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Abstract—Since the detection of pattern abnormalities may lead to 

not only the prevention of chronic respiratory diseases but also 

other diseases, many techniques have been developed in order to 

detect breathing and coughing patterns. To benefit from the cross-

disciplinary studies we have decided to expose physics students to 

both: learning about sound using coughing as a targeted research 

topic and to develop a demo tool that is useful for building on 

exploratory skills and provides them with solid knowledge for 

future more advanced scientific research in biomedical 

engineering. A low-cost microphone sensor was tested for the 

purpose of understanding whether it can be used not only as a 

sound indicator but more broadly as a risk mitigation tool during 

a pandemic such as the current pandemic, COVID-19. The final 

goal of this long-term project is to build mathematical models 

aiding the identification of features from sound samples and to 

apply a classifier algorithm based on the machine learning 

technique at the final stage of research. 
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I.  INTRODUCTION  

COVID-19 is a respiratory infection caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. 
Prominent symptoms of COVID-19 include coughing and 
breathing difficulties. Cough sound analysis helps us to 
differentiate two similar sounds and to define the objective 
correlations with spirometry and clinical diagnosis [2], including 
Cough Peak Flow using cough sounds [3]. The auscultation of 
the respiratory system is another diagnostic technique and an 
inexpensive, noninvasive, safe, and easy-to-perform method [4].  

The parameters such as frequency, intensity, and timbre of 
sound are of particular interest for the classification of 
respiratory diseases and are defined as follows. Pitch is the 
subjective perception of sound's frequency and depends on the 
frequency while amplitude of loudness is related to the energy 
of sound waves and is measured by the height of sound waves 
from the mean position; it is the subjective perception of 

amplitude. Quality or timbre is an important property of sound 
that differentiates two sounds with the same pitch and loudness. 
The fundamental frequency or primary frequency is the lowest 
frequency of a sound wave and it determines the pitch of the 
sound; the frequencies higher than the fundamental frequencies 
are called overtones while harmonics are overtones whose 
frequencies are whole number multiples of the fundamental 
frequency.   

However, real-world sounds are not usually deterministic: 
they do not just have simple harmonics of the fundamental 
frequency. Instead, they also have unpredictable “inharmonic” 
frequencies that are not structured as noise.  Thus having 
complete understanding of these measurable quantities and 
designing an experiment where those features are not lost when 
recorded and processed is crucial for further applications of 
machine learning techniques [5]. The issue is also how to deal 
with the research complexity without compromising the 
flexibility of techniques required for the extraction of sound 
features and still providing a comprehensive outcome that would 
not compress important information for the sake of data 
reduction. Towards this, this paper presents an early effort, 
mostly exploratory based, in building the capacity for such a 
complex and comprehensive task and towards creating a 
cough/respiratory sound database in Montenegro.  

II. EXPERIMENTAL PROCEDURE 

A. Research question 

The cough frequency is the most basic measure of coughing, 
but the objective study of cough signals has the potential to 
identify further features which may be clinically relevant and 
hence useful endpoints to study. Here we recall an early 
measurement (Fig. 1a) that used the audio tapes as research tools 
where the behavioral changes were monitored in order to extract 
untypical patterns over a longer time period [6]. Quantifying a 
cough was never an easy task, it is still not fully understood, and 
the symptoms are often incorrectly assigned. There is also no 
universally agreed unit of cough. The most intuitive way to 
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quantify cough is to count the expulsive (first phase) of cough 
sounds (Fig. 1b). If long bursts (or peals) of expulsive cough 
sounds are present, then to identify each expulsive phase can be 
exceedingly difficult.  The temporal patterns of coughing vary 
both in the short term (peals or epochs of coughs versus single 
coughs) and in the long term,  

 

   

Figure 1.  a) Early objective cough monitoring study with wall 

mounted microphone recording sounds from a hospital in-patient; b) 

Typical cough waveforms with expulsive phase, intermediate phase 

and voiced phase.  

In another research project the respiratory sounds were 
recorded simultaneously with 16 microphones distributed over 
the thoracic surface [7]. Acoustic energy in three frequency 
bands, 150-300 Hz, 300-600 Hz and 600-1200 Hz, was analyzed 
during inspiration and expiration and results indicate that on 
average, inspiratory sounds are 10 to 11 dB louder than 
expiratory sounds at comparably flow rates. Findings that the 
acoustic shadow produced by the heart is more pronounced 
during inspiration support the concept that inspiratory sounds 
are produced predominantly in the periphery of the lung, while 
expiratory sounds are generated more centrally; lung sounds 
were also found to be significantly louder on the right side for 
the front part of the thorax, and on the left side for the back 
suggesting the importance of sensor positioning on the accuracy 
of the diagnostic procedure. [7].  Auscultation of the infant’s 
chest reveals that their lung sounds seem to be different to those 
of adults since the normal lung sounds of newborn infants 
contain higher-frequency components than those of adults as a 
result of less filtering of the lung sound in infants [8]. 
Furthermore, accompanying airflow limitation or poor 
transmission of sounds was found for pulmonary 
emphysematous, indicating role of sound intensity as an 
important feature to be understood. From the point of view of 
the mechanism the sound is generated and then blocked over the 
transmission journey [9].  

 

Figure 2.  a) Sound loudness explored via microphones  attached a 16 chest;  
b)  The upper 4 diagrams represent the low frequency band, the middle 4 

diagrams the intermediate frequencies and the lower 4 diagrams the high 
frequency band position. Microphones on the thoracic surface were arranged in 

a strictly geometric pattern to allow a meaningful comparison between different 

parts of the thorax [7].  

It is important to also be aware that the testing of any new 
cough monitoring systems needs to be rigorous. Unfortunately, 
even the most recent medical systems suffer from a lack of 
sufficient accuracy while inconsistency in performance adds 
additional uncertainty in sound interpretation.  It is also well 
known that any cough monitor will identify some cough events 
correctly (true positives), mistake non-cough events as coughs 
(false positives), miss some cough events (false negatives) and 
correctly ignore non-cough (true negatives). 

All those problems and uncertainties in designing the data 
taking approach motivated us to set up our own investigation 
seeking for answers in long and short term. The research 
question is not only to experimentally test and demonstrate 
whether we can use a low-cost sound sensor module - MAX4466 
Microphone Amplifier Module with an adjustable Gain 
Breakout Board for Arduino to detect sound patterns and utilize 
this tool for risk mitigation during COVID-19, or any respiratory 
related diseases, but also to learn more about the way the errors 
are overlooked and ignored (such as differentiation from 
ambient noise, differentiation from other patient sounds, 
especially speech, laughing sneezing and variability in the 
acoustics of cough sounds  between individuals including  
transmission path of sound, positioning of producer of sound 
etc.).  

 

B. Waveform patterns 

 

Here we present some known waveform patterns that we will 

use to mimic “known/classified” sounds when requesting 

healthy volunteers to imitate the sound pattern. The different 

duration and pattern behavior of the three acoustic phases called 

the explosive, intermediate, and voiced (right) phases 

(introduced in the previous section) are clearly observed. 

Vesicular breath sounds (Fig. 3a) are heard across the lung 

surface. They are lower pitched, rustling sounds with higher 

intensity during inspiration. During expiration, sound intensity 

can quickly fade. Inspiration is normally 2-3 times the length of 

expiration [10],[12]. Bronchial breath sounds are tubular, 

hollow sounds which are heard when auscultating over the large 

airways (e.g. second and third intercostal spaces). They will be 

louder and higher pitched than vesicular breath sounds (Figure 

3b). Figure 4a shows the wave form produced when one 

wheezes. As seen, wheezes can be high or low pitched. The 

waveform for crackles is displayed in Figure 4b.  The pitch is 

lower than late inspiratory crackles. A patient's cough may 

decrease or clear these lung sounds.  

   
 

Figure 3.  Wave forms for: a) Vascular and b) bronchial breath.[10] 
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Figure 4.  Waveform plot: a) Wheezes. b)  Crackles [10] 

C. Set up 

The research tool was simple: it was based on Arduino and a 
microphone sensor: MAX4466 Microphone Amplifier Module, 
with electret microphones on it as shown in Figure 5.  This 
breakout is applicable in projects such as voice changers, audio 
recording/sampling, and audio-reactive projects that use FFT. 
The Electret Mic Breakout translates amplitude (not volume) by 
capturing sound waves between two conducting plates (one a 
vibrating diaphragm and the other fixed) in the microphone and 
converting them into electrical waves. These electrical signals 
are then amplified and picked up by the microcontroller’s ADC 

 

   

           

 

Figure 5.  a) Sound sensor with microphone built in connected to 

the Arduino; b) Electret microphones c) Amplifier transistor 

(2SK596); d) Equivalent schematic of electret microphone.  

Electret microphones: The amplifier consists of a single JFET 

transistor, with the gate connected to the pick-up plate, the 

source connected to ground, and the signal appearing on the 

drain. This is called a common-source configuration, as the 

source is connected to ground, which is common to all signals. 

The JFET in this electret microphone is a 2SK596, which is 

designed for low-noise applications. The electret maintains a 

fixed charge, and therefore maintains a voltage across the 

capacitor. For details we refer to [11]. 

Measuring Sound Levels: The Audio signal from the output of 
the amplifier is a varying voltage. To measure the sound level, 
we had to take multiple measurements to find the minimum and 
maximum extents or "peak to peak amplitude" of the signal. We 
have chosen a sample window of 50 milliseconds. That is 
sufficient to measure sound levels of frequencies as low as 20 
Hz - the lower limit of human hearing. After finding the 
minimum and maximum samples, we computed the difference 

and converted it to volts and the output was printed on the serial 
monitor.   We also did some experimental research with sounds 
at different volume levels to test how our average, min, max and 
span values respond. Adjustment to the the gain potentiometer 
was occasionally needed in order to utilize the max span for our 
sound levels while not overdoing it and not affecting the +/- sign 
of data. 

D. Calibration: 

 

The first step was to calibrate the sensor and to define the 
noise level (when no sound was produced). This procedure 
required additional adjustments of electronic components to 
provide optimal sensor performance. The optimal choice would 
be to have an acoustically isolated room which we were unable 
to obtain partially due to limits imposed by COVID-19 
measures.  Figure 5 shows the recorded noise level.  

 

 

Figure 6.  Sensor calibration: Noise level 

 

E. Row Data, Sampling, Response & Limits in sensor 

performance 

 

 It is important to note that sound patterns are generated by 
volunteers, thus not clinically confirmed, and not taken from any 
approved medical data. For sampling the rule is to sample twice 
as fast as the maximum frequency (20 KHz) we want to capture.  
As we increase our knowledge about microphones and artefacts, 
we will learn more about the limits of its application in our 
research. Since, a JFET is used as the amplifier and because it 
has a high input resistance (30 MΏ or more) this means that 
almost no current is pulled off the electret capacitor. The reason 
for this is that if the amplifier had a lower input resistance, the 
low frequency response of the microphone would suffer. This is 
because the input stage acts like a high-pass filter, with the 
electret being the capacitor, and the input of the amplifier being 
the resistor, and larger values of R and C give lower cut-off 
frequencies. The main noise sources in this microphone are pick-
up noise and transistor noise. Since the entire capsule is sealed 
and grounded, the pick-up noise is very low and usually not 
noticeable. The transistor noise, on the other hand, can be quite 
high, due to the high input resistance on the JFET. Typical 
values are around -120 dB to -110 dB, which may sound rather 
low, but the audio signal level is usually less than -40  dB, so it’s 
only an 80 dB signal to noise ratio (SNR). This is a common 
issue with condenser microphones due to the high input 
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resistances required. Regarding the sensor sensitivity we learnt 
that a smaller diaphragm would tend to give better high 
frequency and distortion characteristics, but will not be as loud, 
and therefore have worse SNR. A smaller diaphragm, as we 
found later in specifications, will also have a smaller 
capacitance, so its low frequency response will not be as good. 
Thus, picking a certain microphone for application must be 
rigidly tested.  

    

Figure 7.  a) Raw data: after a period of silence a burst of cough is produced, 

and pattern repeated. b) Strong short burst of cough, then repeated after a 

prolonged time of silence. Some artefact added in the second burst. 

Figure 7a show the relative sound level that the microphone 
picks up.   The multiple samples were taken during a sample 
window which is set to 25 mS (50 mS = 20 Hz). The amplifier 
in this sound module is biasing the output at 1/2 of the Vcc used 
to power the board. The drawback here is that any audio (AC 
voltage) received and amplified will just randomly add or 
subtract from that ‘center’ value.  Different scenarios for sound 
generation have been created. Fig. 7a) shows sound level picked 
up by the microphone after a certain period of silence was 
prolonged, then burst of coughs was produced, and this pattern 
further repeated. In Figures 7b) we slightly modified the 
scenario: a healthy male volunteer, after a period of being silent, 
(breathing quietly) generated strong but short coughs. We tried 
to mimic the crackles, but it becomes obvious that supervised 
training is required in order to obtain an optimal simulated 
pattern for crackles. However, the sensor was able promptly to 
record the change in sound pattern. 

     

  

Figure 8.  Raw data: a) Upper left image - Cough prolong over longer time, 
b) upper right image - monotonous breathing and c) bottom image - rapid 

breathing; d) singing; in the middle of singing a sharp clap was added (seen in 

image as spike) 

 

Figure 9.   Randomly generated sound: Beathing, Coughing plus some 

artefacts. 

 

The prolonged cough with the almost uniform intensity, the 
monotonous breathing, and the rapid breathing, are shown in, 
Figure 8a, 8b, and 8c, respectively. The variation of loudness 
while a person was singing is displayed in Fig 8d) while more 
randomly by human generated sound (in the pattern repetition 
and the amplitude variation) where breathing, short but strong 
coughing and for a noticeably short timing interval induced non-
vocal artefact-sounds such by clapping, or screech (sharp spike) 
as presented in Figure 9.  

 

F. Data Processing 

 

      The previous section was devoted to Data Acquisition. 

Approaching the pitch extraction is more challenging than the 

envelope extraction. The zero crossing technique was prone to 

errors because of harmonics causing additional zero-crossing. 

Techniques based on picks of the filtered sample might be a 

better option, but we struggled with the processed sample (only 

one we tested) since the fundamental frequency was week. The 

outcome of an FFT due to large “inharmonics” was difficult to 

interpret. However, we learnt a lot and we are currently working 

on gaining a better understanding of the techniques and the 

sampling.    Regarding the envelope extraction technique, 

performed off-line, some issues had to be solved before we 

could proceed with the analysis. The cable that was used to 

connect the sensor to the computer had an issue and we solve it 

by providing better shielded. The noise that was constantly 

present in surrounding, was identified, recorded, then inverted 

in sign and added to the recorded sample. The artefacts 

affecting the duration of inspiration and expiration phases cause 

irreproducibility of the envelope extraction, and this is an 

internal feature of the signal envelope definition. An envelope 

of a signal is what is obtained through tracking successive 

(“connected”) peak values and the technique can be described 

as follows:  firstly, the signal is squared, then it is passed 

through a low pass 3rd order filter and in the final step the 

square root of the signal obtained from the previous step is 

calculated. Since, the extraction of the envelope is very useful 

for the classification of data by exploiting the features such as 

duration of inspiration and expiration phases giving us 

indications whether the analyzed data correspond to, for 

instance the crackled breathing where breath sounds are 

discontinuous and non-musical or to another respiratory 

disease, the control over all sources of uncertainty is crucial. 
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Many sound software for laptops can be used free of download 

but we suggest testing them first. Our first results on envelope 

extraction used data taken from a volunteer by requesting him 

to imitate crackled breathing with varying loudness and 

sampling was perform with frequency of 20 KZ (Figure 10).  

The expulsive phase and intermediate phase of cough is not 

distinguished well; from this we learnt that more work on filter 

algorithms has to be done.   Some systematic shift was observed 

too (Fig 10b). 

 

 

Figure 10.  First insight into signal envelope extraction: a) upper image: 

volunteer mimic quite crackle breathing but sensor was occasionally lost the 

contact to computer; b) bottom image: Volunteer was asked to produce burst of 
cough and repat it. The systematic shift can be observed. More work on 

understanding the algorithm and outcome of analysis is undergoing.  

  

  

Figure 11.  Power spectral density presented by blue line. The figure is the result 

of Fourier analysis and it represents the distribution of the intensity per 
frequency. The red line was left from previous measurement. The data filtering 

was not studied.  

Few problems we identified. One issue is that we are converting 

an analogue input into a digital pin and this means that the 

triggering is not performed at a consistent voltage except if we 

connect the audio signal into a voltage comparator before it is 

converted into a digital signal through a digital pin; this way the 

pulse is always triggered at the same point or the same threshold 

voltage. Another thing is that the “envelope” only gives the 

information about the loudness, so one has to keep in mind that 

there is no frequency information in the extracted envelope. The 

real sounds are complex wave shapes, and it is hard to pick out 

when one cycle ends and the next starts, something that is 

relatively easy with the mathematically defined wave shapes 

such as squares. What makes it even harder is the fact that real 

sounds change their harmonic content and wave shape as the 

sound continues.  One can learn a lot about envelope from 

analysing music notes played on string instruments and 

comparing the four envelope segments: the start of the sound is 

called the “attack” segment; after the loudest part of the sound, 

the fall to a steady “sustain” segment is called the “decay 

segment and when the sound ends, the fall from the sustain 

segment is called the “release” segment. Length of those 

segments can be used to differentiate different sources of sound; 

however, using only extracted envelope as feature for a certain 

type of cough seems to bring a lot of ambiguity. As excesses we 

play around the vibration, loudness and timbre of sound 

produced on cello and look at the change in the shape of sound 

envelope. 

The quick FFT as a demo to students was performed without 

using an advanced data filtering approach, since the aim was to 

visualise change in frequency response as sound continue. An 

example of a power spectral density of a cough signal is shown 

in Fig. 11. The visible spikes present artefact. In future work the 

signal will be passed through the band pass filter to get rid of 

the low frequency noise. In this way we will eliminate most of 

the background noise present in surrounding including 

electronic sound of laptop ventilation. This will allow us to 

extract features such as the calculated length of a cough, the 

length between two hits in a cough attack and the total length 

of the cough sequence in processed data. It is also important to 

know that sound heard from mouth and those listened by 

practitioners from stethoscopes in auscultation differ from each 

other in the frequency content since some parts of body behave 

as low filters. This as an interesting topic to be further explored.  

We also found that some frequencies assigned as classifiers to 

some respiratory problems has overlapping with some musical 

notes (depends on what an octave is covered); so, the scope for 

a false positive is vast.  We also noticed that some audio signals 

might have noise on them or harmonics in the waveform that 

cross the threshold voltage many times rapidly within the cycle 

we measured. 

Since the MAX4466 is "optimized" for extremely low power, it 

might not be a good choice for comprehensive sound analysis, 

but it can be used as an experimental and learning tool. By 

visualizing what is lost and what information is gained using  

Fast Furrier Transformation with and without applying the data 

filtering one could learn more about changes in harmonic 

content and timbre (and resolution vs sample size which again 

indicate necessity for the good signal filtering due to huge 

processing time). On the other hand, the timbre that helps to 

distinguish two sounds with the same loudness depends on the 

relative strengths of the components of different frequencies 

and is mainly determined by the harmonic content of a sound 

and the dynamic characteristics of the sound such as vibrato and 

the attack-decay envelope of the sound.  Thus, one has to be 

careful as to what extent the quality of original information or 

original content may be lost in data processing. 
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  As a future exercise we might decide to use an area of 

microphone sensors adjusted to a certain frequency band using 

voltage control. Different microphone sensors will be explored 

too. Additionally, sensors such as a temperature, pressure 

sensor and an accelerometer attached to the chest would be an 

interesting and promising setup as well as an interesting new 

idea for those looking for more innovative and cross-

disciplinary teaching approaches at the University.  

III. CONCLUSION 

In our study we explored the utilization of low-cost sound 
sensors with built-in microphones.  We managed to demonstrate 
that our few-pound sound sensor is sensitive enough to 
distinguish different sound amplitudes and to precisely record 
the oscillation in sound pattern behavior. 

Originally, we started this project as student lab exercise in 
response to COVID-19, and to test the proof of concept if a 
cheap microphone sensor could be useful (and to what accuracy 
level) in pandemic times (such as COVID-19) as a quick 
solution for risk mitigation (not applicable for clinical 
application before rigorous tests are performed). The presented 
analysis could be promising when it comes to differentiation of 
various sounds coming from the patient. The results are good 
starting point for further development of a solution that can be 
widely used for clinical purposes too. 

 The presented project at this level of development can be 
immediately utilized as a useful demo educational tool. The 
envelope extraction technique is also developed, and the first 
preliminary results are currently under inspection.  More work 
on FFT as well as understanding the extracted envelope is 
undergoing. For this our priority is to develop a more 
comprehensive and robust filtering algorithm. After that we will 
process data to extract respiratory rate (RR). This would allow 
us to extract the features from the signal in form of vital signs 
important for COVID-19.  

This research would further benefit from the inclusion of a 
targeted group of people with chronic respiratory problems. 
More data is needed to give a conclusion about the reliability of 
the sensor and its usage as a medical monitor device. However, 
preliminary tests clearly demonstrate that sensor is capable to 
follows variation in sound pattern indicating further that such a 
simple and low-cost set-up would be an efficient tool for sound 
mapping and sound monitoring of a certain environment and 
thus can be suitable aid for deaf people also during respiratory 
pandemics such as COVID.    

We are also fond of sharing our experiences with readers. 
Open questions and issues we found have motivated us to work 
further on this topic. Filtering of the frequencies and harmonics 
during sound journey before it is captured by the sensor is also 
an interesting topic and research on it would give us more 
knowledge about lost information that might be useful in sound 
classification and the clarification of the uncertainties in its 
association to different respiratory diseases or other diseases. 
The published papers usually ignore the sources of uncertainty 
and we found it useful to open such questions.  
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