
Selected papers from DSD'2023 and SEAA'2023 Works in Progress (WiP) Session, Durres, Albania, 6th-8th September 2023

WORKS in PROGRESS in EMBEDDED COMPUTING (WiPiEC), Volume 9, No 1, SEPTEMBER 2023

An Evaluation of Word Embeddings on
Vulnerability Prediction with Software Metrics

Sousuke Amasaki, Tomoyuki Yokogawa
Department of Systems Engineering

Okayama Prefectural University
Soja, Japan

{amasaki,t-yokoga}@cse.oka-pu.ac.jp

Hirohisa Aman
Center for Information Technology

Ehime University
Matsuyama, Japan

aman@cse.oka-pu.ac.jp

Abstract—CONTEXT: Software vulnerability is a crucial risk for
a digital world. Developers dedicate enormous effort to removing
vulnerable code from their software products. Vulnerability
prediction aims to spot which modules are more vulnerable using
software metrics. Recent studies conducted empirical experiments
using textual information and software metrics. The result showed
that the textual information did not help improve the predictive
performance. However, their evaluations only considered Bag-of-
Words (BoW) as textual information, and semantic relations
among words have never been examined. OBJECTIVE: To
examine the performance of vulnerability prediction with textual
information considering semantic relations. Word2Vec was
employed for capturing semantic relations. METHOD: A
comparative study among BoW and two Word2Vec embeddings
was conducted. For easy evaluation, we replicated a recent study
that employed BoW. The Word2Vec embeddings were obtained
from pre-trained models based on Google News and Stack
Overflow. The former used large but non-SE-related texts, while
the latter used small but SE-related texts. RESULTS: The non-SE
Word2Vec improved vulnerability prediction in term of
prediction stability. The SE-specific Word2Vec was less effective.
CONCLUSION: Practitioners should consider textual
information with non-SE Word2Vec for better vulnerability
prediction.

Keywords-component; vulnerability prediction; word
embeddings; empirical study

I. INTRODUCTION

Software vulnerability prediction is a sort of defect
prediction that uses software metrics such as complexity
measures without analyzing program syntax and semantics.
Contrastingly, vulnerable code pattern recognition analyzes
program syntax and semantics to obtain textual and/or structural
information from source code and construct prediction
(recognition) models. These two categories use
supervised/unsupervised learning algorithms, and the
information of those categories can be combined for better
prediction and recognition.

A recent study [1] conducted an empirical experiment that
combined software metrics and textual information and used
them for vulnerability prediction. The result showed that their
textual information was seldom helpful in improving the

predictive performance. However, they used classical Bag-of-
Words (BoW) for textual information, and modern techniques
that can consider semantic relations among words have not been
employed for evaluation.

In this study, we investigated the effectiveness of a modern
technique for textual information for vulnerability prediction.
Our empirical study employed a replication kit of [1] that
combined process and product metrics and BoW for
vulnerability prediction. We used Word2Vec [2] as a modern
technique for textual information instead of BoW. Word2Vec is
a method to learn quality distributed representations for words.
Words are represented as multi-dimensional vectors, and similar
words are placed close together in that dimensional space. Our
study used two pre-trained models from SE and non-SE texts to
obtain Word2Vec vectors for evaluation.

II. METHODOLOGY

We investigated three research questions. The questions and
their motivations are described in the following subsections.

A. Datasets
This study used the datasets provided through a replication

package of a past study [1]. The datasets were collected from 9
Java projects. We used the same sample of 8,991 commits
among 56,286 for evaluation. For each commit, 24 product
metrics and 9 process metrics were collected. Their details such
as definitions are in [1]. Also, our study collected BoW and
Word2Vec vectors for evaluation.

B. Word2Vec-based features
This study defined two types of Word2Vec-based vectors as

well as BoW-based vectors in [1]. One vector is the sum of
Word2Vec vectors of the files in a commit. Each file modified
in a commit was parsed to extract identifiers. Here, camel cases
and snake cases were divided into individual words. These
words were lowered and converted to Word2Vec vectors. The
sum of the vectors was used as the vector of the file. The same
procedure was used to make Word2Vec vectors of added lines
and deleted lines of a commit. The other vector is the absolute
difference between the Word2Vec vectors of added lines and
deleted lines. Finally, the two types of vectors were concatenated
to make Word2Vec-based features.

Identify applicable sponsor/s here. If no sponsors, delete this text box
(sponsors).

WORKS in PROGRESS in EMBEDDED COMPUTING (WiPiEC), Volume 9, No 1, SEPTEMBER 2023

Selected papers from DSD'2023 and SEAA'2023 Works in Progress (WiP) Session, Durres, Albania, 6th-8th September 2023

In the above procedure, we used pre-trained Word2Vec
models to convert words to vectors. Pre-trained models are
based on a large amount of training data and are expected to
learn many words and their relations that would not be able to
realize from a small amount of data of 8,991 commits and the
modified files in those commits. For that purpose, we prepared
two pre-trained Word2Vec models.

The first pre-trained mode was trained with Google New
dataset. The training data was obtained from non-SE documents,
and the similarity among words differs from that of software
engineering documents. The vector size is 300, and the
vocabulary size is approximately 3 million words. The second
model [3] was trained with 15GB of Stack Overflow posts (i.e.,
SE documents) collected from August 2008 to December 2017.
All code snippets were removed before training, and natural
language terms only appeared in the textual data. Although some
symbols such as `+' are often used in a software engineering
context (e.g., programming), we did not consider those terms as
identifiers in Java code does not include them. The pre-trained
model was trained with 1.7 million keywords. The vector size is
200, smaller than the first model.

C. Experimental Design
As noted in [1], the number of vulnerabilities is too small in

some projects to conduct neither cross-validation nor a time-
sensitive approach. Therefore, cross-project training was
adopted. The cross-project training of N projects uses N-1
project data for training and predicts the remaining project. This
experiment design finally made N predictive results.

D. Prediction Models
We used the same prediction models as [1], namely, SVM,

KNN, Decision Tree, Random Forest, Extremely Randomized
Trees, AdaBoost, Gradient Boosting, and XGBoost with hyper-
parameter tuning.

E. Performance Measure
AUC (Area Under the Receiver Operating Characteristic

Curve) was adopted for evaluation as well as [1]. AUC measure
is not sensitive to thresholds that determine faultiness or not. It
is also robust to class imbalance, which happens in vulnerability
prediction. A classifier is perfect if an AUC value is 1.0. A
meaningful classifier results in an AUC value of more than 0.5.
If equal or less, the classifier is random guessing at best.

III. RESEARCH QUESTIONS

We investigated the following research questions. The
questions and their motivations are described in the following
subsections.

A. Effectiveness of Non-SE Word2Vec against BoW
Although the merits of word embeddings were confirmed in

some software engineering tasks, past studies such as [1] on
vulnerability prediction have adopted BoW only. The pre-
trained model based on the Google News dataset was the most
popular one and was suited to a baseline for evaluation. This
research question aimed to answer whether using such a general-

purpose pre-trained model is effective for vulnerability
prediction compared to using BoW.

B. Effectiveness of SE-Specific Word2Vec against BoW
Efstathiou et al. [3] examined the effectiveness of domain-

specific word2vec models compared to non-SE models. They
demonstrated that the similarity of technical words was often
different from general words. For example, “cookie” was like
“session” in software engineering while it was to “cupcake” in
general. This difference in specialty might also affect the
predictive performance of vulnerability prediction. Therefore,
this research question aimed to answer whether using a domain-
specific model is effective for vulnerability prediction.

C. Contribution of Word2Vec Features on Vulnerability
Prediction with Software Metrics
Two studies [1][4] introduced BoW into conventional

vulnerability prediction based on software metrics. One of their
interests was the effectiveness of textual information though
they did not investigate other representations of textual
information such as Word2Vec. Therefore, this research
question aimed to answer whether word embeddings could add
value for vulnerability prediction with software metrics.

IV. RESULTS

This section answers the three research questions posed in
Section III. The results were also discussed.

A. Effectiveness of Non-SE Word2Vec against BoW
Fig. 1 represents the result of cross-project validation with

the prediction methods we employed. There are three groups
corresponding to the types of textual information, namely, BoW,
non-SE Word2Vec, and SE-specific Word2Vec. Each boxplot
in each group represents the predictive performance of
vulnerability prediction using a prediction method we employed.
To answer RQ1, this subsection discussed the differences in
predictive performance between BoW (the leftmost group) and
the non-SE Word2Vec (the middle group).

The leftmost group in the figure showed the AUC of the
prediction methods using BoW. It was observed that the
prediction methods affected the predictive performance.
Decision Tree, Random Forest, Extra Trees, and XGBoost were
lesser than random guessing with AUC values of almost less
than 0.5. SVM and Gradient Boost were better than random
guessing with mean and median values of more than 0.6. KNN
showed higher performance with AUC values around 0.7.
AdaBoost was the best performer in terms of mean and median
values.

The middle group in Fig. 1 showed the AUC of the
prediction methods using the non-SE Word2Vec. The predictive
performance of the prediction methods in this group was also
diverse but showed slightly different trends from the leftmost
group. While Decision Tree and XGBoost were still lesser than
random guessing, Random Forest and Extra Trees performed
better than those with BoW. The boxplot of SVM was not so
different from that of SVM in the leftmost group. However, their
mean and median values were improved with non-SE word
embeddings. Gradient Boost and KNN were also improved with

WORKS in PROGRESS in EMBEDDED COMPUTING (WiPiEC), Volume 9, No 1, SEPTEMBER 2023

Selected papers from DSD'2023 and SEAA'2023 Works in Progress (WiP) Session, Durres, Albania, 6th-8th September 2023

the use of the non-SE Word2Vec. Their boxplots got shorter than
those with BoW. Although AdaBoost was still the best
performer in terms of mean and median values, using the non-
SE Wor2Vec worsened the median value compared to BoW.
These observations implied that using the non-SE word
embeddings was supported in terms of AUC. While the best
performer in terms of median was AdaBoost with BoW,
AdaBoost with non-SE Word2Vec showed good and stable
performance.

In summary, using the non-SE Word2Vec was better than
using BoW for Random Forest, Extra Trees, Gradient Boost, and
KNN. The best performer in terms of median is AdaBoost with
BoW while the statistical test did not reject the difference against
AdaBoost with non-SE Word2Vec. The advantage of non-SE
Word2Vec was in the stability represented by the smaller
boxplot.

B. Identify the Headings Effectiveness of SE-Specific
Word2Vec against BoW
To answer RQ2, the differences in predictive performance

between the non-SE Word2Vec and the SE-specific Word2Vec
were discussed in this subsection. The rightmost group in Fig. 1
showed the AUC of the prediction methods using the SE-
specific Word2Vec. The predictive performance of the
prediction methods in this group was also diverse but showed
different trends from the middle group. The boxplots of Decision
Tree and XGBoost crossed the line of random guessing.
However, the mean and median of Decision Tree were improved
and got beyond 0.5. Random Forest also showed better results
regarding the upper side of the boxplot and the mean value.
Extra Trees with the SE-specific Word2Vec showed slightly
lower performance than that with the non-SE Word2Vec. The
performance of SVM, KNN, AdaBoost, and Gradient Boost was
stable. No clear effect of using SE-specific Word2Vec was
observed. AdaBoost with the SE-specific Word2Vec was
competitive with that with the non-SE Word2Vec.

In summary, using SE-specific word embedding was also a
better option than using non-SE word embeddings for Decision
Tree, Random Forest, and AdaBoost. Although the best
performer was AdaBoost using the SE-specific Word2Vec, it
was not clearly supported.

C. Contribution of Word2Vec Features on Vulnerability
Prediction with Software Metrics
Fig. 2 showed boxplots of the AUC of the prediction models.

The leftmost group in Fig. 2 showed the AUC of the prediction
methods using BoW. In comparison to Fig. 1, adding software
metrics improved the predictive performance of some prediction
methods. The mean and median values of Decision Tree,
Random Forest, Extra Trees, Gradient Boost, and XGBoost
were improved. The boxplots of them also moved to higher
places. The middle group in Fig. 2 showed the AUC of the
prediction methods using the non-SE Word2Vec. In comparison
to Fig. 1, adding software metrics improved the predictive
performance of some prediction methods. The mean and median
values of Decision Tree, Random Forest, Extra Trees,
AdaBoost, Gradient Boost, and XGBoost were improved. The
boxplots of them also moved to higher places. The rightmost
group in Fig. 2 showed the AUC of the prediction methods using
the SE-specific Word2Vec. In comparison to Fig. 1, adding
software metrics improved the predictive performance of some
prediction methods. The mean and median values of Decision
Tree, Random Forest, Extra Trees, AdaBoost, Gradient Boost,
and XGBoost were improved. The boxplots of them also moved
to higher places. These observations implied that using word
embeddings was supported in terms of AUC for some prediction
methods while the statistical test did not reject the difference.
Using non-SE Word2vec contributed to stable prediction with
competitive performance. AdaBoost with non-SE Word2Vec
and software metrics was considered a practically best choice for
its stability.

V. THREATS TO VALIDITY

We investigated the following research questions. The
questions and their motivations are described in the following
subsections.

A. Internal Validity
The main threat is in the implementation of the experiment

we conducted. We used the same experimental design as the
replication package of [1] to minimize that threat. We only
modified some code to use Word2Vec vectors for evaluation.
We executed the original experiment with that code, and even

 Figure 1. The predictive performance of vulnerability prediction methods with textual information

WORKS in PROGRESS in EMBEDDED COMPUTING (WiPiEC), Volume 9, No 1, SEPTEMBER 2023

Selected papers from DSD'2023 and SEAA'2023 Works in Progress (WiP) Session, Durres, Albania, 6th-8th September 2023

if any bugs existed, we could evaluate the effectiveness of
Word2Vec under the same condition as BoW.

B. Construct Validity
The vulnerable contributing commits (VCCs) of the datasets

were labeled automatically with the SZZ algorithm. The SZZ
algorithm was widely used for defect prediction but was not
perfect. Although some mislabeling might thus exist, manual
labeling was unrealistic for a large number of commits. For
word embeddings, we used two Word2Vec pre-trained models
only. The effectiveness of other word embeddings, such as
Glove, was still unknown.

C. External Validity
This study used 9 Java datasets only. Although their domain

and the statistics, such as commit counts, are diverse, the small
number of projects still threats external validity. However, we
also think that threats to external validity were not more serious
than those of past studies using fewer datasets.

VI. CONCLUSIONS

This study conducted an evaluation of word embeddings on
vulnerability prediction with software metrics. Using 9 Java
projects with vulnerabilities registered in NVD, two Word2Vec
pre-trained models were compared with the classical bag-of-
words. The experiment results suggested the use of non-SE
Word2Vec model was better than the use of BoW in term of
stability. No clear difference in terms of mean was observed.
Note that the effect was not found on all the prediction methods.

Our future work includes the use of additional information.
Vulnerable code pattern recognition studies have used N-gram

of source text in addition to BoW. Furthermore, recent studies
have focused on deep learning-based features other than word
embeddings. For instance, Chakraborty et al. [5] examined a
deep learning-based technique based on graph embeddings and
triplet loss with a dataset they collected from C/C++ code.
Seeking better features is one of the top priority issues for better
vulnerability prediction. An implication for practitioners is that
trying to use word embeddings is a good idea for vulnerability
prediction.

ACKNOWLEDGMENT
This work was partially supported by JSPS KAKENHI

Grant #21K11831, #21K11833, and #23K11382.

REFERENCES
[1] F. Lomio, E. Iannone, A. De Lucia, F. Palomba, and V. Lenarduzzi, “Just-

in-time software vulnerability detection: Are we there yet?” The Journal
of Systems & Software, vol. 188, p. 111283, 2022.

[2] T. Mikolov, K. Chen, G. Cornado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” in Proc. of Workshop at the
International Conference on Learning Representations, 2013.

[3] V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embeddings for the
software engineering domain,” in Proc. of Working Conference on
Mining Software Repositories, ser. MSR ’18. ACM, 2018, p. 38–41.

[4] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. New York, NY,
USA: ACM, 2015, p. 426–437.

[5] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?” IEEE Transactions on
Software Engineering, vol. 48, no. 09, pp. 3280–3296, 2022

Figure 2 The predictive performance of vulnerability prediction methods with textual information and software metrics

	I. Introduction
	II. Methodology
	A. Datasets
	B. Word2Vec-based features
	C. Experimental Design
	D. Prediction Models
	E. Performance Measure

	III. Research Questions
	A. Effectiveness of Non-SE Word2Vec against BoW
	B. Effectiveness of SE-Specific Word2Vec against BoW
	C. Contribution of Word2Vec Features on Vulnerability Prediction with Software Metrics

	IV. Results
	A. Effectiveness of Non-SE Word2Vec against BoW
	B. Identify the Headings Effectiveness of SE-Specific Word2Vec against BoW
	C. Contribution of Word2Vec Features on Vulnerability Prediction with Software Metrics

	V. Threats to Validity
	A. Internal Validity
	B. Construct Validity
	C. External Validity

	VI. Conclusions
	Acknowledgment
	References

