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Abstract—This paper reviews briefly the literature on formal 
verification of C software. Most existing C software model 
checkers and automatic theorem provers deal well only with small 
size code C software. Furthermore, full mechanization of 
conventional techniques to reduce the verification process 
complexity as code summation and abstract interpretation is 
merely impossible. Another challenge is how to choose the most 
suitable tool(s) among a panoply of available tools. We think that 
Artificial Intelligence can mitigate the above problems. For 
instance, by applying machine learning algorithms, the 
verification tool can automatically infer properties to be checked 
and synthesize proofs. 
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I.  INTRODUCTION  
The debut of research works on mathematical reasoning 

about imperative programs goes mainly back to the works of 
Floyd [13] and Hoare on the logics of axioms (Hoare logic) [17], 
the works of Dijkstra on weakest preconditions calculus [8, 9] 
and abstract interpretation [6]. In the same context, we find other 
former works that tried to formalize and check imperative 
programs using type systems [11] and algebraic semantics [14]. 
Since that, many extensions and logics have been developed to 
reason about arrays, complex and dynamic typed data structures, 
unbounded loops, floating-point arithmetic, recursive functions, 
and concurrency. Separation logic [28], matching logic [35], 
dependent type theory [36], and refinement types [15] are among 
such extensions. Remarkable advances in SMT solvers 
technology have enhanced the automation level of both theorem 
provers and model checkers. Actual theorem provers and model 
checkers use SMT solvers as backend helpers and other frontend 
tools to reduce and simplify the verification process. Recent 
works indicate that the verification of low-level systems code as 
OS kernel has become tractable. 

As it is known, the C language is still very popular 
programing language due to its great flexibility in terms of data 
representation and pointers arithmetic. C has been used to 
implement operating systems kernels and embedded systems. 
The majority of software in embedded systems is still written in 
C. C code can also be used to automatically generate a HDL 
(Hardware Description Language) code, which will be used later 
in embedded system hardware part synthesis. However, C is 
weak-typed (i.e. C’s types provide no invariants about data 
values) and sometimes ambiguous. C standard [19] defines the 

C memory model as a sequence of bytes (i.e. untyped memory 
model) and underspecifies the semantics of the C language. 
Furthermore, the uncontrolled use of I/O library functions can 
easily create security vulnerabilities.  In order to minimize the 
number of bugs in C code, some solutions emphasize what we 
call standards-based development. These standards (example 
MISRA) impose a set of obligations and constraints on coding. 
For instance, the non-use of side effect statements or pointers 
[29]. Despite, this solution seems useful, it constraints the 
programmer creativity and minimizes optimization 
opportunities of the C code. In addition, most of these 
obligations are just guidelines that lack systematization and 
automatization. Producing correct imperative code can be the 
fruit of the correct-by-construction design approach. In this 
approach, code can be automatically synthesized through a 
sequence of refinements of an abstract formal specification. 
Each refinement must be proved correct with respect to the 
previous one. Consequently, the generated code implements 
correctly its specification. The method B follows this approach.  
In contrast to functional programs, imperative programs proving 
is more challenging. Indeed, it is not obvious, whether the well-
known Curry-Howard correspondence [16] which links a 
functional program to its equivalent logical proof system can be 
naturally applied for imperative programs. Imperative languages 
include some uncommon constructors for mathematical logics 
as pointers, global variables, and so on. This makes reasoning 
about imperative programs in general a non-trivial task. 

On the other side, Artificial Intelligence (AI) is becoming 
more attractive since it can offer some powerful tools to boost 
the formal verification process. Our aim through this paper is 
first to review shortly the literature, then to define the main 
challenges and finally to shine the spotlight on some promising 
future directions in particular the synergy between software 
formal verification and AI. This paper is structured as follows: 
Section 2 is devoted to the state of the art on C software formal 
verification. In this context, we present a set of criteria to 
compare between existing approaches and tools. In section 3, we 
pass quickly on the main challenges and in section 4 we discuss 
some possible future directions before concluding. 

II. LITERATURE REVIEW 
The first initiative in the C language formalization returned 

back to the work of Sethi [31] where a denotational semantics of 
a subset of the ANSI C language was proposed. Despite, this 
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work was incomplete with respect to the ANSI standard, it gave 
a big push to subsequent researchers to investigate more in this 
topic. The literature on formal verification of C software is very 
rich, however, we can cite some pertinent works as in [1, 3, 5, 7, 
18, 21, 26, 27, 30, 34, 35], and some interesting PhD and master 
thesis on the same topic as in [10, 20, 22, 25, 33].  Many code C 
formal verification tools exist. For a fair evaluation of such tools, 
Competition on Software Verification (SV-COMP) has been 
established [4]. The first edition was in 2012 and the last one in 
2023. The competition includes 23 805 verification tasks for C 
programs to check four properties that are reachability, memory 
safety, overflows, and termination. The evaluation is performed 
based on a scoring schema that assigns points in function of the 
type of the reported result (unknown, false correct, false 
incorrect, true correct, true incorrect) for the given property. We 
can however classify these works according to a set of pertinent 
criteria. In this context, we propose a taxonomy based on ten 
criteria. These criteria include the application domain, the 
orientation of the software, the supported C language, the C 
memory model used, the intermediate representation, the 
formalization method, the logics used in the proofs, the 
verification method, the reduction technique, and the type of 
checked properties. 

• The application domain, which can be general-purpose, 
compilers, cryptography, OS kernels, device drivers, 
hypervisors, embedded systems and robotics. It is 
important to recognize the application domain in order 
to choose the more appropriate formalism and 
verification technique. For example, device drivers and 
operating systems code uses pointers as first class and 
the code usually contain some fragments written in 
assembly code. In this case, the mathematical proofs 
have to formalize in addition to C code, the assembly 
code too. The type of properties to be proved may also 
dependent on the domain of application. For instance, 
C code that implement multi-tasks OS kernels have to 
guarantee the mutual exclusion and isolation properties 
and so on.  

• The orientation of the software, which can be control-
oriented, data-oriented or mixt. A typical control-
oriented C software is composed of control statements 
(e.g. if else, or switch) operating on very small-sized 
data. On the other hand, data-oriented C software is 
composed of complex operations or treatments on 
large-sized data. Model checking is more suitable for 
control-oriented software with simple properties and 
theorem proving for data-oriented software with 
complex properties. 

• The supported C language which can be the full ANSI 
standard, a subset of the standard (i.e. the full standard 
excluding some constructors or features), or a specific 
C sublanguage such as C0 and CoreC*. 

• The C memory model (i.e. the heap model) which, can 
be un-typed (i.e. raw arrays of bytes), typed or hybrid. 
The untyped model adds significant annotation burden, 
and render the reasoning computationally expensive. 

The typed model however, offers a reasonable 
abstraction level for verification. 

• The intermediate representation of C code, which can 
be a restricted subset of the C language itself as CIL, 
LLVM-IR, an abstract model as the CFA (Control 
Flow Automaton), or an intermediate formal language 
as Simpl and Boogie. Compared to the original C code, 
the intermediate representation generally has fewer 
constructs and unambiguous syntax, which make 
formal verification easier. 

• The formalization approach, which can be annotation-
based approach, semantics-based approach, 
transformational approach, reverse engineering 
approach and the cooperation approach. 

In the annotation-based approach, the original C source 
code is annotated by specification constructs. These logical 
annotations may specify functions pre-conditions and post-
conditions, loop and type invariants, assertions and so on. 
From these annotations, verification conditions (VC) or 
obligations proofs are generated automatically using Hoare-
style weakest precondition method and checked using an 
automatic or interactive theorem prover. Annotations can be 
burdensome for programmers especially if these 
annotations are expressed in an unfamiliar formal 
specification language. In order to overcome this issue, the 
C language was extended to support Design-by-contract 
paradigm giving the birth to ACSL (The ANSI/ISO C 
Specification Language). In the semantics-based approach, 
the semantics (i.e. operational or denotational semantics 
with possibly categories definition) of the C language or a 
substantial subset of it is explicitly defined in some formal 
specification language. The properties to be checked are 
also expressed in the same formal language. In the 
transformational approach, the source code is transformed 
either directly to another formal specification written in a 
certain formal language (e.g. transformation of C 
imperative code to a purely functional code in ML as done 
by the Why tool into the Coq assistant prover) or to an 
abstraction (i.e. predicate abstraction) of the original code 
in the same language (i.e. C). In the reverse engineering 
approach, the C source code is usually reversed 
automatically to a formal or a semi-formal model using 
UML. Then some formal checking is applied on this UML 
model to prove or refute the desired properties. The 
cooperation approach is any feasible sequential or 
concurrent combination of the above approaches.  

• The logics and theories of the formal system and 
proofs. Those include Hoare, separation, rewriting and 
temporal logics, dependent and refinement types and 
category theory. 

• The verification method that can be symbolic execution 
with its variants (static, dynamic), theorem proving 
with its variants (fully automatic, interactive proof 
assistants), model-checking with its variants to verify 
larger programs (with complex loops) or programs with 
infinite states (i.e. symbolic model checking, abstract 
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model checking, bounded model checking), SAT/SMT 
solving, or any feasible combination of them. For 
instance, symbolic execution often calls SAT/SMT 
solvers. Theorem provers, even model checkers may 
call SAT/SMT solvers to increase the automation level. 
A combination of model checkers and theorem provers 
is also possible. For example, in the Counter Example 
Guided Refinement approach, first the source program 
is abstracted away using predicate abstraction 
technique. A model checker working on this 
abstraction may check a certain property. If the 
property is not true, the model checker gives a counter 
example. In this case, a refinement step will be 
triggered during which a theorem prover can be called 
to check whether this counterexample reflects a true 
error in the program or just a spurious one due to 
abstraction. The theorem prover can call in turn a SAT 
or SMT solver to prove the satisfiability of a certain 
condition. 

• The reduction technique used to reduce the complexity 
of the formal verification. Among these techniques, we 
find abstraction and program slicing. Abstract 
interpretation and predicate abstraction are the two 
common techniques used. 

• The checked properties can be simple or complex 
including the functional correctness, the termination, 
reachability properties, safety and security properties. 
Safety may include static safety (i.e. type safety) or 
dynamic safety (i.e. memory safety). Security includes 
mainly confidentiality, integrity, and availability 
properties. 

III. CHALLENGES 
Despite the big efforts spent in boosting software formal 

verification process (e.g. exploring parallel and distributed 
formal verification, abstraction, modular and verification reuse), 
one can state that software formal verification in its current form 
cannot meet the needs of industrial sized C software in terms of 
performance, accuracy and scalability. With the ever increasing 
in the complexity of software functionalities and non-functional 
requirements, most state of the art and practice tools fail to 
formally prove the functional correctness in addition to non-
functional properties as safety and security. Most users are 
unfamiliar with formal techniques and often find them hard to 
write formal specifications or proofs and even to use tools in 
particular theorem provers. Furthermore, the majority of 
available tools do not provide explanations in the case of proof 
failure and in the presence of a panoply of tools; the user is not 
able to choose the most suitable verification approaches and 
tools. The choice is a tradeoff between a set of conflictual criteria 
such as the amount of annotation effort, the automation level, the 
performance, the accuracy of results but more interestingly the 
soundness and the completeness of the proofs system. 

IV. FUTURE DIRECTIONS 
In order to increase the credibility of existing formal 

verification tools for large C software, researchers tend to 

integrate some powerful promising technologies in particular 
AI, data mining, and quantum computing. 

A. Artificial Intelligence and data mining 
The idea of leveraging AI and data mining in formal 

verification has been attracted many researchers [2, 12, 24, 32].  
In the context of software formal verification, we can apply AI 
with many flavors: 

1. Automatic synthesis of formal proofs using machine 
learning algorithms.  

2. Automatic inference of theorems and assertions as loop 
invariants and discovering pertinent properties for verification 
automatically. 

3. Interactive aid of users to select the most suitable 
abstraction technique and the abstraction level. 

4. Interactive assistance of users to choose the most 
appropriate formal approaches and tools using MCDM methods 
and tools integration.  

5. Interactive support of users to select the most important 
parts in the software requiring formal verification and properties 
for checking since it is not feasible to formally verify the entire 
large software against all properties. 

6. Using AI optimization meta-heuristics as genetic 
algorithms for example to guide the search process in model 
checking. 

7. Integration of explication in the formal verification 
process and automatic repair of software vulnerabilities. 

8. If the software code is supported with some informal 
specification expressed in natural language, NLP methods can 
be used to automatically or semi-automatically generate a formal 
specification and test cases. The latter can be used to 
complement the formal verification. Testing remains an efficient 
technique to discover compiler and hardware bugs. 

9. AI can be used to automatically restructure the code 
software following the standards-based development approach 
to simplify the formal verification. 

10. Benchmarking the C software formal verification 
processes, reuse and sharing the knowledge. 

B. Quantum computing 
Quantum computing emerged as a very powerful technology 
inspired from mechanics quantum theory. Due to the 
superposition and entanglement principles, researchers expect 
super polynomial speedup for big algorithms including formal 
verification algorithms. This paradigm however, still needs 
special algorithms to reduce noise because they do not have 
enough qubits to execute quantum error correction [23]. 

V. CONCLUSION 
C software formal verification is hot research topic and a 

grand practical challenge. We can observe that C software 
formal verification has evolved over decades starting from 
former works focusing on the definition of a formal semantic of 
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the C language, the use of Hoare logic and automatic theorem 
provers ending by the use of more expressive logics and 
mathematical theories such as separation logic and refined 
types and the usage of model checkers and SMT solvers. 
Unfortunately, most existing approaches and tools suffer from 
many obstacles prevent them from being widespread in the 
industry. Finally, most researchers and experts have 
emphasized on formal verification process rethinking by 
making it AI-powered to boost the performance and the 
accuracy and enables tools integration and scalability. As short-
term perspective, we plan to apply machine learning and in 
particular deep learning to automatically infer loops invariants 
and properties to be checked in a C program with nested loops 
and recursive functions. 
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