
Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Patterns in Design of Microservices Architecture:
IT Practitioners’ Perspective

Vadim Peczyński, Joanna Szłapczyńska
Faculty of Electronics, Telecommunication and Informatics

Gdansk University of Technology
Gdansk, Poland

vadim.peczynski@pg.edu.pl,
joanna.szlapczynska@pg.edu.pl

Anna Szopińska
Competency Center Digital

Sii Poland
Gdansk, Poland

aszopinska@sii.pl

Abstract—The literature on Microservices Architecture (MSA)
outlines a range of design blueprints as well as certain detrimental
practices, reflecting the diverse architectural considerations
inherent in MSA design. However, it remains unclear whether and
to what extent the practitioners actually adopt the good practices.
The study aimed to explore how MSA practitioners apply
established patterns and how they address various architectural
drivers. The advantages and disadvantages of these approaches
were also examined. To achieve this, we conducted a survey on
patterns in microservice design among a group of 77 MSA
practitioners from IT companies worldwide. The survey shows a
need for more accessible and standardised the MSA solutions
supporting MSA design phase.

Keywords-Microservices architecture, MSA, Survey, Patterns,
MSA design

I. INTRODUCTION

The ideal starting point for a project is to build it with a
monolithic architecture, utilising a single database and a single
executable that can be easily run on a developer machine [1].
This type of architecture is structured with three primary layers:
the client-side user interface, the server-side application, and a
database. As the system grows, the maintenance of its
architecture is becoming a challenge for developers and
architects - all requests must be handled by a single process, and
even a minor change triggers the deployment process for the
entire application [2]. To overcome these disadvantages, a new
type of architecture was introduced - Service-Oriented
Architecture (SOA) [3]. SOA is an architecture designed with
multiple services that collaborate with each other to provide the
final set of functionalities. Each service is using a separate
system process and promotes the re-usability of the software.
This architecture also gives the possibility of replacing a service
with another implementation as long as it keeps the same set of
functionalities and communication interface. SOA usually still
relies on a single database for the entire system, which ultimately
results in the deployment of the entire application, and often uses
the SOAP protocol for communication [3].

The Microservices Architecture (MSA) is an evolution of the
SOA concept, offering greater independence through loosely

coupled, small services that communicate via lightweight
mechanisms such as: RESTful API or stream-based
communication [4]. Microservices are designed for deployment
in cloud environments, where their advantages simplify
maintenance, enable autonomous scalability, and support
independent deployment [5].

During the design phase of a MSA application, several
challenges can arise, which require careful attention to ensure
successful implementation. A primary challenge lies in
determining the appropriate set of patterns to be employed
during the implementation phase. Wrong architecture can lead
to tightly coupled services, unnecessary fragmentation, or
raising of technical debt [6], [7]. One possible approach involves
supporting, balancing, and optimizing the Microservices
architecture through the application of an appropriate set of
design patterns. The goal of using design patterns in
microservices design is to create a solution that satisfies the
business's diverse needs while considering the various technical,
operational, and financial factors at play.

The scientific literature provides a wealth of analyses and
proposals for MSA design. However, it remains unclear to what
extent these concepts are actually implemented by MSA
practitioners in real world settings. This paper aims to address
this gap by exploring the practices of a diverse group of MSA
practitioners, primarily IT architects and software developers.
We sought to understand the techniques they use for MSA
design, the patterns and anti-patterns they apply. To achieve this,
we designed and conducted a survey on MSA, involving 77
relevant participants in total from MSA professionals from IT
companies around the world.

The rest of the paper is structured as follows. Section
Background briefly outlines related literature and surveys on
patterns and anti-patterns. Section Method introduces the MSA
survey discussed in this publication, presenting the research
questions, assumptions, detailing the groups of survey
participants and examines potential threats to the validity of the
survey. The following section presents results of the survey,
categorised into areas: API Gateway, Circuit breaker, discovery
mechanisms, transactional messaging, maintaining data
consistency, querying and service observability. Section

Manuscript received July 14, 2025; revised September 2, 2025;
accepted July 25, 2025. Published September 2, 2025.
Issue category: Special Issue on DSD/SEAA 2025 on Works in
Progress (WiP) Session, Salerno, Italy, Sept. 2025
Paper category: Regular
DOI: doi.org/10.64552/wipiec.v11i1.101

64

https://doi.org/10.64552/wipiec.v11i1.101

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Discussion interprets and discusses these findings and finally
section Conclusions concludes the paper.

II. RELATED WORKS

Distributed systems, such as microservices, require a new set
of technologies that must be integrated alongside the
architecture. To manage initial setup costs, the use of new
libraries and design patterns should be kept to a minimum [8].
In [9] the author analyses and describes diversified MSA design
patterns applied to different levels of architecture such as
communication, database, decomposition, discovery,
deployment testing, and observability. In [3] the author extends
the previous set of patterns with categories: reliability,
scalability and security. Also, [3] proposes patterns focused
more on human interaction and UI architecture (e.g. Micro
Frontends, Central Aggregating Gateway, Backend for Frontend
- BFF). Those patterns promote flexibility and loose coupling to
enhance the development of large-scale systems.

Choosing the right set of patterns can be challenging and
publications that address this topic can be found in [10], [11].
Also, the research community is increasing its attention around
quality attributes (e.g. performance, scalability, security) in
Microservices Architecture [4], [12]-[15] and the dependencies
between microservices [16].

In [17], the authors also collect information about the usage
of design patterns in MSA. They used the Likert scale to
describe the use of patterns, and the comparison is discussed in
the Discussion section. In [18], the authors propose queueing
networks to obtain quantitative insights about seven
performance-oriented patterns. Also in [11] the authors analyse
the set of 14 design patterns on seven quality attributes during 9
semi-structured interviews. The set of patterns was chosen from
the Azure Architecture Center [19].

The industry uses the patterns and strategies to improve the
process of implementing the MSA, but many practitioners tend
to overlook a critical aspect, the existence of anti-patterns and
how they may evolve throughout the various phases of the
transition. In [20] the authors describe eight anti-patterns and
divide them into two categories: design and implementation. In
[21] 19 anti-patterns are described and the research is also
extended by adding visualization of these anti-patterns. In [22]
the quality model based on 11 anti-patterns is proposed. It shows
the need for solving this urgent issue in the form of a decision
model lowering the impact of anti-patterns on overall MSA
design.

III. METHODOLOGY

To guide the study, the research questions were formulated
as follows.

• RQ1 - What are the most commonly used design
patterns in MSA?

• RQ2 - What patterns are rarely used by
practitioners?

• RQ3 - Is data consistency across multiple
microservices maintained by design patterns?

To address these questions, we formulated a survey that was
conducted among 77 participants from seven countries on three
continents: Europe (Poland, Great Britain, Germany, Austria),
North America (United States), and Asia (India, Afghanistan).
The majority (82%) of the respondents work for companies with
more than 1.000 employees. The participants work on the
applications from sectors: IT (24%) followed by e-commerce
(19%), finance (16%), engineering (11%) and others (30%).

In the survey, 92% of the respondents declared a
programming role - out of which 29% are architects, 9%
technical leaders and 54% software developers. The other 8% of
the respondents are consultants, delivery manager, team leader,
engineering manager, software quality (tester), director and
chief procurement officer (CPO). The seniority of the
participants is as follows: 83% of the respondents declared the
level of senior knowledge, 14% declared the regular level of
knowledge. Only 3% said they are at the beginning of their
professional path (junior).

In the survey we focused on the design patterns commonly
used side by side with MSA which can be found in the literature
(Tab. 1). Patterns were divided into five groups related with their
purpose:

• Communication and reliability,

• Discovery mechanism of Microservices,

• Transactional messaging,

• Maintaining data consistency,

• Observability and monitoring.

The first part of the questions focused on reliability (Circuit
Breaker), external API patterns (API gateway) and querying
techniques (CQRS, API Composition). These patterns are
configured to establish reliable and secure communication with
a distributed architecture.

The next part of the survey focused on the discovery
mechanism of microservices. This mechanism is the most
crucial topic for fault tolerance scenarios [23]. The services that
are not working properly must be replaced by new instances and
it is a typical action that improves the system's reliability. We
asked our respondents if they are using the discovery mechanism
in their applications, where the discovery of the services is
placed (client-side or server-side), and if they use self- or third-
party registration systems.

Transactional messaging was the subject of the next part.
Each microservice maintains its own state and has its own
database, if needed [3]. Several design patterns were introduced
to overcome the problems with data consistency, distributed
transactions, and eventual consistency. Transactional outbox
(outbox pattern), message relay, and polling publisher are
patterns that are responsible for establishing reliable
communication between Microservices. Patterns were also
added on the database layer where the transaction log miner uses
the transaction log (transaction journal) and publishes each
change as a message in message broker. We asked about usage
of those patterns and which of them are used in the participants'

65

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

TABLE I. SYSTEMS. PATTERNS REFERENCE IN LITERATURE

Data consistency in the distributed system is one of the most
complex topics [24]. Maintaining distributed transactions when
objects are constantly changing must be secure and consistent
through all the databases involved in the process. We asked
practitioners if they used any patterns to achieve this goal and
which of these patterns are implemented in their applications.

The last part of the design patterns section of the survey was
focused on observability and monitoring. In huge systems with
MSA we need to rely on automation that will bring back all
components in the case of any unexpected or faulty behaviour
[23]. On the other hand, logs and monitoring services should
provide us with documentation of such troublesome behaviour
to improve the reliability of the system in the future. Detailed
results of the survey are described in the next chapters.

We acknowledge the possible threats to validity related to
the research method, the findings, and the strategies that were
used to mitigate these threats. They are as follows:

• responses collected can limit their findings - 77
responses were received, the number might be
increased if we redo the survey in future works;

• respondents may have different interpretations and
understandings of MSA and the design patterns -
graphics describing patterns were provided and open
option was added in most of the questions to give space
also for other answers;

• lack of clarity of the questions - four pilot surveys were
conducted with system architects with extensive
experience in MSA, language of some of the questions
was improved;

• responses from those who were not involved in
designing the Microservices systems - by using
branching, we closed some of the questions to those
respondents without experience in MSA;

• some of the design patterns might have not been
mentioned in the survey - open answer was added for
any other pattern that was not mentioned.

IV. RESULTS OF THE SURVEY ON MSA PATTERNS AND ANTI-
PATTERNS

The study focuses on analysing design patterns commonly
used in MSA. The main problems which can be encountered
during work with Microservices are: distributed transaction,
discovery and reconnection mechanisms, data consistency, and
querying.

Communication and reliability. In MSA large monolithic
applications are divided into smaller modules (microservices).
In this approach the potential points for a cyberattack is bigger,
because each Microservice has its own interface for the
communication. To mitigate some of the potential risks, the API
Gateway pattern was introduced [15]. In addition, it solves
problems with cross-platform compatibility and inconsistent
issues with microservices call standards [25]. This pattern can
also be extended into a Backend for Frontends approach (using
multiple API Gateways), which further enhances its versatility.
The API Gateway pattern is commonly used in the projects of
the respondents (73%). More than a quarter (26%) is not using
it in their projects. One participant decided to not answer this
question. This pattern’s popularity is also evident when
examining its usage broken down by project role (Fig. 1).

Circuit breaker is used to improve the resiliency of the MSA.
During communication between Microservices Circuit Breaker
detects faults and protects the system from cascading failures
[26]. It works like a fuse, and when failures consecutively cross
the threshold, a circuit breaker will stop the downstream request
(open state) for a certain period. After that period, the circuit
breaker allows part of the test calls (half-open state) and resumes
normal operation (close state) until these calls succeed [4]. The
Circuit Breaker is not as commonly used in participant projects

Pattern
Referenced works

Richardson[9] Newman[3] Newman[8]
API Gateway

  
Circuit breaker

 
CQRS

 
API Composition



Server-side discovery
 

Client-side discovery
 

3rd party registration
 

Self registration
 

Transactional outbox


Polling publisher


Transaction log tailing


Domain event
  

Aggregate (DDD)
  

Event sourcing
 

Saga
  

Log aggregation
  

Application metrics
  

Audit logging


Distributed tracing
  

Exception tracing
 

Health checks API


Log deployments and
changes  
Correlation ID

  

66

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

in comparison to the API Gateway even though its complexity
is compensated by already existing implementations within
libraries (e.g. Polly, Resilence4j). It is used in 36% of the
projects, 61% declares that they are not using it, and 3% (two
participants) did not answer the question.

In MSA the information is scattered between different
databases belonging sometimes to hundreds of microservices. In
the monolithic architecture, a single database can provide the
dedicated views serving data that the user is looking for. One of
the challenges in MSA is to handle querying the data across the
whole system. One of the potential solutions to this problem is
by using API Composition pattern. The pattern provides a
simple method to query the data in MSA [17]. The API
Composer is a central point of the querying system which knows
which microservice endpoint should be called to get the data.
Potentially a front-end client could be an API Composer, but due
to firewall restrictions and network limitations, it is better to use
API Gateway as an API Composer (API Gateway is an internal
part of the server solution). This pattern is quite simple and
intuitive for querying in MSA. However, it also has its
drawbacks such as higher costs of the infrastructure (calling of
multiple services each time when data is needed), risk of lower
availability (API Composer and all involved microservices need
to be available for a query), and potential inconsistencies in
transactional data. A more detailed description of this pattern
can be found in [9]. The second approach can be CQRS - a
pattern that separates read from write operations by querying
different databases and keeping them in sync using a dedicated
strategy (e.g. Event Sourcing or Relational Database
Management System trigger with a special flag to mark data as
'dirty') [10]. This pattern can also be implemented as a single
centralised service with dedicated views updated by changes in
other databases. The advantages of using CQRS are as follows:

Figure 1. Resilience, communication and data maintenance patterns divided
by role in the team among all particpants

• efficient implementation of querying in MSA (one
single DB with dedicated views),

• efficient implementation of diverse queries (different
databases types can be easily handled),

• can be connected with Event Sourcing,

• improves separation of concerns.

Using CQRS can also have disadvantages related to that:

• system architecture is more complex,

• replication lag needs to be taken into consideration.

A detailed description of this pattern and its advantages and
disadvantages can also be found in [9].

According to survey respondents, CQRS is the most popular
approach for querying in the MSA (41%). API Composition is
used in 32% participants' projects. There are also respondents
who do not use any pattern (23%) and left the answer to this
question blank (3%). There is also one other response: "The
system uses the REST in communication with the user", which
may indicate the usage of API Composition.

Discovery mechanism. The Microservices' environment is
very dynamic - virtual machine instances are started and stopped
due to failures and scalability features of the MSA. The
discovery mechanism uses the Service Registry to store all
available instances in the system and helps routing application
traffic [23]. The next question was obligatory for all participants
and the following two were answered only if the answer was
'Yes' to the first one. The service discovery mechanism is used
by 38% of the participants, which is quite low number if we
consider the dynamic nature of the MSA - new instances are
added to the system when others are shut down within
sometimes seconds.

In service discovery, we can use two major approaches:
client-side and server-side [9]. Client-side is using Service
Registry to get all running instances and using load balancing
algorithm (e.g. round-robin or random) is choosing the server
which will be used. The main advantage of this approach is the
possibility of using multiple platforms (e.g. Kubernetes and an
in-house solution with local data centre servers). The
disadvantages of this solution are: handling of service discovery
mechanisms on client side (especially hard with different
technological stack in each microservice), configuration, and
maintenance of the service registry as part of MSA. The second
approach is to use server-side (platform) discovery. In this
approach, the client calls a router, which is load balancing the
traffic to all registered services (after querying the service
registry). The main advantages are: client code is simpler due to
the fact that it does not need to deal with discovery and use one
of the available solutions e.g. Azure Load Balancer, Amazon
Elastic Load Balancer. The disadvantages are: maintenance of
the router (if it is not cloud based), router needs to support the
communication protocols (e.g. HTTP/S, gRPC) also more

67

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

network hops are required in comparison to client-side [27]. The
server side is the most popular approach among service
discovery users (66%) and the client-side implementation is
declared by 34%.

The second part of service discovery is the registration
mechanism. It can be implemented in two forms: self-
registration and third-party registration [9]. In the self-
registration each instance should inform the service registry that
it is up and running. The advantage is that each service knows
its own state and can give more information than up or down,
e.g., starting, available, warm-up [28]. As a disadvantage of this
approach we can point: coupling to service registry, each
instance needs to implement service registration logic, faulty
instance (running, but not able to handle requests) has problem
with unregistering from service registry. The second approach –
a 3rd party registration - is adding 3rd party registry which is
responsible for registering and unregistering a service.
Advantages of this approach are the following: the service code
is less complex than in self-registration. The registry can also
perform periodic health checks. The disadvantages are
simplified state knowledge (running or not running) and having
another component in the architecture (which sometimes must
be additionally installed) [29]. The majority of service discovery
users (83%) prefer to use self-registration and other users declare
using 3rd party registration (17%).

Service discovery does not appear to be widely adopted also
when we analyse it by the different participant roles. While the
mechanism is inherently complex to implement [9], its adoption
can be significantly simplified by leveraging existing solutions
such as Kubernetes, AWS Service Discovery, and Consul.
Among those who do use it, self-registration and server-side
approaches are the most common, with usage distributed fairly
evenly across all three groups (Fig. 2).

Figure 2. Service discovery and transactional messaging patterns usage
divided by role in the team among all participants

Figure 3. Transactional patterns used in participants' projects

Transactional messaging. In MSA each microservice
should maintain its own state, and microservices should avoid
sharing the database and instead have a database per
microservice [3]. This leads to possible problems with data
consistency, ACID transactions, and supporting multiple
denormalization [17]. Several design patterns were introduced
to overcome these issues. One of them is a transactional outbox
(outbox pattern) used in databases to store all messages in a table
called OUTBOX. The atomicity of the operation is kept due to
the fact that the transaction is local. Another pattern is message
relay, where messages are read from the table and published to
the message broker. The next design pattern is focused on the
message moving from the database to the message broker.
The polling publisher periodically searches the database for
waiting messages and publishes them on the message broker.
Finally, the messages are removed from the database. A more
sophisticated approach assumes using the transaction log
(transaction journal). Each database operation there is stored as
an entry in the transaction log. The transaction log miner reads
the transaction log and publishes each change as a message in
the message broker. This approach can be implemented for
relational databases or NoSQL databases. Detailed descriptions
of these patterns can be found in [9].

Respondents were asked if they use any kind of transactional
messaging pattern. Almost half of the participants (44%) declare
that they use these patterns in their projects.

The next question was only available for those participants
who answered 'Yes' in the previous question. The respondents
were asked which patterns are actually used in their projects,
with the possibility of selecting multiple patterns. The most
popular pattern is the transactional outbox (47% of 34
responses), but was sometimes not marked together with the
polling publisher or the transaction log tailing (47% of the
answers), which transactional outbox relies on. The respondents
prefer to use the polling publisher (38%) than the transaction log
tailing (18%). Two respondents decided not to mark any answer
even though there was some other option (6% out of 34
answers). The results are visualised in Fig. 3.

The transactional outbox is used most frequently by
architects, which may indicate that it is primarily configured

68

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

during the initial stages of the project, and that developers may
not be aware of its presence in the solution (Fig. 2).

Figure 4. Data consistency and transactional messaging patterns usage in
participants' projects

Maintaining data consistency is one of the most crucial
challenges that can occur in distributed systems such as MSA.
The additional difficulty is also to provide transactions in
NoSQL databases that will work side by side with relational
databases [30]. Also, eventual consistency - stabilisation of the
system after distributed transaction, may cause problems with
availability and scalability [24]. Due to these problems, design
patterns maintaining data consistency should be introduced.
Domain events are used in the Domain-Driven designed
systems. They are published when the data is updated and can
be consumed by other services. Domain events are often
combined with aggregates (Aggregate pattern) that are modelled
around one transaction in the system [31]. Aggregates emit
domain events when they are created, updated, or deleted. When
the process cannot be handled by one single microservice then
the Saga pattern is used. Provides a mechanism that ensures the
consistency of data between multiple microservices. One of the
challenges related to Saga patterns is that they only provide
ACD (Atomicity, Consistency, Durability), but without the
isolation property [9]. The following pattern that can be used to
maintain data consistency is Event Sourcing, in which changes
in the application state are stored as sequences of state-changing
operations [32]. In Domain-Driven Design (DDD) systems, this
pattern can be easily adapted to store the changes of the
aggregates, which may give the following benefits:

• the domain events published reliably,

• the history of the aggregates kept,

• facilitated combining of relational and object
approaches,

• possibility to be combined with Saga pattern,

• providing access to "time machine" - travelling in
history using changes between objects.

From the other side Event Sourcing might be inconvenient
due to:

• steep learning curve,

• messaging-based approach which may result in higher
complexity,

• evolving and deleting of data more complex than in
traditional persistence,

• querying the event store is challenging.

A more detailed description of the advantages and
disadvantages of Event Sourcing can be found in [9].

The use of patterns to maintain data consistency by the
survey participants' projects is similar to transactional
messaging patterns - 44% of respondents (34 participants), but
the answer was marked by other participants. After combining
the two results, transactional messaging patterns alone are used
by 21%, data consistency patterns alone are used also by 21%,
23% are using both and 35% are not using either transactional
messaging or data consistency patterns (Fig. 4).

The next questions were only available to those users who
answered yes in the question about patterns usage to maintain
data consistency. The most common approach for this is to use
domain events (59% out of 34 responses). Event Sourcing
pattern is used in 44% of the projects of the users of data
consistency patterns. Aggregates are used in 38% of the projects,
and Saga patterns are used in 32%. Other answers (2 out of 34
answers) are: 'Outbox' and 'Real models with consistency check
run by serverless code'. 'Outbox' answer written by the
participant is probably referring to the transactional outbox
pattern described in the previous section. The results are
visualized in Fig. 5.

Observability and monitoring. Each application must
provide its Service Level Agreement (SLA), which is the
contract between the company and their customers and set forth
the expected service parameters [33]. To measure the overall
MSA parameters and provide Quality of Service (QoS) metrics,
observability patterns were introduced. Observability is often
defined as a combination of metrics, logging and tracing [34].
The patterns that can be used for microservice observability are
the following:

69

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

• Health Check API - exposes the endpoint which
gives the information about health of the service
often represented as state,

Figure 5. Data consistency patterns used in participants' projects

Figure 6. Service observability patterns used in participants' projects

• Log aggregation - centralized logging server which
aggregates the information from log service activity
and write logs and can provide alerting and
searching functionalities,

• Distributed tracking - tracking the flow of the
requests between services by assigning each
external request an unique ID,

• Exception tracking - each exception is reported to
exception tracking service which is de-duplicating
an exception, alerts developers and tracks the
resolution,

Figure 7. Observability and monitoring patterns usage divided by role in the
team among all participants

• Applications metrics - metric server is aggregates
the metrics maintained by microservices, such as
counter and gauges, and prepare the visualization
and alerts,

• Audit logging - records user actions in a database
or file and enables searching, ensures compliance
and detection of suspicious behaviour,

• Correlation ID - is similar to the distributed
tracking, but is also used in queuing and in Saga
pattern implementations. [23], [35].

The patterns mentioned above are described in detail in [9].

The survey participants largely declare that they use the
service observability patterns (71% in total). In the following
question the number of users rise (all the participants could mark
one of the patterns) to 92% (only six participants did not mark
any of the patterns). The most popular patterns are: log
aggregation (73%), health check API (68%) and application
metrics (64%). In around half of the projects these patterns are
used: exception tracking (42%), audit logging (39%) and
correlation ID (36%). Less popular service observability
patterns, but still used in one quarter of the projects, are:
distributed tracking (27%) and log deployments and changes
(27%). The participants declare that in 8% of the projects there
are no observability patterns used at all (6 responses without any

70

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

pattern marked). There were no other patterns mentioned in the
answers. The results are visualized in Fig. 6.

An analysis by team role across all participants shows that
the most commonly used patterns (Health check API,
Application metrics and Log aggregation) are similarly popular
among architects, developers, and other roles (Fig. 7).

V. DISCUSSION

During the survey, participants were asked about the design
patterns that are used in their projects. Patterns are commonly
used to solve recurring types of problems in software
architecture [17]. The patterns analysed in the survey can be
divided into three main categories: communication patterns, data
patterns, and observability patterns.

Communication and reliability. The first two patterns
analysed in the survey were API Gateway and Circuit Breaker.
The API Gateway pattern is declared to be commonly used by
the survey's participants. Implementation of this pattern gives
the possibility to expose only a single layer of communication
outside and hides the Microservices in the internal network. In
contrast, Circuit Breaker is not as popular among participants
(only twice as few as API gateway users). As a result, this can
weaken the resiliency of the microservices architecture by
impairing fault detection and leaving the system vulnerable to
cascading failures [26].

The next set of patterns focused on querying the API topic.
Participants declare that the CQRS (Command Query
Responsibility Segregation) pattern is used more often than the
API Composition pattern. CQRS separates read from write
operations by querying different databases and keeping them in
sync when any changes occur. One of the main benefits of
CQRS is its clear separation of responsibilities between
commands and queries, which contributes to cleaner, more
straightforward, and easier-to-test code. It is a common practice
to implement CQRS alongside API Composition, as combining
these patterns can enhance system scalability and
maintainability by clearly separating read and write concerns
while efficiently aggregating data from multiple services. It is
very surprising that only one third of the participants declared
the usage of API Composition, but two third declared the usage
of API gateway (which is one of possible implementations of
API Composition). This may suggest a lack of understanding of
this pattern among participants.

Service discovery. The next set of patterns focused on the
discovery mechanism. Service discovery is used only in less
than half of the survey participants' projects. Without this
mechanism, the registration must be done manually, which
raises the complexity of the final solution. On the other hand,
huge complexity of the mechanism implemented from the
beginning may lead to problems with deployment of the final
solution. The service discovery can be implemented on either the
client-side or the server-side. The server-side approach is far
more popular among participants. The disadvantages of the
server side are: maintenance of the router (if it is not cloud-
based), problematic support of multiple protocols. It also
generates more hops in the network compared to the client side.

The last part of the service discovery is the registration
mechanism. The most popular approach among participants is
self-registration (each instance has the logic of how to register
in a router), which gives them more control over the process.

Transactional messaging. Distributed transaction handling
is the problem that is solved by the next group of patterns. These
patterns were introduced to overcome the problems with
distributed databases (database per microservice) and provide
ACID transactions in the Microservices. Only less than half of
the participants declare the use of transactional messaging
patterns. This may lead to the conclusion that other patterns (e.g.
data patterns) may be in use instead.

Maintaining data consistency patterns. The usage of data
consistency patterns can be either an alternative or an extension
for transactional patterns. Almost half of the survey's
participants declared the usage of these patterns. The domain
event pattern usage is declared by almost two-thirds of the
participants, which may suggest the usage of Domain-Driven
Design (DDD) in their projects. The aggregates are also defined
in the DDD, but are used by only two thirds of the domain event
users. This may lead to problems with the proper decomposition
of MSA and maintaining the boundaries of microservices in the
future.

Event Sourcing is implemented in less than half of the
projects that use data consistency patterns. This pattern has a
great benefit of storing the complete story of data changes in the
whole system, but it also comes with higher complexity and
problems with missing events. Saga pattern is designed to be an
alternative for distributed transaction. The implementation of
this pattern is highly simplified by dedicated libraries, which
expose easy-to-use API and are often free to use. The Saga
pattern is declared to be used only in one-third of the data
consistency patterns users. The missing implementation of the
Saga pattern is not very severe because it can be replaced with,
e.g. the outbox pattern, but this pattern also gives the possibility
to compensate (revert) the changes and orchestrate the
processes. For other patterns, compensation and orchestration
must be additionally implemented.

Observability and monitoring. The observability patterns
are must-have in modern applications, which can also be found
in the results of this survey. The large group (more than two
thirds of the participants) declares the usage of these patterns.
Log aggregation is declared to be the most popular pattern
among the participants but is also often combined with the
Health Check API. Health checks provide a quick way to detect
when recovery mechanisms need to be triggered, while log
aggregation allows for in-depth analysis of the issue and
supports implementing improvements to prevent future
occurrences. Application metrics are also a widely adopted
pattern among participants and are essential for establishing a
reliable Service Level Agreement (SLA) with future users.

It is quite surprising that design patterns in general are not as
frequently applied in practitioners' projects as we could expect.
Thus, it is advisable to design and implement a decision model
to support MSA architects in the effective application of these
patterns.

71

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

Comparison with the other MSA survey. When
comparing the results of our survey with the other MSA survey
([17]), we can state that a similar set of design patterns is
described as commonly used in Microservices. In [17], the
authors used the Likert scale to describe the use of patterns,
while in our survey, we simplified the answers to yes/no. In both
surveys, the results are comparable; the most popular pattern is
the API gateway. Sagas and Circuit breakers are used by one-
third of the participants. In our survey, we can find the increase
in the use of the CQRS pattern compared to [17]. In that work
CQRS usage was described as "sometimes and less", when in
our research almost half of the participants declare to use it. In
our survey, we also explored the observability patterns (e.g.,
health checks, exception tracking, correlation ID) and extended
patterns found in [17] with application metrics and correlation
ID. The usage of application metrics gives the possibility to
calculate Quality of Service (QoS) metrics, and correlation ID
improves the tracking of messages in the system. Both of those
mechanisms are used in the participants' projects. In addition,
health checks are declared to be more commonly used in MSA
than in [17]. We can find in our results the decrease in the usage
of exceptions, which was the second most used pattern in [17].
Throwing of the exceptions is computational consuming and
patterns like the Result pattern were introduced to overcome this
drawback.

VI. CONCLUSIONS

Microservices-based architecture (MSA) provides great
flexibility and scalability, making it an excellent choice for most
modern, dynamic applications and systems. However, if not
designed or implemented correctly, MSA can lead to significant
performance bottlenecks, data consistency issues, and security
vulnerabilities, among others. Thus, to fully harness the potential
of MSA, architects must adhere to patterns that provide guidance
on designing, implementing, and managing microservice-based
systems effectively. MSA patterns cover a wide range of areas,
including service decomposition, communication, resilience,
observability, security, consistency, and more.

This paper presents a survey and its findings that illustrate
how architects and the IT community nowadays practically
engage with MSA, its paradigms, and patterns. It provides an
overview of the patterns and techniques defined for and
commonly used with MSA. The survey results indicate that
architects and developers express a strong demand for patterns
that ensure the reliability and security of the system.

The survey results show that the most commonly used
pattern in microservices architecture (MSA) design is the API
gateway, implemented in 73% of participants' projects. This
pattern improves security by providing a single point of
exposure to the public network. In contrast, a majority of
respondents (62%) indicated that they do not employ service
discovery patterns. While these patterns can be complex to
implement independently, their adoption may be facilitated by
the availability of established libraries and platforms. This
omission can reduce the reliability of the system, as new
instances must be added manually, increasing the overall
complexity of the solution.

The general findings presented may offer valuable insight to
architects and developers, highlighting which design patterns are
beneficial to adopt in MSA projects.

ACKNOWLEDGMENTS

We sincerely thank all the Participants who responded to the
survey and contributed to the creation of this article.

DATA AVAILABILITY

Data will be made available on request.

REFERENCES
[1] J. Lewis and M. Fowler, “Microservices - a definition of this new

architectural term,” https://martinfowler.com/articles/microservices.html,
2014, accessed: 2025-01-17.

[2] Z. Li, C. Shang, J. Wu, and Y. Li, “Microservice extraction based on
knowledge graph from monolithic applications,” Information and
Software Technology, vol. 150, p. 106992, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922001240

[3] S. Newman, Building Microservices. O’Reilly Media, 2021. [Online].
Available: https://books.google.pl/books?id=aPM5EAAAQBAJ

[4] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A.
Babar, “Understanding and addressing quality attributes of microservices
architecture: A systematic literature review,” Information and Software
Technology, vol. 131, p. 106449, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584920301993

[5] L. Qian, J. Li, X. He, R. Gu, J. Shao, and Y. Lu, “Microservice extraction
using graph deep clustering based on dual view fusion,” Information and
Software Technology, vol. 158, p. 107171, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584923000253

[6] V. Lenarduzzi, F. Lomio, N. Saarimaki, and D. Taibi, “Does migrating a
monolithic system to microservices decrease the technical debt?” Journal
of Systems and Software, vol. 169, p. 110710, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220301539

[7] S. S. de Toledo, A. Martini, and D. I. Sjøberg, “Identifying architectural
technical debt, principal, and interest in microservices: A multiple-case
study,” Journal of Systems and Software, vol. 177, p. 110968, 2021.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221000650

[8] S. Newman, Monolith to Microservices: Evolutionary Patterns to
Transform Your Monolith. O’Reilly Media, Incorporated, 2019. [Online].
Available: https://books.google.pl/books?id=iul3wQEACAAJ

[9] C. Richardson, Microservices Patterns: With examples in Java. Manning,
2018. [Online]. Available:
https://books.google.pl/books?id=UeK1swEACAAJ

[10] W. Meijer, C. Trubiani, and A. Aleti, “Experimental evaluation of
architectural software performance design patterns in microservices,”
Journal of Systems and Software, vol. 218, p. 112183, 2024. [Online].
Available:
https://www.sciencedirect.com/science/article/pii/S0164121224002279

[11] G. Vale, F. F. Correia, E. M. Guerra, T. de Oliveira Rosa, J. Fritzsch, and
J. Bogner, “Designing microservice systems using patterns: An empirical
study on quality trade-offs,” in 2022 IEEE 19th International Conference
on Software Architecture (ICSA), March 2022, pp. 69–79.

[12] X. Zhou, S. Li, L. Cao, H. Zhang, Z. Jia, C. Zhong, Z. Shan, and M. A.
Babar, “Revisiting the practices and pains of microservice architecture in
reality: An industrial inquiry,” Journal of Systems and Software, vol. 195,
p. 111521, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121222001972

[13] S. Henning and W. Hasselbring, “Benchmarking scalability of stream
processing frameworks deployed as microservices in the cloud,” Journal
of Systems and Software, vol. 208, p. 111879, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223002741

72

Works in Progress in Embedded Computing (WiPiEC) Journal, vol. 11, no. 1, 2025

[14] A. Hannousse and S. Yahiouche, “Securing microservices and
microservice architectures: A systematic mapping study,” Computer
Science Review, vol. 41, p. 100415, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013721000551

[15] M. Matias, E. Ferreira, N. Mateus-Coelho, and L. Ferreira, “Enhancing
effectiveness and security in microservices architecture,” Procedia
Computer Science, vol. 239, pp. 2260–2269, 2024, cENTERIS –
International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement/ HCist -
International Conference on Health and Social Care Information Systems
and Technologies 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050924016612

[16] A. S. Abdelfattah, T. Cerny, M. S. H. Chy, M. A. Uddin, S. Perry, C.
Brown, L. Goodrich, M. Hurtado, M. Hassan, Y. Cai, and R. Kazman,
“Multivocal study on microservice dependencies,” Journal of Systems
and Software, vol. 222, p. 112334, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121225000020

[17] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez, “Design,
monitoring, and testing of microservices systems: The practitioners’
perspective,” Journal of Systems and Software, vol. 182, p. 111061, 2021.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221001588

[18] R. Pinciroli, A. Aleti, and C. Trubiani, “Performance modeling and
analysis of design patterns for microservice systems,” in 2023 IEEE 20th
International Conference on Software Architecture (ICSA), 2023, pp. 35–
46.

[19] Microsoft, “Cloud design patterns,” https://learn.microsoft.com/en-
us/azure/architecture/patterns/, 2025, accessed: 2025-05-10.

[20] H. Farsi, D. Allaki, A. En-nouaary, and M. Dahchour, “Dealing with anti-
patterns when migrating from monoliths to microservices: Challenges and
research directions,” in 2023 IEEE 6th International Conference on Cloud
Computing and Artificial Intelligence: Technologies and Applications
(CloudTech), Nov 2023, pp. 1–8.

[21] G. Parker, S. Kim, A. A. Maruf, T. Cerny, K. Frajtak, P. Tisnovsky, and
D. Taibi, “Visualizing anti-patterns in microservices at runtime: A
systematic mapping study,” IEEE Access, vol. 11, pp. 4434–4442, 2023.

[22] S. Pulnil and T. Senivongse, “A microservices quality model based on
microservices anti-patterns,” in 2022 19th International Joint Conference
on Computer Science and Software Engineering (JCSSE), June 2022, pp.
1–6.

[23] I. Karabey Aksakalli, T. Celik, A. B. Can, and B. Tekinerdogan,
“Deployment and communication patterns in microservice architectures:
A systematic literature review,” Journal of Systems and Software, vol.
180, p. 111014, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221001114

[24] X. Zhao and P. Haller, “Replicated data types that unify eventual
consistency and observable atomic consistency,” Journal of Logical and

Algebraic Methods in Programming, vol. 114, p. 100561, 2020. [Online].
Available:
https://www.sciencedirect.com/science/article/pii/S2352220820300468

[25] X. Zuo, Y. Su, Q. Wang, and Y. Xie, “An api gateway design strategy
optimized for persistence and coupling,” Advances in Engineering
Software, vol. 148, p. 102878, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0965997820304452

[26] C. Lira, E. Batista, F. C. Delicato, and C. Prazeres, “Architecture for iot
applications based on reactive microservices: A performance evaluation,”
Future Generation Computer Systems, vol. 145, pp. 223–238, 2023.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X23001036

[27] C. Richardson, “Pattern: Server-side service discovery,”
https://microservices.io/patterns/server-side-discovery.html, 2024,
accessed: 2024-12-06.

[28] C. Richardson, “Pattern: Self registration,”
https://microservices.io/patterns/self-registration.html, 2024, accessed:
2024-12-07.

[29] C. Richardson, “Pattern: 3rd party registration,”
https://microservices.io/patterns/3rd-party-registration.html, 2024,
accessed: 2024-12-07.

[30] M. T. Gonzalez-Aparicio, M. Younas, J. Tuya, and R. Casado, “A
transaction platform for microservices-based big data systems,”
Simulation Modelling Practice and Theory, vol. 123, p. 102709, 2023.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X22001782

[31] V. Vernon, Domain-driven Design Distilled. Addison-Wesley, 2016.
[Online]. Available: https://books.google.pl/books?id=h0u7jwEACAAJ

[32] S. Lima, J. Correia, F. Araujo, and J. Cardoso, “Improving observability
in event sourcing systems,” Journal of Systems and Software, vol. 181, p.
111015, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221001126

[33] O. Ghandour, S. El Kafhali, and M. Hanini, “Adaptive workload
management in cloud computing for service level agreements compliance
and resource optimization,” Computers and Electrical Engineering, vol.
120, p. 109712, 2024. [Online].
Available:https://www.sciencedirect.com/science/article/pii/S004579062
4006396

[34] J. Kosińska, B. Baliś, M. Konieczny, M. Malawski, and S.
Zielińnski,“Toward the observability of cloud-native applications: The
overview of the state-of-the-art,” IEEE Access, vol. 11, pp. 73 036–73
052, 2023.

[35] S. Janapati, “Distributed logging architecture for
microservices,”https://dzone.com/articles/distributed-logging-
architecture-for-microservices, 2017, accessed: 2024-12-27

73

