
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Optimal Graph Model Schema Injection for Large
Language Model-Generated Cypher Queries

Shady Hegazy, Nouman Nusrallah, Christoph Elsner
Siemens Foundational Technologies

Siemens AG
Munich, Germany

Firstname.lastname@siemens.com

Jan Bosch
Department of Computer Science and Engineering

Chalmers University of Technology
Göteborg, Sweden

Jan.bosch@chalmers.se

Helena Holmström-Olsson
Department of Computer Science and Media Technology

Malmö University
Malmö, Sweden

Helena.holmstrom.olsson@mau.se

languages such as Cypher or Gremlin. Writing such queries is
not only time-consuming but also requires significant technical
expertise, which limits access for non-technical stakeholders
such as platform managers and decision-makers. This barrier
hampers the ability of organizations to derive timely and
actionable insights from their ecosystem data. Recent advances
in generative artificial intelligence, particularly large language
models (LLMs), offer a promising opportunity to bridge this
gap. LLMs have demonstrated remarkable capabilities in
understanding natural language and generating structured
outputs, enabling the development of no-code interfaces for
complex systems. By translating natural language inquiries into
graph database queries, LLMs have the potential to make graph-
based ecosystem analytics accessible to a broader range of users.
However, enabling LLMs to generate accurate and relevant
queries for graph databases presents unique challenges.
Crucially, the model requires contextual information about the
database schema and the underlying graph structure to formulate
correct queries. Without this knowledge, even highly capable
models often produce incomplete or invalid outputs.

This paper presents a pipeline for evaluating techniques to
inject database schema information into LLM prompts to
improve their ability to generate correct graph queries. We
describe our approach for schema representation and prompt
construction, as well as a set of experiments comparing different
injection techniques. Preliminary results from these experiments
demonstrate the impact of schema injection on query accuracy
and provide insights into the design of LLM-driven interfaces
for graph databases.

II. METHODOLOGY

This section presents the end-to-end workflow for trans-
forming platform ecosystem data into a graph representation
and enabling natural language to Cypher query translation

Abstract—Platform ecosystems have transformed the way value is
created in different industries. The data traces of such ecosystems
are typically represented through graph models and databases.
Retrieval of relevant data from such databases requires writing
extensively complex queries to travers such complex networks to
fetch and slice the correct sub-graphs corresponding to the
original business inquiry. Advances in generative artificial
intelligence, namely large language models (LLMs), can provide a
no-code interface to such complex databases by generating and
executing database queries that fetch the correct and relevant data
in response to user prompts and inquiries. However, for the LLM
to generate the right query, data about the schema of the database
and the underlying graph model must be provided. In this study,
we present a pipeline for evaluating different techniques for
injecting the database schema in the LLM prompts, in addition to
preliminary evaluation results.

Keywords-graph database; software ecosystem; large language
models; graph algorithms

I. INTRODUCTION

Platform ecosystems have fundamentally transformed the
way value is created and distributed across industries [1]. By
enabling diverse actors such as developers, organizations, and
users to co-create and exchange value around a shared
technological platform, these ecosystems have become critical
enablers of innovation and economic growth. The increasing
digitization of platform activities has led to the generation of rich
data traces, which are often represented using graph-based
models and stored in graph databases [2]. These representations
capture the intricate relationships among ecosystem participants,
resources, and interactions, offering a powerful basis for
analyzing ecosystem dynamics [3]. Despite the expressive
power of graph databases, retrieving relevant data from them
remains a technically challenging task. Business inquiries that
require traversing complex networks and extracting specific
sub-graphs often demand the formulation of sophisticated query

Manuscript received July 16, 2025; revised July 26, 2025; accepted July
25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025
Paper category: Short
DOI: doi.org/10.64552/wipiec.v11i1.102

74

https://doi.org/10.64552/wipiec.v11i1.102

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

using a Large Language Model (LLM). Figure 1 outlines the
architecture overview of the workflow for the
experimentation and evaluation pipeline.

A. Data Extraction and Graph Construction
Structured SECO data is collected from different data

sources. The data covers entities such as products, owners,
maintainers, visitors, devices, and usage logs. The sources
cover different types of data including DevOps, financial,
analytics data. An ETL pipeline was created and executed
daily. The pipeline consists of the following steps:

• Extract: Connects to APIs, scrapes relevant data, and
retrieves documentation and metadata.

• Transform: Drops irrelevant fields, merges multi-source
records, parses URLs, and validates entity relationships.

• Load: Loads cleaned data into a Neo4j property graph
model. Historical schema snapshots are stored for
reproducibility.

B. Generative AI Query Translation Pipeline
The Smart Assistant enables natural language interaction

for analytics. The system explores schema injection modes
varying along the following variables:

• Schema Source: Either a live schema fetched from Neo4j
via the APOC library, which pulls complete metadata of
the graph, or the static JSON schema definition file.

• Prompt Placement: Schema injected into either the
system prompt or the user prompt.

For each query, the pipeline: Fetches or loads the schema;
constructs system and user prompts accordingly; submits the
prompt pair to the LLM; parses the LLM response to extract
Cypher queries; and executes queries on the graph and returns
results.

C. Graph Schema Model
The SECO graph schema includes nodes for Visitors,

Devices, Departments, Companies, and APIs, connected
through relationships such as MADE, USED, PART_OF, and
ASSOCIATED_WITH. Figure 2 shows a version of the graph
data model schema.

D. Feedback and Evaluation Workflow

The entire experiment is tracked with MLflow for
prompt versions, model runs, and metrics, as shown in
Figure 3. GitLab CI/CD pipelines automate data
preparation, schema snapshotting, and test coverage for
each configuration. Additionally, A human-in-the-loop
workflow is integrated and comprises the following steps:

Figure 1. Architecture overview of the experimentation and evaluation pipeline including graph database integration with the Smart Assistant for
natural language to Cypher queries.

Figure 2. Graph database schema highlighting nodes and relationships.

75

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

• Reviewers assess Cypher generation correctness and
logical validity.

• Each query is rated on a 5-point Likert scale, with
1 indicating incorrect/irrelevant output and 5 indicating
fully correct and usable queries, as shown in Table I.

TABLE I
LIKERT SCALE FOR HUMAN EVALUATION

Score Interpretation
1 Incorrect or irrelevant Cypher
2 Major logical errors
3 Partially correct, needs edits
4 Mostly correct, minor edits
5 Perfectly correct and usable

E. Chatbot User Interface
A user interface was developed based on Streamlit

Chatbot UI framework, as shown in Figure 4. It includes
the following aspects:

• Session storage: Each session logs user prompts,
schema context, generated Cypher, execution results,
and feed- back.

• Results persistence: Users can iteratively refine queries
and view results in real-time. Previously generated
visualizations are also persisted for further refinements.

• Historical tracking: Sessions are stored for later review
and model improvement.

• Feedback elicitation: A widget is embedded in each
response to allow for feedback elicitation enabling
human-in-the-loop evaluation.

III. DISCUSSION

A preliminary evaluation of the different setups was carried out
by executing a set of ten representative queries under the four
experimental configurations. Human evaluation by domain
experts were carried out for the 40 test cases. The 5-point Likert
scale responses were aggregated so that it results in either a
success or failure flag to facilitate comparison. The results
suggest that including the database schema in the system prompt
achieves higher consistency compared to embedding it in the
user prompt. Additionally, using a well- defined static JSON
schema generally performs better than fetching the schema live
using the database own algorithmic functions. Simple entity-

relation queries, such as filtering visitors by device brand or
counting unique users, achieved near-perfect success across all
configurations. For instance, the query “List all Visitors who use
a specific Device brand, like ’Apple’.” returned valid Cypher
queries and expected record counts in all scenarios. In contrast,
complex multi-hop or community-matching queries
demonstrated higher variance. For example, the query “Show all
Companies with Departments that belong to the same
community as Visitor” succeeded when using the JSON schema
but failed in all live schema scenarios. This indicates that more
complicated traversal logic is sensitive to prompt placement and
schema representation. Approximately 20% of test cases failed,
primarily due to incomplete subgraph pattern matching or empty
result sets when complex conditions were involved. Failures
were more common in the JSON schema with user prompt
scenario for temporal-spatial queries, such as “List all unique
Visitors from Country X who made Visits in August 2024, along
with the device types they used.” On average, the query
generation time per NLQ remained under 5 seconds, while
Cypher execution times were acceptable for interactive analytics
workloads. All logs were stored in structured CSV files to enable
further analysis and reproducibility. These findings highlight the
need for prompt engineering and potential domain fine-tuning to
handle edge cases more reliably. Future work will expand the
query set, integrate additional LLM models, and explore
retrieval-augmented generation.

REFERENCES
[1] A. Hein et al., “Digital platform ecosystems,” Electron Markets, vol. 30,

no. 1, pp. 87–98, Mar. 2020, doi: 10.1007/s12525-019-00377-4.
[2] F. von Briel and P. Davidsson, “Digital platforms and network effects:

Using digital nudges for growth hacking,” in Int. Conf. Inf. Syst., ICIS,
Association for Information Systems, 2019.

[3] P. Boldi and G. Gousios, “Fine-Grained Network Analysis for Modern
Software Ecosystems,” ACM Trans. Internet Technol., vol. 21, no. 1,
2021, doi: 10.1145/3418209.

Figure 3. Performance logging of chatbot interactions in MLflow.

Figure 4. Snapshot of the user interface.

76

