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Abstract—CONTEXT: Software vulnerability is a crucial risk for 
a digital world. Developers dedicate enormous effort to removing 
vulnerable code from their software products. Vulnerability 
prediction aims to spot which modules are more vulnerable using 
software metrics. Recent studies conducted empirical experiments 
using textual information and software metrics. The result showed 
that the textual information did not help improve the predictive 
performance. However, their evaluations only considered Bag-of-
Words (BoW) as textual information, and semantic relations 
among words have never been examined. OBJECTIVE: To 
examine the performance of vulnerability prediction with textual 
information considering semantic relations. Word2Vec was 
employed for capturing semantic relations. METHOD: A 
comparative study among BoW and two Word2Vec embeddings 
was conducted. For easy evaluation, we replicated a recent study 
that employed BoW. The Word2Vec embeddings were obtained 
from pre-trained models based on Google News and Stack 
Overflow. The former used large but non-SE-related texts, while 
the latter used small but SE-related texts. RESULTS: The non-SE 
Word2Vec improved vulnerability prediction in term of 
prediction stability. The SE-specific Word2Vec was less effective. 
CONCLUSION: Practitioners should consider textual 
information with non-SE Word2Vec for better vulnerability 
prediction. 
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I.  INTRODUCTION

Software vulnerability prediction is a sort of defect 
prediction that uses software metrics such as complexity 
measures without analyzing program syntax and semantics. 
Contrastingly, vulnerable code pattern recognition analyzes 
program syntax and semantics to obtain textual and/or structural 
information from source code and construct prediction 
(recognition) models. These two categories use 
supervised/unsupervised learning algorithms, and the 
information of those categories can be combined for better 
prediction and recognition. 

A recent study [1] conducted an empirical experiment that 
combined software metrics and textual information and used 
them for vulnerability prediction. The result showed that their 
textual information was seldom helpful in improving the 

predictive performance. However, they used classical Bag-of-
Words (BoW) for textual information, and modern techniques 
that can consider semantic relations among words have not been 
employed for evaluation. 

In this study, we investigated the effectiveness of a modern 
technique for textual information for vulnerability prediction. 
Our empirical study employed a replication kit of [1] that 
combined process and product metrics and BoW for 
vulnerability prediction. We used Word2Vec [2] as a modern 
technique for textual information instead of BoW. Word2Vec is 
a method to learn quality distributed representations for words. 
Words are represented as multi-dimensional vectors, and similar 
words are placed close together in that dimensional space. Our 
study used two pre-trained models from SE and non-SE texts to 
obtain Word2Vec vectors for evaluation. 

II. METHODOLOGY

We investigated three research questions. The questions and 
their motivations are described in the following subsections. 

A. Datasets
This study used the datasets provided through a replication

package of a past study [1]. The datasets were collected from 9 
Java projects. We used the same sample of 8,991 commits 
among 56,286 for evaluation. For each commit, 24 product 
metrics and 9 process metrics were collected. Their details such 
as definitions are in [1]. Also, our study collected BoW and 
Word2Vec vectors for evaluation. 

B. Word2Vec-based features
This study defined two types of Word2Vec-based vectors as

well as BoW-based vectors in [1]. One vector is the sum of 
Word2Vec vectors of the files in a commit. Each file modified 
in a commit was parsed to extract identifiers. Here, camel cases 
and snake cases were divided into individual words. These 
words were lowered and converted to Word2Vec vectors. The 
sum of the vectors was used as the vector of the file. The same 
procedure was used to make Word2Vec vectors of added lines 
and deleted lines of a commit. The other vector is the absolute 
difference between the Word2Vec vectors of added lines and 
deleted lines. Finally, the two types of vectors were concatenated 
to make Word2Vec-based features. 
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In the above procedure, we used pre-trained Word2Vec 
models to convert words to vectors. Pre-trained models are 
based on a large amount of training data and are expected to 
learn many words and their relations that would not be able to 
realize from a small amount of data of 8,991 commits and the 
modified files in those commits. For that purpose, we prepared 
two pre-trained Word2Vec models. 

The first pre-trained mode was trained with Google New 
dataset. The training data was obtained from non-SE documents, 
and the similarity among words differs from that of software 
engineering documents. The vector size is 300, and the 
vocabulary size is approximately 3 million words. The second 
model [3] was trained with 15GB of Stack Overflow posts (i.e., 
SE documents) collected from August 2008 to December 2017. 
All code snippets were removed before training, and natural 
language terms only appeared in the textual data. Although some 
symbols such as `+' are often used in a software engineering 
context (e.g., programming), we did not consider those terms as 
identifiers in Java code does not include them. The pre-trained 
model was trained with 1.7 million keywords. The vector size is 
200, smaller than the first model. 

C. Experimental Design
As noted in [1], the number of vulnerabilities is too small in

some projects to conduct neither cross-validation nor a time-
sensitive approach. Therefore, cross-project training was 
adopted. The cross-project training of N projects uses N-1 
project data for training and predicts the remaining project. This 
experiment design finally made N predictive results. 

D. Prediction Models
We used the same prediction models as [1], namely, SVM,

KNN, Decision Tree, Random Forest, Extremely Randomized 
Trees, AdaBoost, Gradient Boosting, and XGBoost with hyper-
parameter tuning. 

E. Performance Measure
AUC (Area Under the Receiver Operating Characteristic

Curve) was adopted for evaluation as well as [1]. AUC measure 
is not sensitive to thresholds that determine faultiness or not. It 
is also robust to class imbalance, which happens in vulnerability 
prediction. A classifier is perfect if an AUC value is 1.0. A 
meaningful classifier results in an AUC value of more than 0.5. 
If equal or less, the classifier is random guessing at best. 

III. RESEARCH QUESTIONS

We investigated the following research questions. The 
questions and their motivations are described in the following 
subsections. 

A. Effectiveness of Non-SE Word2Vec against BoW
Although the merits of word embeddings were confirmed in

some software engineering tasks, past studies such as [1] on 
vulnerability prediction have adopted BoW only. The pre-
trained model based on the Google News dataset was the most 
popular one and was suited to a baseline for evaluation. This 
research question aimed to answer whether using such a general-

purpose pre-trained model is effective for vulnerability 
prediction compared to using BoW. 

B. Effectiveness of SE-Specific Word2Vec against BoW
Efstathiou et al. [3] examined the effectiveness of domain-

specific word2vec models compared to non-SE models. They 
demonstrated that the similarity of technical words was often 
different from general words. For example, “cookie” was like 
“session” in software engineering while it was to “cupcake” in 
general. This difference in specialty might also affect the 
predictive performance of vulnerability prediction. Therefore, 
this research question aimed to answer whether using a domain-
specific model is effective for vulnerability prediction. 

C. Contribution of Word2Vec Features on Vulnerability
Prediction with Software Metrics
Two studies [1][4] introduced BoW into conventional

vulnerability prediction based on software metrics. One of their 
interests was the effectiveness of textual information though 
they did not investigate other representations of textual 
information such as Word2Vec. Therefore, this research 
question aimed to answer whether word embeddings could add 
value for vulnerability prediction with software metrics. 

IV. RESULTS

This section answers the three research questions posed in 
Section III. The results were also discussed. 

A. Effectiveness of Non-SE Word2Vec against BoW
Fig. 1 represents the result of cross-project validation with

the prediction methods we employed. There are three groups 
corresponding to the types of textual information, namely, BoW, 
non-SE Word2Vec, and SE-specific Word2Vec. Each boxplot 
in each group represents the predictive performance of 
vulnerability prediction using a prediction method we employed. 
To answer RQ1, this subsection discussed the differences in 
predictive performance between BoW (the leftmost group) and 
the non-SE Word2Vec (the middle group).  

The leftmost group in the figure showed the AUC of the 
prediction methods using BoW. It was observed that the 
prediction methods affected the predictive performance. 
Decision Tree, Random Forest, Extra Trees, and XGBoost were 
lesser than random guessing with AUC values of almost less 
than 0.5. SVM and Gradient Boost were better than random 
guessing with mean and median values of more than 0.6. KNN 
showed higher performance with AUC values around 0.7. 
AdaBoost was the best performer in terms of mean and median 
values. 

The middle group in Fig. 1 showed the AUC of the 
prediction methods using the non-SE Word2Vec. The predictive 
performance of the prediction methods in this group was also 
diverse but showed slightly different trends from the leftmost 
group. While Decision Tree and XGBoost were still lesser than 
random guessing, Random Forest and Extra Trees performed 
better than those with BoW. The boxplot of SVM was not so 
different from that of SVM in the leftmost group. However, their 
mean and median values were improved with non-SE word 
embeddings. Gradient Boost and KNN were also improved with 
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the use of the non-SE Word2Vec. Their boxplots got shorter than 
those with BoW. Although AdaBoost was still the best 
performer in terms of mean and median values, using the non-
SE Wor2Vec worsened the median value compared to BoW. 
These observations implied that using the non-SE word 
embeddings was supported in terms of AUC. While the best 
performer in terms of median was AdaBoost with BoW, 
AdaBoost with non-SE Word2Vec showed good and stable 
performance. 

In summary, using the non-SE Word2Vec was better than 
using BoW for Random Forest, Extra Trees, Gradient Boost, and 
KNN. The best performer in terms of median is AdaBoost with 
BoW while the statistical test did not reject the difference against 
AdaBoost with non-SE Word2Vec. The advantage of non-SE 
Word2Vec was in the stability represented by the smaller 
boxplot. 

B. Identify the Headings Effectiveness of SE-Specific
Word2Vec against BoW
To answer RQ2, the differences in predictive performance

between the non-SE Word2Vec and the SE-specific Word2Vec 
were discussed in this subsection. The rightmost group in Fig. 1 
showed the AUC of the prediction methods using the SE-
specific Word2Vec. The predictive performance of the 
prediction methods in this group was also diverse but showed 
different trends from the middle group. The boxplots of Decision 
Tree and XGBoost crossed the line of random guessing. 
However, the mean and median of Decision Tree were improved 
and got beyond 0.5. Random Forest also showed better results 
regarding the upper side of the boxplot and the mean value. 
Extra Trees with the SE-specific Word2Vec showed slightly 
lower performance than that with the non-SE Word2Vec. The 
performance of SVM, KNN, AdaBoost, and Gradient Boost was 
stable. No clear effect of using SE-specific Word2Vec was 
observed. AdaBoost with the SE-specific Word2Vec was 
competitive with that with the non-SE Word2Vec. 

In summary, using SE-specific word embedding was also a 
better option than using non-SE word embeddings for Decision 
Tree, Random Forest, and AdaBoost. Although the best 
performer was AdaBoost using the SE-specific Word2Vec, it 
was not clearly supported.  

C. Contribution of Word2Vec Features on Vulnerability
Prediction with Software Metrics
Fig. 2 showed boxplots of the AUC of the prediction models.

The leftmost group in Fig. 2 showed the AUC of the prediction 
methods using BoW. In comparison to Fig. 1, adding software 
metrics improved the predictive performance of some prediction 
methods. The mean and median values of Decision Tree, 
Random Forest, Extra Trees, Gradient Boost, and XGBoost 
were improved. The boxplots of them also moved to higher 
places. The middle group in Fig. 2 showed the AUC of the 
prediction methods using the non-SE Word2Vec. In comparison 
to Fig. 1, adding software metrics improved the predictive 
performance of some prediction methods. The mean and median 
values of Decision Tree, Random Forest, Extra Trees, 
AdaBoost, Gradient Boost, and XGBoost were improved. The 
boxplots of them also moved to higher places. The rightmost 
group in Fig. 2 showed the AUC of the prediction methods using 
the SE-specific Word2Vec. In comparison to Fig. 1, adding 
software metrics improved the predictive performance of some 
prediction methods. The mean and median values of Decision 
Tree, Random Forest, Extra Trees, AdaBoost, Gradient Boost, 
and XGBoost were improved. The boxplots of them also moved 
to higher places. These observations implied that using word 
embeddings was supported in terms of AUC for some prediction 
methods while the statistical test did not reject the difference. 
Using non-SE Word2vec contributed to stable prediction with 
competitive performance. AdaBoost with non-SE Word2Vec 
and software metrics was considered a practically best choice for 
its stability. 

V. THREATS TO VALIDITY

We investigated the following research questions. The 
questions and their motivations are described in the following 
subsections. 

A. Internal Validity
The main threat is in the implementation of the experiment

we conducted. We used the same experimental design as the 
replication package of [1] to minimize that threat. We only 
modified some code to use Word2Vec vectors for evaluation. 
We executed the original experiment with that code, and even 

 Figure 1. The predictive performance of vulnerability prediction methods with textual information 
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if any bugs existed, we could evaluate the effectiveness of 
Word2Vec under the same condition as BoW. 

B. Construct Validity
The vulnerable contributing commits (VCCs) of the datasets 

were labeled automatically with the SZZ algorithm. The SZZ 
algorithm was widely used for defect prediction but was not 
perfect. Although some mislabeling might thus exist, manual 
labeling was unrealistic for a large number of commits. For 
word embeddings, we used two Word2Vec pre-trained models 
only. The effectiveness of other word embeddings, such as 
Glove, was still unknown. 

C. External Validity
This study used 9 Java datasets only. Although their domain 

and the statistics, such as commit counts, are diverse, the small 
number of projects still threats external validity. However, we 
also think that threats to external validity were not more serious 
than those of past studies using fewer datasets. 

VI. CONCLUSIONS

This study conducted an evaluation of word embeddings on 
vulnerability prediction with software metrics. Using 9 Java 
projects with vulnerabilities registered in NVD, two Word2Vec 
pre-trained models were compared with the classical bag-of-
words. The experiment results suggested the use of non-SE 
Word2Vec model was better than the use of BoW in term of 
stability. No clear difference in terms of mean was observed. 
Note that the effect was not found on all the prediction methods. 

Our future work includes the use of additional information. 
Vulnerable code pattern recognition studies have used N-gram 

of source text in addition to BoW. Furthermore, recent studies 
have focused on deep learning-based features other than word 
embeddings. For instance, Chakraborty et al. [5] examined a 
deep learning-based technique based on graph embeddings and 
triplet loss with a dataset they collected from C/C++ code. 
Seeking better features is one of the top priority issues for better 
vulnerability prediction. An implication for practitioners is that 
trying to use word embeddings is a good idea for vulnerability 
prediction. 
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