an AND of variables and an XOR of variables, validating the

proposed approach.

The synthesis method based on PSOP decomposition gives

interesting results. Nevertheless, the decomposition is applied

to SOP forms, since the PSOP decomposition is based on some

statistics on the variables appearing in the starting SOP. This

means that the input Boolean function must be represented

with a PLA or any 2 level logic representation.

The future works on this topic should study new methods

for deriving PSOP forms starting from other representations

as AND inverter graphs or ROBBDs. Moreover, another

interesting new direction is the study of the use of other

possible decompositions for easing quantum compilation. For

example, it would be interesting to study “Projected Exclusive

Sum of Products” forms as a starting point for reversible

TABLE I
COMPARISON BETWEEN THE COMPILATION HEURISTIC PROPOSED IN [11] (STANDARD SYNTHESIS) APPLIED AFTER ESPRESSO IN THE HEURISTIC MODE, 

AND THE PROPOSED STRATEGY WITH DIFFERENT OPTIONS OF p WITH AND WITHOUT REMAINDER.
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TABLE II
COMPARISON BETWEEN THE COMPILATION HEURISTIC PROPOSED IN [11]

(STANDARD SYNTHESIS) APPLIED AFTER ESPRESSO IN THE HEURISTIC

MODE, AND THE BEST SOLUTION OF THE PROPOSED STRATEGY.

Standard synthesis Best PSOP Gain
Benchmark T -count # qubits T -count # qubits (T-gates)
addm4 1680 429 2048 521 −
adr4 108 35 216 62 −
amd 1244 325 1096 288 12%
apla 404 111 616 164 −
b3 1220 338 1200 333 2%
b10 1520 396 1424 372 6%
b12 280 85 236 74 16%
bench 228 63 260 71 −
br1 504 138 444 123 12%
br2 348 99 348 99 −
co14 192 62 172 57 10%
dc2 328 90 328 90 −
exp 1132 292 1192 307 −
f51m 454 121 400 108 12%
fout 820 211 900 231 −
gary 1716 444 1440 375 16%
in0 1720 445 1656 429 4%
in2 1352 357 1316 348 3%
in3 1284 356 1164 326 9%
in5 1216 328 956 264 21%
in7 480 146 316 106 34%
inc 364 98 380 102 −
m3 1024 264 888 230 13%
m4 2128 540 1592 406 25%
max128 1392 356 1196 307 14%
mlp4 1264 324 1308 335 −
newapla 136 46 40 23 71%
newcpla1 336 93 260 75 23%
newcpla2 228 64 148 45 35%
newxcpla1 508 136 128 42 75%
p3 632 167 584 155 8%
p82 292 78 320 85 −
rckl 520 162 296 107 43%
rd73 352 95 180 52 49%
root 516 137 452 121 12%
spla 2536 650 2720 696 −
sqr6 404 108 392 105 3%
sym10 1420 365 748 197 47%
t1 568 163 572 164 −
t3 252 75 228 69 10%
tms 744 194 680 178 9%
vg2 444 136 292 99 34%
x6dn 1112 317 1080 309 3%
x9dn 408 129 256 92 37%
Z5xp1 456 121 352 95 23%
Z9sym 828 216 680 179 18%

logic synthesis, instead of Exclusive Sum of Products (ESOP)

expressions [15].
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