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languages such as Cypher or Gremlin. Writing such queries is 
not only time-consuming but also requires significant technical 
expertise, which limits access for non-technical stakeholders 
such as platform managers and decision-makers. This barrier 
hampers the ability of organizations to derive timely and 
actionable insights from their ecosystem data. Recent advances 
in generative artificial intelligence, particularly large language 
models (LLMs), offer a promising opportunity to bridge this 
gap. LLMs have demonstrated remarkable capabilities in 
understanding natural language and generating structured 
outputs, enabling the development of no-code interfaces for 
complex systems. By translating natural language inquiries into 
graph database queries, LLMs have the potential to make graph-
based ecosystem analytics accessible to a broader range of users. 
However, enabling LLMs to generate accurate and relevant 
queries for graph databases presents unique challenges. 
Crucially, the model requires contextual information about the 
database schema and the underlying graph structure to formulate 
correct queries. Without this knowledge, even highly capable 
models often produce incomplete or invalid outputs. 

This paper presents a pipeline for evaluating techniques to 
inject database schema information into LLM prompts to 
improve their ability to generate correct graph queries. We 
describe our approach for schema representation and prompt 
construction, as well as a set of experiments comparing different 
injection techniques. Preliminary results from these experiments 
demonstrate the impact of schema injection on query accuracy 
and provide insights into the design of LLM-driven interfaces 
for graph databases. 

II. METHODOLOGY

This section presents the end-to-end workflow for trans- 
forming platform ecosystem data into a graph representation 
and enabling natural language to Cypher query translation 
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I. INTRODUCTION

Platform ecosystems have fundamentally transformed the 
way value is created and distributed across industries [1]. By 
enabling diverse actors such as developers, organizations, and 
users to co-create and exchange value around a shared 
technological platform, these ecosystems have become critical 
enablers of innovation and economic growth. The increasing 
digitization of platform activities has led to the generation of rich 
data traces, which are often represented using graph-based 
models and stored in graph databases [2]. These representations 
capture the intricate relationships among ecosystem participants, 
resources, and interactions, offering a powerful basis for 
analyzing ecosystem dynamics [3]. Despite the expressive 
power of graph databases, retrieving relevant data from them 
remains a technically challenging task. Business inquiries that 
require traversing complex networks and extracting specific 
sub-graphs often demand the formulation of sophisticated query 
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using a Large Language Model (LLM). Figure 1 outlines the 
architecture overview of the workflow for the 
experimentation and evaluation pipeline. 

A. Data Extraction and Graph Construction
Structured SECO data is collected from different data

sources. The data covers entities such as products, owners,
maintainers, visitors, devices, and usage logs. The sources
cover different types of data including DevOps, financial,
analytics data. An ETL pipeline was created and executed
daily. The pipeline consists of the following steps:

• Extract: Connects to APIs, scrapes relevant data, and
retrieves documentation and metadata.

• Transform: Drops irrelevant fields, merges multi-source
records, parses URLs, and validates entity relationships.

• Load: Loads cleaned data into a Neo4j property graph
model. Historical schema snapshots are stored for
reproducibility.

B. Generative AI Query Translation Pipeline
The Smart Assistant enables natural language interaction

for analytics. The system explores schema injection modes
varying along the following variables:

• Schema Source: Either a live schema fetched from Neo4j
via the APOC library, which pulls complete metadata of 
the graph, or the static JSON schema definition file.

• Prompt Placement: Schema injected into either the
system prompt or the user prompt.

For each query, the pipeline: Fetches or loads the schema; 
constructs system and user prompts accordingly; submits the 
prompt pair to the LLM; parses the LLM response to extract 
Cypher queries; and executes queries on the graph and returns 
results.  

C. Graph Schema Model
The SECO graph schema includes nodes for Visitors,

Devices, Departments, Companies, and APIs, connected
through relationships such as MADE, USED, PART_OF, and
ASSOCIATED_WITH.  Figure 2 shows a version of the graph 
data model schema.

D. Feedback and Evaluation Workflow

The entire experiment is tracked with MLflow for
prompt versions, model runs, and metrics, as shown in
Figure 3. GitLab CI/CD pipelines automate data
preparation, schema snapshotting, and test coverage for
each configuration. Additionally, A human-in-the-loop
workflow is integrated and comprises the following steps:

Figure 1.  Architecture overview of the experimentation and evaluation pipeline including graph database integration with the Smart Assistant for 
natural language to Cypher queries. 

Figure 2.  Graph database schema highlighting nodes and relationships.
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• Reviewers assess Cypher generation correctness and
logical validity.

• Each query is rated on a 5-point Likert scale, with
1 indicating incorrect/irrelevant output and 5 indicating
fully correct and usable queries, as shown in Table I.

TABLE I 
LIKERT SCALE FOR HUMAN EVALUATION 

Score Interpretation 
1 Incorrect or irrelevant Cypher 
2 Major logical errors 
3 Partially correct, needs edits 
4 Mostly correct, minor edits 
5 Perfectly correct and usable 

E. Chatbot User Interface
A user interface was developed based on Streamlit

Chatbot UI framework, as shown in Figure 4. It includes
the following aspects: 

• Session storage: Each session logs user prompts,
schema context, generated Cypher, execution results,
and feed- back.

• Results persistence: Users can iteratively refine queries
and view results in real-time. Previously generated
visualizations are also persisted for further refinements.

• Historical tracking: Sessions are stored for later review
and model improvement.

• Feedback elicitation: A widget is embedded in each
response to allow for feedback elicitation enabling
human-in-the-loop evaluation.

III. DISCUSSION

A preliminary evaluation of the different setups was carried out 
by executing a set of ten representative queries under the four 
experimental configurations. Human evaluation by domain 
experts were carried out for the 40 test cases. The 5-point Likert 
scale responses were aggregated so that it results in either a 
success or failure flag to facilitate comparison. The results 
suggest that including the database schema in the system prompt 
achieves higher consistency compared to embedding it in the 
user prompt. Additionally, using a well- defined static JSON 
schema generally performs better than fetching the schema live 
using the database own algorithmic functions. Simple entity-

relation queries, such as filtering visitors by device brand or 
counting unique users, achieved near-perfect success across all 
configurations. For instance, the query “List all Visitors who use 
a specific Device brand, like ’Apple’.” returned valid Cypher 
queries and expected record counts in all scenarios. In contrast, 
complex multi-hop or community-matching queries 
demonstrated higher variance. For example, the query “Show all 
Companies with Departments that belong to the same 
community as Visitor” succeeded when using the JSON schema 
but failed in all live schema scenarios. This indicates that more 
complicated traversal logic is sensitive to prompt placement and 
schema representation. Approximately 20% of test cases failed, 
primarily due to incomplete subgraph pattern matching or empty 
result sets when complex conditions were involved. Failures 
were more common in the JSON schema with user prompt 
scenario for temporal-spatial queries, such as “List all unique 
Visitors from Country X who made Visits in August 2024, along 
with the device types they used.” On average, the query 
generation time per NLQ remained under 5 seconds, while 
Cypher execution times were acceptable for interactive analytics 
workloads. All logs were stored in structured CSV files to enable 
further analysis and reproducibility. These findings highlight the 
need for prompt engineering and potential domain fine-tuning to 
handle edge cases more reliably. Future work will expand the 
query set, integrate additional LLM models, and explore 
retrieval-augmented generation. 
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Figure 3.  Performance logging of chatbot interactions in MLflow. 

Figure 4.  Snapshot of the user interface.
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