
DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

Accelerating Cryptographic Algorithms on
RISC-V cores using Carryless Multiplication
Simi Sukumaran*, Tripti S Warrier

CarS Lab, Department of Electronics, CUSAT
Cochin, India

simisukumaran@cusat.ac.in, tripti@cusat.ac.in

Babu P S, Neel Gala
Incore Semiconductors

Chennai, India
babu.ps@incoresemi.com, neelgala@incoresemi.com

Abstract— Edge computing emerges as a critical paradigm in the
wake of Internet of Things (IoT) and 5G New Radio (5GNR). It
catalyzes the demand for energy-efficient devices that have
resilient CPUs with lean physical footprints. Mitigating the
security challenges in these networked devices necessitates Bit
Manipulation Instruction (BMI) inclusive architectures to
improve Galois Field (GF) arithmetic, which is a fundamental step
for most cryptographic algorithms. All major Instruction Set
Architectures (ISA), including RISC-V incorporate dedicated
instructions for carryless multiplication, recognizing its significant
contribution in cryptographic applications. Acknowledging the
fact, this paper introduces a novel approach to enhance the
performance of GF arithmetic using carryless multiplication. The
approach presents a promising avenue by improving the execution
cycle counts of a real-world cryptographic application like the
Advanced Encryption Scheme (AES) and can be scaled to all GF-
based cryptographic algorithms. The proposed GF algorithm
effectively maps the Carryless Multiplication Instruction of the
ratified RISC-V Zbc extension. Evaluations indicate about 4.5x
performance improvement for multiple schemes of AES using an
open-source RISC-V core (SweRV-EL2TM 1.3) without incurring
any additional overhead in terms of area as well as compiler
support.

Keywords- Cryptography; Galois Field Arithmetic; RISC-V;
AES;

I. INTRODUCTION

The Internet of Things (IoT) [1] and communication
network topologies, such as 5G New Radio (5GNR) [2], are
driving the transition from cloud to edge computing. The
stringent architectural constraints of portable devices
necessitate optimal performance at the least cost of area and
power. This motivates researchers to derive the best from
current designs through modifications to enhance crucial and
frequent applications such as cryptography and error correction.
Most measures that tackle the security and safety concerns
according to today's device design trends rely predominantly on
bit manipulation algorithms. The RISC-V community has been
working on the introduction of BMI for the past couple of years
and has been successful in ratifying four key BMI sub-
extensions: Zba/b/c/s [3] for which GNU Compiler Collection
(GCC) support is also available. The Zbc extension endows
carryless multiplication (CLMUL) instructions, engaging
which the GF arithmetic and any allied cryptographic
algorithms like Advanced Encryption Standard (AES), Reed-

Figure 1: Datapath showing GF operations in AES encryption process

Solomn and even post quantum cryptographic algorithms can
be accelerated.

 AES plays a critical role in minimizing the security
vulnerabilities among networked IoT devices by guaranteeing
secure encrypted communication. The functional breakdown of
AES reveals strong reliance on GF arithmetic. Fig. 1 depicts the
GF arithmetic units employed during different stages of AES
encryption. Similarly, most of the cryptographic schemes have
repeated instances of Galois Field Multiplication (GFMUL),
Inversion (GFMUL_INV), and Addition (GFADD). This
promotes the development of flexible galois field processors
[4], dedicated hardware and hardware-software co-designs [5]
to enhance the performance and security of edge devices. The
GFADD represents a simple xor operation, whereas the
GFMUL corresponds to a carryless multiplication followed by
reduction logic [6], as illustrated in Fig. 2. Inversion uses the
repeated square and multiply approach [7], which also aligns
with the requirement for optimum Galois Field Multiplication.

The above facts demonstrate that optimized GF arithmetic
employing CLMUL implementations provides the necessary
impetus to boost cryptographic applications. Inspired by these
observations, this work proposes a novel approach to modify
the GFMUL algorithm using three CLMUL instructions, one
for multiplication and the rest for polynomial reduction.
Further, we simulate, validate and evaluate modified GFMUL
and GFMUL_INV algorithms on SweRV-EL2 core with inbuilt
Zbc extension [3] and measure the performance improvement

Figure 2: Galois Field multiplication using two stage logic

Carryless
Multiplication

Polynomial
Reduction

Galois Field Multiplication

Input 1

Input 2

Irreducible
Polynomial

Output

5

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

obtained on a real-world cryptographic application - AES. Our
work stands distinct from the state-of -art works by exploiting
the existing CLMUL instructions for polynomial reduction
rather than custom instructions in RISC-V processors. Hence, it
eliminates the modification of the RISC-V GNU toolchain and
exempts any area overhead on the core for incorporating such
custom instructions.

II. PROPOSED WORK

 The lower footprint requirement of lean embedded
processors, along with the RISC-V GCC compiler's failure to
render the CLMUL (carryless multiplication) instruction in
embedded and crypto benchmarks emphasize the need to
quantify the significance of these instructions. This section
modifies the basic GF multiplication method utilizing carryless
multiplication and maps it to AES- an essential cryptographic
application.

A. Mathematical Basis of GF(2m)
Popularly known as binary extension field, GF(2m)

represents elements with polynomial degrees up to m-1. The
polynomial representation of GF(2m) is shown in Equation (1).
It 0), and a

ucible
polynomial f(x) associated with GF(2m

element) forms its root.

() = + . + + ;

(2), 0 1

f(x) = x + f x + + f x + f0;

 Arithmetic operations in GF(2m) mandate a polynomial
reduction, equivalent to the modulo using the irreducible field
polynomial when the degree of the result exceeds m-1. All the
arithmetic operations explained below use a(x) and b(x)
represented by Equation (3) as inputs.

() = + + +

() = + + +

 , (2), 0 1

GFADD is a simple, yet most repeatedly used operation in
cryptographic algorithms. It carries out direct bitwise XOR of
the corresponding coefficients of the inputs as in Equation (4)
and does not require polynomial reduction as it fits in the field.

Figure 3: GF(28) Multiplication using standard logic

Figure 4: Modified Galois Field multiplication logic. Polynomial reduction is
also broken down to make use of carryless multiplication. P, Q, and R are
intermediate carryless multiplication results.

() = () + + () (4)

 GFMUL is a two-step process comprising of a carryless
multiplication followed by polynomial reduction, as shown in
Fig. 2. The result of carryless multiplication is of degree 2m-2
and should be reduced using the irreducible polynomial to keep
the final result c(x)=p(x) mod f(x) within the field. Fig. 3
represents a GF(28) example of GFMUL with field polynomial
f(x) =x8+x4+x3+x+1 (11BH).

B. Modified Galois Multiplication Algorithm
Galois Multiplication being a complex but inevitable

operation in cryptography is explored and implemented in
different ways. Kuo et al. employs an appealing two-step process
using carryless multiplication followed by polynomial reduction
as shown in Fig. 2 [6]. The work in this paper modifies the
GFMUL logic using three carryless multiplications as shown in
Fig. 4. Here the polynomial reduction is also broken down into
two carryless multiplications. The mathematical grounds of this
mapping is derived from the explanations given by Gureon et
al., but is not included here due to space considerations [8].

The Algorithm 1 gives a stepwise walk through this modified
approach with two N-bit inputs (of degree N-1) and an N+1 bit
field polynomial (of degree N). As long as the degrees of inputs
(A and B) and field polynomial (F) are N-1 and N, respectively,
F+ and F remain the same. Hence, using the proposed algorithm,
the GFMUL result can be attained with three carryless
multiplications and minor logic to extract the MSB and LSB of
the intermediate results. Fig. 5 clearly demonstrates the steps
depicted by Algorithm 1 using GF(28). This degree is chosen
because many of the real world cryptographic applications, like
AES make use of GF(28) with Field polynomial as F(x)=x8 +x4

+x3 +x+1 (11BH). Here, as F is of degree 8 and A, B are of
degree 7, F+ is same as F (11BH) and its lower significant Byte
(lsB) forms F* (1BH). The results for the modified algorithm

Algorithm 1: Proposed GFMUL Algorithm

Input: A,B : N bits, Field Polynomial (F): N+1 bits
Output: C : N bits

STEP 1: P : [P1:P0] = carryless multiplication(A,B)
STEP 2: Q : [Q1:Q0] = carryless multiplication(P1,F+)

 where F+ = result of X2N divided by F
STEP 3: R : [R1:R0] = carryless multiplication(Q1,F*)

 where F*= lower order N bits of F
STEP 4: Output : C = R0 xor P0

Carryless
Multiplication

Input 1
))AA(

Input 2
))BB(Output

Carryless

Carryless
Multiplication

Irreducible
Polynomial

Polynomial Reduction

(F)

P

F* RR0

Galois Field Multiplication

PP1

PPP0

F+
QQ1

(1)

(2)

(3)

6

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

Figure 5: An eight bit GFMUL example using the modified algorithm

are verified for all possible 8-bit input combinations against the
standard algorithm. The modified GFMUL algorithm when
compiled for GF(28) using RISC-V GCC compiler, generates the
instruction disassembly which gives three instances of CLMUL
instruction as expected. This algorithm can be further extended
to higher polynomial degrees but gets limited with the width of
the RISC-V register.

C. Application mapping and evaluation on SWERV-EL2
The proposed GFMUL algorithm using CLMUL

instruction can be used to accelerate various application that use
GF(28) arithmetic operations. AES is the GF(28) based
cryptographic application selected for the performance
evaluation and is applied to multiple encryption schemes of
AES like CBC, ECB and CTR for key-lengths 128, 192 and
256. SweRV-EL2 known as VeeR-EL2 at the time of writing is
an open-source RISC-V core from Western Digital with support
for the ratified bit manipulation extensions (Zba/b/c/s). Thus,
by default, it has the hardware for carryless multiplication in the
execution pipeline and deprecates any extra hardware for
executing the proposed algorithm.
 The notion of the work is to reduce the cycles of execution

taken by the GFMUL in cryptographic applications using the
CLMUL instructions. The evaluation strategy hence involves a
standard variant that is compiled and executed using basic
RISC-V instructions and a proposed variant, that requires the
Zbc instruction support, that is available in SWERV-EL2.The
AES algorithm in the repository mentioned in Table I has been
modified to accommodate these two variants (Standard and

TABLE I. RECORD OF TOOLS AND REPOSITORIES USED FOR EVALUATION

Core

SWERV-EL2

CoreTM 1.3: RISC-V from Western Digital

 Target= typical_pd [No ICCm, AXI4 bus interface]

Frequency= 25 Mhz

Synthesis and Implementation

Vivado Version=v2023.2 (64-bit)

Target board Nexys 4 DDR; Part: XC7A100T-1CSG324C

Simulation

Verilator v4.212

RISC-V GNU
Toolcahin

32 bit GCC: version:13.2.0(gc891d8dc23e)

Compiler flags: -mabi=ilp32 -march=rv32imac_zbc_zicsr
-O3 -fomit-frame-pointer -fPIC -no-pie

Algorithms

AES Repository: https://github.com/kokke/tiny-AES-c

Proposed) for three encryption Schemes (CBC, CTR and ECB)
using multiple key lengths. Table I shows the record of tools,
its configurations and the repositories used in this work. The
simulation environment consists of a verilated model using
SWERV-EL2 core connected to a virtual memory via AXI bus
as shown in Fig. 6. AES is modified to have versions with and
without CLMUL instruction based GF arithmetic, compiled by
the RISC-V GNU toolchain and the resulting binary is fed into
virtual memory for simulation. The verilated top module is
modified to display the number of cycles executed and the total
instructions retired in the console output for each run. This is
accomplished by reading the values of MCYCLE and
MINSRET controls status registers (CSR) of RISC-V ISA
using the CSR read instruction. The counts corresponding to the
standard and the proposed CLMUL implementation are
extracted to calculate the percentage reduction in cycles
executed. All the steps followed for the simulation here are
available in the open-source SweRV repository [9].

TABLE II. CLOCK CYCLES AND INSTRUCTION COUNTS FOR GFMUL

Function Cycles Instructions Reduction (%)
Standard Proposed Standard Proposed Cycle Instr

GFMUL
GF(24) 128 57 64 21 55.47 67.19
GF(28) 175 63 106 21 64 80.19
GF(216) 344 65 240 26 81.1 89.17

GFMUL_INV

GF(24) 378 131 296 85 65.34 71.28
GF(28) 1250 274 1126 223 78.08 80.2
GF(216) 6356 631 5928 573 90.07 90.33

Figure 6: Verilated model of SWERV-EL2 for simulation of GF operations in AES encryption

7

DSD’2024 and SEAA’2024 Works in Progress Session AUG 2024

III. RESULTS AND DISCUSSIONS

 This section evaluates the performance of the proposed
modification in Galois multiplication in terms of execution
cycles and retired instructions. Though this work lays focus on
GF(28) owing to the degree of field in AES , the proposed
algorithm is scalable to other polynomial degrees as well. Table
II shows the count of execution cycles and instructions returned
count of GFMUL and GFMUL_INV for degrees 4, 8, and 16. It
shows that the percentage of reduction in cycle count increases
from 55% to 81% as the degree of polynomial or the number of
bits in the arithmetic logic increases from 4 to 16. This trend
makes it evident that the performance of the modified algorithm
improves with higher degrees of Galois field arithmetic.
Similarly, the inversion algorithm is modified using the
proposed GFMUL and examined for multiple degrees. The
results show cycle count reduction of 65%, 78% and 90% for
degrees 4, 8 and 16 respectively over the standard execution.

 CBC, ECB and CTR schemes of AES exhibits similar
results of more than 75% reduction in execution cycles for
encryption and decryption algorithms as portrayed by Fig. 7.
The results marks a comparable performance with respect to the
state-of-the-art (SOTA) solution with a small depreciation in
cycle reduction [6]. This stems from the absence of dedicated
hardware for polynomial reduction using custom instructions.
In SOTA, the polynomial reduction logic as such is substituted
with FFRED instruction (Custom), which incurs an area of 7%
equivalent to 268 LUT’s on NEXYS DDR4 FPGA board. On
contrary, the proposed approach does not add any additional
hardware and uses the already existing carryless multiplier
twice for polynomial reduction. These additional instances of
CLMUL instructions in the algorithm account for the
aforementioned depreciation in the perfomance.

Figure 7: Plot of the Cycles counts for CBC, CTR and ECB schemes of AES
for Standard and Proposed execution for various keylengths. The numbers on
top of the bars indicate the percentage reduction in cycle count achieved by the
proposed method corresponding to the absolute bar values.

Nevertheless, the proposed variant shows about 4.5x compared
to the standard approach for AES, without any hardware
modification to the existing core and also eliminates the need
for compiler and ISA modifications and associated hardware
overheads for custom instructions.

IV. CONCLUSION
The Security concerns on edge devices, initiate tailored
optimizations of general-purpose CPUs for accelerated
cryptographic applications. Galois field arithmetic - GF(2m), is
a critical step in pre and post-quantum encryption and error-
correcting codes. Carryless multiplication enhances GF
arithmetic, making the Zbc extension of RISC-V BMI valuable
for accelerating GF-based cryptographic algorithms. This work
proposes an approach to modify the Galois multiplication and
related arithmetic using carryless multiplication to map the
same to RISC-V ISA. Our analysis using an open-source RISC-
V core revealed a significant decrease in clock cycles of over
75% for various AES schemes with a 25% decrease in static
code size without the need for any additional hardware for
custom instructions and related compiler overheads. Future
work aims to explore carryless multiplier designs, incorporate
them into an in-house RISC-V core, and evaluate more real-
world applications like McEliece and Reed-Solomn.

ACKNOWLEDGMENT

 This research is supported in part by C2S Project scheme of
Ministry of Electronics and Information Technology (MeitY),
Government of India vide project grant EE-9/2/2021-R&D-E.

REFERENCES

[1] L. Tan and N. Wang, “Future internet: The internet of things,” in 2010
3rd international conference on advanced computer theory and
engineering (ICACTE), vol. 5, pp. V5–376, IEEE, 2010.

[2] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A survey on
green 6g network: Architecture and technologies,” IEEE access, vol. 7,
pp. 175758–175768, 2019.

[3] R. International, “Risc-v bit-manipulation isa-extensions.” https://github.
com/riscv/riscv-bitmanip/blob/main/bitmanip/bitmanip.adoc, 2022.

[4] Y. Chen, S. Lu, C. Fu, D. Blaauw, R. Dreslinski Jr, T. Mudge, and H.-S.
Kim, “A programmable galois field processor for the internet of things,”
in Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 55–68, 2017.

[5] W.-M. Lim and M. Benaissa, “Design space exploration of a hardware-
software co-designed gf (2m) galois field processor for forward error
correction and cryptography,” in Proceedings of the 1st IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis, pp. 53–58, 2003.

[6] Y.-M. Kuo, F. Garcia-Herrero, O. Ruano, and J. A. Maestro, “Riscv galois
field isa extension for non-binary error-correction codes and classical and
post-quantum cryptography,” IEEE Transactions on Computers, vol. 72,
no. 3, pp. 682–692, 2023.

[7] X. Zhang, VLSI architectures for modern error-correcting codes. Crc
Press, 2017.

[8] S. Gueron and M. Kounavis, Efficient implementation of the galois
counter mode using a carry-less multiplier and a fast reduction algorithm,

Information Processing Letters, vol. 110, no. 14-15, pp. 549 553,
2010.

[9] W. D. Corporation, “Risc-v swerv-el2 github repository.” https://github.
com/chipsalliance/Cores-SweRV-EL2, 2020.

8

