
Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

1

C Software Formal Verification
Review, challenges and future directions

Fateh Boutekkouk
ReLaCS2 laboratory, University of Oum El Bouaghi

Oum El Bouaghi, Algeria

Abstract—This paper reviews briefly the literature on formal
verification of C software. Most existing C software model
checkers and automatic theorem provers deal well only with small
size code C software. Furthermore, full mechanization of
conventional techniques to reduce the verification process
complexity as code summation and abstract interpretation is
merely impossible. Another challenge is how to choose the most
suitable tool(s) among a panoply of available tools. We think that
Artificial Intelligence can mitigate the above problems. For
instance, by applying machine learning algorithms, the
verification tool can automatically infer properties to be checked
and synthesize proofs.

Keywords-C software; formal verification; Artificial Intelligence

I. INTRODUCTION
The debut of research works on mathematical reasoning

about imperative programs goes mainly back to the works of
Floyd [13] and Hoare on the logics of axioms (Hoare logic) [17],
the works of Dijkstra on weakest preconditions calculus [8, 9]
and abstract interpretation [6]. In the same context, we find other
former works that tried to formalize and check imperative
programs using type systems [11] and algebraic semantics [14].
Since that, many extensions and logics have been developed to
reason about arrays, complex and dynamic typed data structures,
unbounded loops, floating-point arithmetic, recursive functions,
and concurrency. Separation logic [28], matching logic [35],
dependent type theory [36], and refinement types [15] are among
such extensions. Remarkable advances in SMT solvers
technology have enhanced the automation level of both theorem
provers and model checkers. Actual theorem provers and model
checkers use SMT solvers as backend helpers and other frontend
tools to reduce and simplify the verification process. Recent
works indicate that the verification of low-level systems code as
OS kernel has become tractable.

As it is known, the C language is still very popular
programing language due to its great flexibility in terms of data
representation and pointers arithmetic. C has been used to
implement operating systems kernels and embedded systems.
The majority of software in embedded systems is still written in
C. C code can also be used to automatically generate a HDL
(Hardware Description Language) code, which will be used later
in embedded system hardware part synthesis. However, C is
weak-typed (i.e. C’s types provide no invariants about data
values) and sometimes ambiguous. C standard [19] defines the

C memory model as a sequence of bytes (i.e. untyped memory
model) and underspecifies the semantics of the C language.
Furthermore, the uncontrolled use of I/O library functions can
easily create security vulnerabilities. In order to minimize the
number of bugs in C code, some solutions emphasize what we
call standards-based development. These standards (example
MISRA) impose a set of obligations and constraints on coding.
For instance, the non-use of side effect statements or pointers
[29]. Despite, this solution seems useful, it constraints the
programmer creativity and minimizes optimization
opportunities of the C code. In addition, most of these
obligations are just guidelines that lack systematization and
automatization. Producing correct imperative code can be the
fruit of the correct-by-construction design approach. In this
approach, code can be automatically synthesized through a
sequence of refinements of an abstract formal specification.
Each refinement must be proved correct with respect to the
previous one. Consequently, the generated code implements
correctly its specification. The method B follows this approach.
In contrast to functional programs, imperative programs proving
is more challenging. Indeed, it is not obvious, whether the well-
known Curry-Howard correspondence [16] which links a
functional program to its equivalent logical proof system can be
naturally applied for imperative programs. Imperative languages
include some uncommon constructors for mathematical logics
as pointers, global variables, and so on. This makes reasoning
about imperative programs in general a non-trivial task.

On the other side, Artificial Intelligence (AI) is becoming
more attractive since it can offer some powerful tools to boost
the formal verification process. Our aim through this paper is
first to review shortly the literature, then to define the main
challenges and finally to shine the spotlight on some promising
future directions in particular the synergy between software
formal verification and AI. This paper is structured as follows:
Section 2 is devoted to the state of the art on C software formal
verification. In this context, we present a set of criteria to
compare between existing approaches and tools. In section 3, we
pass quickly on the main challenges and in section 4 we discuss
some possible future directions before concluding.

II. LITERATURE REVIEW
The first initiative in the C language formalization returned

back to the work of Sethi [31] where a denotational semantics of
a subset of the ANSI C language was proposed. Despite, this

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

2

work was incomplete with respect to the ANSI standard, it gave
a big push to subsequent researchers to investigate more in this
topic. The literature on formal verification of C software is very
rich, however, we can cite some pertinent works as in [1, 3, 5, 7,
18, 21, 26, 27, 30, 34, 35], and some interesting PhD and master
thesis on the same topic as in [10, 20, 22, 25, 33]. Many code C
formal verification tools exist. For a fair evaluation of such tools,
Competition on Software Verification (SV-COMP) has been
established [4]. The first edition was in 2012 and the last one in
2023. The competition includes 23 805 verification tasks for C
programs to check four properties that are reachability, memory
safety, overflows, and termination. The evaluation is performed
based on a scoring schema that assigns points in function of the
type of the reported result (unknown, false correct, false
incorrect, true correct, true incorrect) for the given property. We
can however classify these works according to a set of pertinent
criteria. In this context, we propose a taxonomy based on ten
criteria. These criteria include the application domain, the
orientation of the software, the supported C language, the C
memory model used, the intermediate representation, the
formalization method, the logics used in the proofs, the
verification method, the reduction technique, and the type of
checked properties.

• The application domain, which can be general-purpose,
compilers, cryptography, OS kernels, device drivers,
hypervisors, embedded systems and robotics. It is
important to recognize the application domain in order
to choose the more appropriate formalism and
verification technique. For example, device drivers and
operating systems code uses pointers as first class and
the code usually contain some fragments written in
assembly code. In this case, the mathematical proofs
have to formalize in addition to C code, the assembly
code too. The type of properties to be proved may also
dependent on the domain of application. For instance,
C code that implement multi-tasks OS kernels have to
guarantee the mutual exclusion and isolation properties
and so on.

• The orientation of the software, which can be control-
oriented, data-oriented or mixt. A typical control-
oriented C software is composed of control statements
(e.g. if else, or switch) operating on very small-sized
data. On the other hand, data-oriented C software is
composed of complex operations or treatments on
large-sized data. Model checking is more suitable for
control-oriented software with simple properties and
theorem proving for data-oriented software with
complex properties.

• The supported C language which can be the full ANSI
standard, a subset of the standard (i.e. the full standard
excluding some constructors or features), or a specific
C sublanguage such as C0 and CoreC*.

• The C memory model (i.e. the heap model) which, can
be un-typed (i.e. raw arrays of bytes), typed or hybrid.
The untyped model adds significant annotation burden,
and render the reasoning computationally expensive.

The typed model however, offers a reasonable
abstraction level for verification.

• The intermediate representation of C code, which can
be a restricted subset of the C language itself as CIL,
LLVM-IR, an abstract model as the CFA (Control
Flow Automaton), or an intermediate formal language
as Simpl and Boogie. Compared to the original C code,
the intermediate representation generally has fewer
constructs and unambiguous syntax, which make
formal verification easier.

• The formalization approach, which can be annotation-
based approach, semantics-based approach,
transformational approach, reverse engineering
approach and the cooperation approach.

In the annotation-based approach, the original C source
code is annotated by specification constructs. These logical
annotations may specify functions pre-conditions and post-
conditions, loop and type invariants, assertions and so on.
From these annotations, verification conditions (VC) or
obligations proofs are generated automatically using Hoare-
style weakest precondition method and checked using an
automatic or interactive theorem prover. Annotations can be
burdensome for programmers especially if these
annotations are expressed in an unfamiliar formal
specification language. In order to overcome this issue, the
C language was extended to support Design-by-contract
paradigm giving the birth to ACSL (The ANSI/ISO C
Specification Language). In the semantics-based approach,
the semantics (i.e. operational or denotational semantics
with possibly categories definition) of the C language or a
substantial subset of it is explicitly defined in some formal
specification language. The properties to be checked are
also expressed in the same formal language. In the
transformational approach, the source code is transformed
either directly to another formal specification written in a
certain formal language (e.g. transformation of C
imperative code to a purely functional code in ML as done
by the Why tool into the Coq assistant prover) or to an
abstraction (i.e. predicate abstraction) of the original code
in the same language (i.e. C). In the reverse engineering
approach, the C source code is usually reversed
automatically to a formal or a semi-formal model using
UML. Then some formal checking is applied on this UML
model to prove or refute the desired properties. The
cooperation approach is any feasible sequential or
concurrent combination of the above approaches.

• The logics and theories of the formal system and
proofs. Those include Hoare, separation, rewriting and
temporal logics, dependent and refinement types and
category theory.

• The verification method that can be symbolic execution
with its variants (static, dynamic), theorem proving
with its variants (fully automatic, interactive proof
assistants), model-checking with its variants to verify
larger programs (with complex loops) or programs with
infinite states (i.e. symbolic model checking, abstract

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

3

model checking, bounded model checking), SAT/SMT
solving, or any feasible combination of them. For
instance, symbolic execution often calls SAT/SMT
solvers. Theorem provers, even model checkers may
call SAT/SMT solvers to increase the automation level.
A combination of model checkers and theorem provers
is also possible. For example, in the Counter Example
Guided Refinement approach, first the source program
is abstracted away using predicate abstraction
technique. A model checker working on this
abstraction may check a certain property. If the
property is not true, the model checker gives a counter
example. In this case, a refinement step will be
triggered during which a theorem prover can be called
to check whether this counterexample reflects a true
error in the program or just a spurious one due to
abstraction. The theorem prover can call in turn a SAT
or SMT solver to prove the satisfiability of a certain
condition.

• The reduction technique used to reduce the complexity
of the formal verification. Among these techniques, we
find abstraction and program slicing. Abstract
interpretation and predicate abstraction are the two
common techniques used.

• The checked properties can be simple or complex
including the functional correctness, the termination,
reachability properties, safety and security properties.
Safety may include static safety (i.e. type safety) or
dynamic safety (i.e. memory safety). Security includes
mainly confidentiality, integrity, and availability
properties.

III. CHALLENGES
Despite the big efforts spent in boosting software formal

verification process (e.g. exploring parallel and distributed
formal verification, abstraction, modular and verification reuse),
one can state that software formal verification in its current form
cannot meet the needs of industrial sized C software in terms of
performance, accuracy and scalability. With the ever increasing
in the complexity of software functionalities and non-functional
requirements, most state of the art and practice tools fail to
formally prove the functional correctness in addition to non-
functional properties as safety and security. Most users are
unfamiliar with formal techniques and often find them hard to
write formal specifications or proofs and even to use tools in
particular theorem provers. Furthermore, the majority of
available tools do not provide explanations in the case of proof
failure and in the presence of a panoply of tools; the user is not
able to choose the most suitable verification approaches and
tools. The choice is a tradeoff between a set of conflictual criteria
such as the amount of annotation effort, the automation level, the
performance, the accuracy of results but more interestingly the
soundness and the completeness of the proofs system.

IV. FUTURE DIRECTIONS
In order to increase the credibility of existing formal

verification tools for large C software, researchers tend to

integrate some powerful promising technologies in particular
AI, data mining, and quantum computing.

A. Artificial Intelligence and data mining
The idea of leveraging AI and data mining in formal

verification has been attracted many researchers [2, 12, 24, 32].
In the context of software formal verification, we can apply AI
with many flavors:

1. Automatic synthesis of formal proofs using machine
learning algorithms.

2. Automatic inference of theorems and assertions as loop
invariants and discovering pertinent properties for verification
automatically.

3. Interactive aid of users to select the most suitable
abstraction technique and the abstraction level.

4. Interactive assistance of users to choose the most
appropriate formal approaches and tools using MCDM methods
and tools integration.

5. Interactive support of users to select the most important
parts in the software requiring formal verification and properties
for checking since it is not feasible to formally verify the entire
large software against all properties.

6. Using AI optimization meta-heuristics as genetic
algorithms for example to guide the search process in model
checking.

7. Integration of explication in the formal verification
process and automatic repair of software vulnerabilities.

8. If the software code is supported with some informal
specification expressed in natural language, NLP methods can
be used to automatically or semi-automatically generate a formal
specification and test cases. The latter can be used to
complement the formal verification. Testing remains an efficient
technique to discover compiler and hardware bugs.

9. AI can be used to automatically restructure the code
software following the standards-based development approach
to simplify the formal verification.

10. Benchmarking the C software formal verification
processes, reuse and sharing the knowledge.

B. Quantum computing
Quantum computing emerged as a very powerful technology
inspired from mechanics quantum theory. Due to the
superposition and entanglement principles, researchers expect
super polynomial speedup for big algorithms including formal
verification algorithms. This paradigm however, still needs
special algorithms to reduce noise because they do not have
enough qubits to execute quantum error correction [23].

V. CONCLUSION
C software formal verification is hot research topic and a

grand practical challenge. We can observe that C software
formal verification has evolved over decades starting from
former works focusing on the definition of a formal semantic of

Works in Progress in Embedded Computing Journal (WiPiEC Journal), Volume 10, Issue 1, MARCH 2024

4

the C language, the use of Hoare logic and automatic theorem
provers ending by the use of more expressive logics and
mathematical theories such as separation logic and refined
types and the usage of model checkers and SMT solvers.
Unfortunately, most existing approaches and tools suffer from
many obstacles prevent them from being widespread in the
industry. Finally, most researchers and experts have
emphasized on formal verification process rethinking by
making it AI-powered to boost the performance and the
accuracy and enables tools integration and scalability. As short-
term perspective, we plan to apply machine learning and in
particular deep learning to automatically infer loops invariants
and properties to be checked in a C program with nested loops
and recursive functions.

REFERENCES
[1] J. Amilon, C. Lidström, and D. Gurov, “Deductive Verification Based

Abstraction for Software Model Checking,” Leveraging Applications of
Formal Methods, Verification and Validation. Verification Principles,
11th International Symposium, ISoLA 2022, Rhodes, Greece, October
22–30, 2022.

[2] M. Amrani, L. Lucio, and A. Bibal, “ML + FV = \heartsuit? A Survey
on the Application of Machine Learning to Formal Verification,” arXiv:
Software Engineering, 2018.

[3] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani, “Automatic
Predicate Abstraction of C Programs,” in PLDI '01: Proceedings of the
ACM SIGPLAN 2001 conference on Programming language design and
implementation, pp. 203–213, 2001.

[4] D. Beyer, “Competition on Software Verification and Witness Validation:
SV-COMP 2023,” in: Sankaranarayanan, S., Sharygina, N. (eds) Tools
and Algorithms for the Construction and Analysis of Systems. TACAS
2023. Lecture Notes in Computer Science, vol 13994, 2023.

[5] F. Boutekkouk, “Towards Automatic Maude Specifications Generation
From C Functions,” Journal of Innovation Information Technology and
Application (JINITA), vol. 5(1), pp. 83–96, 2023.

[6] P. Cousot, and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp.
238—252, 1977.

[7] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.
Yakobowski, “Frama-C A Software Analysis Perspective,” Formal
Aspects of Computing, 2012.

[8] E. W. Dijkstra, “A constructive approach to the problem of program
correctness,” BIT Numerical Mathematics, vol. 8(3), pp.174-186, 1968.

[9] E.W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, pp. 453–457, 1975.

[10] C.M. Ellison, “A Formal Semantics of C with Applications,” PhD. thesis,
University of Illinois, 2012.

[11] J.-C. Filliatre, “Preuve de programmes impératifs en théorie des types,”
Thèse de doctorat, Université Paris-Sud, 1999.

[12] E. First and Y. Brun, “Diversity-Driven Automated Formal Verification,”
2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022.

[13] R.W. Floyd, “Assigning meanings to programs,” Proceedings of the
American Mathematical Society Symposia on Applied Mathematics, vol.
19, pp. 19–31, 1967.

[14] J.A. Goguen and G. Malcolm, Algebraic Semantics of Imperative
Programs (Book), MIT Press, ISBN: 9780262071727, 1996.

[15] S. Hayashi, “Logic of refinement types,” in Proceedings of the Workshop
on Types for Proofs and Programs, pp. 157–172, 1993.

[16] W. A Howard, “The formulae-as-types notion of construction,” in Seldin,
Jonathan P.; Hindley, J. Roger (eds.), To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, Academic Press,
pp. 479–490, ISBN 978-0-12-349050-6, 1980.

[17] C.A.R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12(10), pp. 576–580, 1969.

[18] F. Ivancic, I. Shlyakhter, A. Gupta, M.K. Ganai, V. Kahlon, C. Wang, and
Z. Yang, “Model Checking C Programs Using F-SOFT,” International
Conference on Computer Design 31 October, San Jose, CA, USA, 2005.

[19] ISO/IEC 9899:2018, Information technology — Programming languages
— C, https://www.iso.org/standard/74528.html

[20] K. Jiang, “Model Checking C Programs by Translating C to Promela,”
Master. thesis, Linkoping University, Sweden, 2009.

[21] E. Kamburjan and N. Wasser, “The Right Kind of Non-Determinism:
Using Concurrency to Verify C Programs with Underspecified
Semantics,” in 15th Interaction and Concurrency Experience (ICE 2022),
EPTCS 365, pp. 1–16, 2022.

[22] R.J. Krebbers, “The C standard formalized in Coq,” PhD. thesis, Radboud
University Nijmegen, 2015.

[23] J. Larkin and D. Justice, “Achieving the Quantum Advantage in
Software,” Carnegie Mellon University, Software Engineering Institute's
Insights (blog), Accessed November 8, 2023,
https://insights.sei.cmu.edu/blog/achieving-the-quantum-advantage-in-
software/.

[24] N. Ge, M. Pantel, and X. Crégut, “Automated Failure Analysis in Model
Checking based on Data Mining,” 4th International Conference On Model
and Data Engineering, Larnaca, Cyprus, pp.13-28, ⟨10.1007/978-3-319-
11587-0_4⟩. ⟨hal-03252269⟩, 2014.

[25] M. Norrish, “C Formalised in HOL,” PhD. thesis, University of
Cambridge, 1998.

[26] S.H. Park, R. Pai, and T. Melham, “A Formal CHERI-C Semantics for
Verification,” in: Sankaranarayanan, S., Sharygina, N. (eds) Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2023.
Lecture Notes in Computer Science, vol. 13993. Springer, Cham, 2023.

[27] C. Pulte, D.C. Makwana, T. Sewell, K. Memarian, P. Sewell, and N.
Krishnaswami, “CN: Verifying systems C code with separation-logic
refinement types,” Proceedings of the ACM on Programming Languages,
7(POPL), pp.1-32, 2023.

[28] J. C. Reynolds, “Separation Logic: A Logic for Shared Mutable Data
Structures,” in Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science 22-25 July, 2022.

[29] M. Richardson, “Why you should use standards-based development
practices (even if you don’t have to),” https://www.embedded.com/ June
8, 2020.

[30] M. Sammler, R. Lepigre, and R. Krebbers, “RefjnedC: Automating the
Foundational Verifjcation of C Code with Refjned Ownership Types,” in
PLDI ’21, Canada, 2021.

[31] R. Sethi, “A Case Study in Specifying the Semantics of a Programming
Language,” Proceedings of the 7th Annual ACM Symposium on
Principles of Programming Languages, pp.117–130, 1980.

[32] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, and F. Sarro, “A Survey
on Machine Learning Techniques for Source Code Analysis,” ArXiv,
abs/2110.09610, 2021.

[33] N. Schirmer, “Verification of Sequential Imperative Programs in
Isabelle/HOL,” PhD. thesis, Technische Universitat Munchen, 2005.

[34] S. Sriya, L. Lavanya, M.M. Aditi, and N.S. Kumar, “Verification of C
Programs using Annotations,” in 2019 IEEE Tenth International
Conference on Technology for Education (T4E), Goa, India, 2019.

[35] A. Stefanescu, “MatchC: A Matching Logic Reachability Verifier Using
the K Framework,” in Electronic Notes in Theoretical Computer Science
vol. 304, pp. 183–198, 2014.

[36] H. Xi, “Dependent types in practical programming,” PhD. thesis,
Department Computer Science, Carnegie-Mellon University, 1998.

	I. Introduction
	II. Literature review
	III. Challenges
	IV. Future directions
	A. Artificial Intelligence and data mining
	B. Quantum computing
	Quantum computing emerged as a very powerful technology inspired from mechanics quantum theory. Due to the superposition and entanglement principles, researchers expect super polynomial speedup for big algorithms including formal verification algorith...

	V. Conclusion
	References

