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Abstract—An Automated Driving System (ADS) requires 
exhaustive safety testing before receiving a road permit. 
Moreover, it is not clear what exactly constitutes sufficient safety 
for an ADS. One would assume that an ADS is safe enough if it is 
at least as safe as a Human Driven Vehicle (HDV). However, 
evaluating the safety of an ADS by comparing its behavior with 
that of a typical HDV in the real world is costly and risky. In this 
paper, we give an overview of our approach to compare the 
performance of ADS with HDV. While the overall approach is still 
in progress and ongoing, we provide a detailed approach utilizing 
established guidelines to systematically generate test scenarios 
specifically aimed at safety testing. Using our approach, various 
scenarios could be generated and tested, contributing to 
autonomous vehicles’ trustworthiness. 

Keywords - Autonomous Driving System (ADS); Human Driven 
Vehicle (HDV); Safety Testing; Scenario Generation; CARLA 
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I.  INTRODUCTION  
The automotive industry and research community are 

working hard to deploy autonomous cars on roads in the future. 
However, it requires exhaustive safety testing before it is safe at 
an acceptable level. Simulation-based testing is a cost-effective 
way to evaluate ADS safety. We aim to compare the behavior of 
an ADS to that of a Human Driven Vehicle (HDV) via 
simulation. However, the conclusions drawn from simulation-
based testing are not always clear. There are some open 
challenges and questions, which are as follows: 

Challenge 1 - How can we transfer the real world into a 
simulation model, and what aspects should be considered? To 
transfer the real world into a simulator, many challenges are 
posed. For example, how to model the behavior of an ADS and 
a human driver, how to set up the environment, and on top of 
that, which scenarios must be tested? Vehicles encounter a wide 
range of scenarios based on the combination of scenery, traffic 
and road objects, environment, road geometry, and maneuvers 
[1]. Additionally, the complexity of driving tasks and the 
uncertainty of the driving environment grows exponentially, 
translating into infinite scenarios that ADS could encounter. It is 
practically impossible to test every scenario using a simulator. 
Thus, it leads to a few interesting sub-questions: Q1) How are 

scenarios derived systematically? Q2) How to select the critical 
scenarios for safety testing? Q3) How to generate exemplary test 
scenarios showing that ADS behaves better than HDV. There 
are also challenges to modeling an HDV in the simulator - as 
part of the context in which the ADS moves. The model of an 
HDV depends on the behavior of a human driver. A human 
driver is diverse in behavior as different drivers make different 
decisions under the same surroundings and driving situation, 
mainly due to aggression, attention, and experience. 
Furthermore, a human driver also makes mistakes, violates 
rules, and takes evasive maneuvers to prevent accidents that 
could cause by the mistakes of other drivers. All these aspects 
create behavior complexity in a simulation environment and 
make comparing an ADS with an average HDV difficult. 

Challenge 2 - How can we build trust in simulations? That 
is, how to guarantee that simulation results correctly represent 
the real-world behavior of an ADS. This could be achieved by 
running scenarios in the simulator where the real-world 
reference behavior is known. We could consider scenarios 
where we know the human driver has more information and is 
better than ADS. If the ADS in the simulator reproduces the 
reference behavior, it supports the assumption that the ADS is 
modeled correctly in the simulator. Typical reference behavior 
could be the braking of the ADS on a straight road with dry 
streets and good visibility in daylight. Based on the physical 
characteristics of the car and its speed, one can calculate at what 
distance the car should be able to stop without hitting the 
obstacle. 

Challenge 3 - How can we quantify the advantage and 
disadvantages of an ADS compared to an HDV with an average 
driver? In certain aspects, ADS performs better than an HDV. 
ADS can potentially reduce the mistakes that human drivers 
make while driving. For example, ADS are never distracted 
(e.g., using cell phones, drunk, or tired); it has better perception 
(e.g., no blind spot), faster response time, and more precise 
brakes, acceleration, and steering control. However, ADS might 
not perform well when it comes to certain situations. For 
example, corner cases (rare situations or not expected to happen 
in the real-world). Also, ADS lacks intuition and instinct 
compared to human drivers, which affects the response of ADS 
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in a particular situation. For example, a pedestrian is standing 
near the edge of a sidewalk, seemingly distracted and showing 
signs of potential jaywalking. A human driver might intuitively 
recognize the pedestrian’s behavior and anticipate the possibility 
of them stepping into the road unexpectedly. However, an ADS 
may struggle to accurately interpret the pedestrian’s behavior 
and intentions. 

 
Figure 1. The proposed approach for comparing the behavior of ADS and HDV 
via Simulation-based Safety Testing. 

In principle, we are still trying to resolve some of the above-
mentioned challenges for translating the real world into the 
simulator. Figure 1 gives an overview of the proposed approach. 
As it is a work in progress, in this paper, we mainly explain steps 
in our approach for generating the test scenario systematically 
using public datasets by following the guidelines provided by 
the Center for Connect and Autonomous Vehicles [2] and 
existing literature [3], [4]. The work presented in this paper is 
related to the above-mentioned challenge # 1. More specifically, 
we tried to answer the sub-question Q1 by showing how a wide 
range of driving conditions can be effectively covered by 
systematically generating test scenarios, facilitating a better 
evaluation of ADS performance in diverse scenarios. It could 
also help identify potential risks and vulnerabilities of the ADS 
system, contributing to autonomous vehicles’ overall 
development and trustworthiness. 

II. BACKGROUND 
This section explains the key term “scenario” and abstraction 
levels of scenario representation. 
Scenario: A specific situation or context that captures the 
essential elements of a particular driving experience or event. It 
is a quantitative description of the ego vehicle, its activities, 
static environment, and dynamic environment [5], [6]. 
Functional scenario: is the highest abstraction level that 
depicts possible situations on a real road as a brief text [7]. For 
example, in a highway merge scenario, the ego car merges from 
an on-ramp into highway traffic.  
Logical Scenario: Functional scenarios are converted to logical 
scenarios by adding variables and parameter ranges [7]. To 
extend the previous example, the highway merge scenario 
incorporates different merge lane geometries, a range of 
surrounding vehicle speeds, varying traffic speed ranges, 

 
1 https://carla.org/ 

merging gaps, and timing. The combinations of all these 
attributes result in many logical scenarios. 
Concrete Scenario: A concrete scenario refers to a specific 
instance of the logical scenario where precise values and 
conditions are defined for the various parameters of the scenario 
[7]. For example, specific road geometry, weather condition, 
speed, interaction time, etc. 

III. PROPOSED APPROACH 
Our proposed approach (see Figure 1) consists of six steps: 

(i) modeling an ADS in the simulator, (ii) modeling an HDV in 
the simulator, (iii) generating test scenarios, (iv) selecting test 
scenarios, (v) simulations, and (vi) performance evaluation. We 
give an overview of the first two steps in our approach. We 
explain step (iii), generating test scenarios, in more detail. Steps 
(iv) - (vi) are work in progress.  

A. Modeling an ADS in Simulator 
The choice of the simulator is important because it could 
significantly impact the reliability, accuracy, and validity of the 
results obtained from the performance evaluation of an ADS and 
HDV. The simulator must be capable of accurately replicating 
real-world conditions. Additionally, the ability to collect and 
analyze data on performance metrics such as travel time, fuel 
consumption, safety, and compliance with traffic rules is 
another important consideration when selecting a simulator. We 
opted for CARLA1 because it possesses both capabilities [8]. To 
model an ADS in the simulator, the first step is to create a 
vehicle model by defining its physical properties, such as mass, 
dimensions, and color. The blueprint library get 
blueprint_library () function provided by the Carla Python API 
can be used to create the vehicle model. In the next step, sensors 
are integrated into the selected vehicle to enable perception of 
the surrounding environment. The desired parameters and 
sensors could be set in CARLA using vehicle_blueprint.set 
_attribute (). Using the above-mentioned steps, we model an 
ADS similar to a mini Cooper S with sensors such as a camera, 
Lidar, and radar. Additionally, the modeled ADS has all the 
built-in supporting systems that a regular HDV possesses. 

B. Modeling an HDV in Simulator 
To model an HDV in a simulator is challenging due to the 
diversity in human driver behavior, as individuals make 
different decisions when facing similar surroundings and 
driving scenarios. This is primarily attributed to variations in 
factors such as aggression, attention, and experience. We opt 
for CARLA’s human-like driving behavior model. These 
models are based on real-world data distribution and include 
different driver behavior, e.g., aggressive, distracted, 
naturalistic, and low aggressive drivers. We select the human 
driver model by configuring the Non-Player Character (NPC) 
agent parameters in the CARLA configuration files. In the 
future, we plan to make different persona’s according to each 
human-driver model, run a simulation, and compare the HDV 
behavior with an ADS. 

https://carla.org/
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C. Generating Test Scenarios 
To generate test scenarios, we perform the following steps: 

1) Dataset Collection: The first step is to collect a suitable 
dataset from public repositories based on the testing objectives. 
Choose a trustworthy source of high-quality datasets to ensure 
the dataset’s reliability and quality. Formulate and run a search 
query using key terms to find relevant datasets. From the results, 
select a dataset that aligns with test objectives and contains the 
necessary information to generate functional scenarios. Keeping 
safety testing of ADS as objective, the necessary information a 
dataset should contain includes target object, provoking event, 
maneuver, etc. 

The target object refers to the entity responsible for causing 
the accident, while the provoking event represents the specific 
action that triggered the accident. The accident directly affects 
the ego vehicle, and its corresponding driving situation is called 
the maneuver [9]. 

We formulated a search query based on our test objective to 
assess the advantages and disadvantages of ADS compared to 
HDV. We focused on key terms such as “road accident datasets” 
and “road accidents caused by human error” to find relevant 
datasets from the Kaggle repository. The chosen dataset2 
includes reports of traffic collisions in Addis Ababa, Ethiopia, 
spanning the period from 2017 to 2020. 

2) Dataset Preprocessing: The next step is to preprocess and 
clean the dataset using the standard data preprocessing 
techniques to filter unnecessary, missing, and inconsistent data. 
In our case, the selected dataset is already preprocessed and 
clean. However, we refined the data by filtering the irrelevant 
attributes such as location, driver age, and experience. These 
attributes are unnecessary for generating functional scenarios. 
Additionally, we adjusted the column labels to align with our 
specific requirements using Python commands.  

3) Feature Extraction and Categorization: Once data 
preprocessing is complete, elements for the functional scenario 
are extracted and categorized as the target object, provoking 
event, ego vehicle, and maneuver. Let us consider an example 
scenario where these elements are briefly explained to provide a 
clearer understanding. 

Vehicle A abruptly changed the lane and hit Vehicle B, which 
was overtaking. 

Here, Vehicle A is the target object, abruptly changing the 
lane is a provoking event, Vehicle B is the ego vehicle, and 
overtaking is a maneuver. We categorize the values of main 
elements (target object, provoking event, maneuver, road 
junction types) into subtypes based on their distinctiveness or 
uniqueness. We also merged similar categories to streamline the 
classification process. For instance, the categories of “Driving 
under the influence of drugs” and “Drunk driving” were 
considered similar, and thus, we merged them into a single 
category called “Drunk driver.” 

 
2 https://www.kaggle.com/datasets/saurabhshahane/road-traffic-accidents 

4) Generation of Functional Scenarios: In this step, the 
extracted main elements are combined to create a description 
known as a functional scenario. For example, we extract the 
Target object = animal, Maneuver = going straight, and 
Provoking Event = overspeeding. Combining these key 
elements, the functional scenario is “Vehicle A is going straight 
and overspeeding, hitting the animal.” This step is repeated until 
all combinations of the defined category values are achieved. 

The subsequent steps in the approach are in progress. We 
plan to develop a scenario selection method for safety testing to 
prioritize generated functional scenarios. The selected functional 
scenarios will be transformed into logical scenarios and refined 
into concrete scenarios by assigning specific values to the 
parameters. For example, information related to road junction 
type, weather conditions, lighting conditions, speed limits, and 
other relevant factors could be extracted from the dataset. 
Simulation results would be used i) to determine the reliability 
of the simulator and ii) to quantify ADS’s advantages and 
disadvantages over the typical HDV. 

IV. PRELIMINARY RESULTS 
 The results of steps (i) and (ii) of our approach will be 

published once the simulation is complete. We only show the 
preliminary result of step (iii) of our proposed approach for 
generating test scenarios from the chosen dataset (cf. Section 
III.C). Table I shows the extracted subtypes for each element of 
the functional scenario. We classify the target objects into seven 
categories, the provoking events into 18 subtypes, and the 
maneuvers into 11 subtypes. The total number of generated 
combinations without repetition is 1386. For each combination, 
it is possible to generate scenarios, However, not all scenarios 
are meaningful or relevant. We generated a list of functional 
scenarios using these combinations. The next step involves 
manually removing irrelevant or meaningless scenarios from the 
list. Due to space limitation, we only present a small initial set 
of generated functional scenarios in Table II. The last column in 
Table II shows the functional scenario after combining all the 
main elements captured in columns two to five. 

TABLE I.  EXTRACTION OF FUNCTIONAL SCENARIOS ELEMENTS AND 
THEIR SUBTYPES 

Elements Subtypes 
Target 
object 

Roadside-parked vehicles, Vehicles, Roadside objects, 
Animals, Rollovers, Pedestrians, and Train 

Provoking 
event 

Moving Backward, Overtaking, Changing lanes to the left, 
Changing lanes to the right, Overloading, No priority to a 
vehicle, No priority to pedestrian, No distancing, Getting 
off the vehicle improperly, Improper parking, Driving 
carelessly, Driving at high speed, Driving to the left, Over-
speeding, Unknown, Overturning, Turnover, Drunk 
driving. 

Maneuvers Going straight, U-Turn, Moving Backward, Turnover, 
Waiting to go, Getting off, Reversing, Parked, Stopping, 
Overtaking, and Entering a junction. 

 

https://www.kaggle.com/datasets/saurabhshahane/road-traffic-accidents
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V. FUTURE WORK 
In the future, the generated test scenario will be prioritized 

and converted into logical and concrete scenarios. The concrete 
scenarios would be loaded in the simulation environment and 
executed. The results from the simulation would be used to 
quantify the performance of both ADS and HDV based on 
performance criteria. The possible metrics to evaluate the 
performance criteria could be the number of accidents, the 
severity of the accident, or parts of a vehicle damaged in 
simulated scenarios. We also plan to answer the many open 
questions and challenges (cf. section I) and run simulations that 
help identify the advantages or disadvantages of ADS behavior 
over that of HDVs in simulated safety-critical traffic situations 
and to translate these findings into corresponding real-world 
behavior.  

TABLE II.  AN INITIAL SET OF GENERATED TEST SCENARIOS AFTER 
APPLYING STEP (III) OF OUR PROPOSED APPROACH 

Maneuvers Target 
Object 

Provoking 
Event 

Functional Scenario 

Driving 
Straight 

Vehicle Change lane 
to the left 

The ego vehicle is 
driving straight. The 
target object (vehicle) is 
lane changing into ego’s 
vehicle driving ahead. 

Driving 
Straight 

Vehicle Overtaking The ego vehicle is 
driving straight, while 
the target object 
(vehicle) is overtaking. 

Reversing Roadside 
objects 

- The ego vehicle is 
reversing and colliding 
with a roadside object. 

U-Turn Animal - The ego vehicle takes a 
U-turn and hits the 
animal. 

Driving 
Straight 

Pedestrian Drive 
carelessly 

The ego vehicle is 
driving straight 
carelessly while the 
target object 
(pedestrian) is crossing. 

 

VI. RELATED WORK 
Due to space limitations, we present only a few recent relevant 
studies related to simulation-based safety testing of ADS. 
Matthew et al. [10] presented a simulation framework based on 
an adaptive sampling method to test an entire ADS. Jha et al. 
[11] proposed a fault injection tool that systematically injects 
faults into the hardware and software of an ADS to evaluate 
safety and reliability. Ben et al. [12] presented an approach to 
test ADS in a simulation environment (Simulink). They used 
multi-objective search and surrogate models based on a neural 
network to identify critical test cases regarding an ADS 
behavior. Wicker et al. [13] performed black box testing to 

evaluate the robustness of neural networks against adversarial 
attacks in traffic sign recognition in self-driving cars. Our 
approach is different from existing work in simulation-based 
safety testing. We have a black-box point of view on the ADS 
when observing its behavior and focus on identifying ADS 
behavior that differs from that of an HDV, both positive and 
negative. 
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